Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88230
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭憶中zh_TW
dc.contributor.advisorI-Chung Chengen
dc.contributor.author李芝蓁zh_TW
dc.contributor.authorChih-Chen Leeen
dc.date.accessioned2023-08-09T16:06:55Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-21-
dc.identifier.citation1. Day, G.S., et al., Evolution of porous materials from ancient remedies to modern frameworks. Commun Chem, 2021. 4(1): p. 114.
2. Bryan, C.P. Ancient Egyptian medicine: the Papyrus Ebers. 1974.
3. Scheele, C.W., Chemical observations and experiments on air and fire. 1780: J. Johnson.
4. Deitz, V.R., Bibliography of Solid Adsorbents: An Annotative Bibliographical Survey of the Scientific Literature on Bone Char, Activated Carbons, and Other Technical Solid Adsorbents, for the Years 1900 to 1942 Inclusive. 1944.
5. Kerley, T. and J.P. Munafo Jr, Changes in Tennessee whiskey odorants by the Lincoln county process. Journal of Agricultural and Food Chemistry, 2020. 68(36): p. 9759-9767.
6. Spiers, E.M. The Gas War, 1915–1918: If not a War Winner, Hardly a Failure. in One Hundred Years of Chemical Warfare: Research, Deployment, Consequences. 2017. Springer International Publishing.
7. Franklin, R.E., Crystallite growth in graphitizing and non-graphitizing carbons. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1951. 209(1097): p. 196-218.
8. Pauling, L., The structure of some sodium and calcium aluminosilicates. Proceedings of the National Academy of Sciences, 1930. 16(7): p. 453-459.
9. Hadding, A., IV. Eine röntgenographische Methode kristalline und kryptokristalline Substanzen zu identifizieren. Zeitschrift für Kristallographie-Crystalline Materials, 1923. 58(1-6): p. 108-112.
10. McKeown, N.B., et al., Towards polymer‐based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angewandte Chemie, 2006. 118(11): p. 1836-1839.
11. Li, H., et al., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. nature, 1999. 402(6759): p. 276-279.
12. Hernandez, R., et al., Characteristics of porous nickel‐titanium alloys for medical applications. Bio-Medical Materials and Engineering, 2002. 12(1): p. 37-45.
13. Li, Y.Q., et al., Remarkable improvements in volumetric energy and power of 3D MnO2 microsupercapacitors by tuning crystallographic structures. Advanced Functional Materials, 2016. 26(11): p. 1830-1839.
14. Jane, A., et al., Porous silicon biosensors on the advance. Trends in biotechnology, 2009. 27(4): p. 230-239.
15. Wittstock, A., et al., Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science, 2010. 327(5963): p. 319-322.
16. Ding, Y. and M. Chen, Nanoporous metals for catalytic and optical applications. MRS bulletin, 2009. 34(8): p. 569-576.
17. Biener, J., et al., Surface-chemistry-driven actuation in nanoporous gold. Nature materials, 2009. 8(1): p. 47-51.
18. Shao, F., et al., Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing. ACS Appl Mater Interfaces, 2014. 6(9): p. 6281-9.
19. Khorshidi, A., et al., How strain can break the scaling relations of catalysis. Nature Catalysis, 2018. 1(4): p. 263-268.
20. Miriyev, A., K. Stack, and H. Lipson, Soft material for soft actuators. Nature Communications, 2017. 8.
21. Qiu, H., et al., Dealloying Ag–Al alloy to prepare nanoporous silver as a substrate for surface‐enhanced raman scattering: effects of structural evolution and surface modification. ChemPhysChem, 2011. 12(11): p. 2118-2123.
22. Hakamada, M. and M. Mabuchi, Mechanical strength of nanoporous gold fabricated by dealloying. Scripta Materialia, 2007. 56(11): p. 1003-1006.
23. Hodge, A.M., et al., Characterization and Mechanical Behavior of Nanoporous Gold. Advanced Engineering Materials, 2006. 8(9): p. 853-857.
24. Juergen Biener, A.M.H., Joel R. Hayes, Cynthia A. Volkert, Luis A. Zepeda-Ruiz, Alex V. Hamza, and Farid F. Abraham, Size Effects on the Mechanical Behavior of Nanoporous Au. Nano letters, 2006. 6(10): p. 2379-2382.
25. Mameka, N., et al., Nanoporous Gold—Testing Macro-scale Samples to Probe Small-scale Mechanical Behavior. Materials Research Letters, 2015. 4(1): p. 27-36.
26. Ye Sun, J.Y., Zhiwei Shan, Andrew M. Minor, and T. John Balk, The mechanical behavior of nanoporous gold thin films. Jom, 2007. 59: p. 54-58.
27. Zandersons, B., et al., On factors defining the mechanical behavior of nanoporous gold. Acta Materialia, 2021. 215.
28. Wang, K., et al., Nanoporous-gold-based composites: toward tensile ductility. NPG Asia Materials, 2015. 7(6): p. e187-e187.
29. Badwe, N., X. Chen, and K. Sieradzki, Mechanical properties of nanoporous gold in tension. Acta Materialia, 2017. 129: p. 251-258.
30. Stuckner, J. and M. Murayama, Mechanical properties of nanoporous gold subjected to tensile stresses in real-time, sub-microscopic scale. Journal of Materials Science, 2019. 54(18): p. 12106-12115.
31. Balk, T.J., Eberl, C., Sun, Y., Hemker, K. J., & Gianola, D. S., Tensile and compressive microspecimen testing of bulk nanoporous gold. Jom, 2009. 61: p. 26-31.
32. Li, Z., et al., A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nature Catalysis, 2019. 2(12): p. 1107-1114.
33. Kashani, H. and M. Chen, Flaw-free nanoporous Ni for tensile properties. Acta Materialia, 2019. 166: p. 402-412.
34. Wang, C., et al., The morphology control and mechanical properties of nanoporous Ag. Materials & Design, 2020. 192.
35. Li, G., et al., Nanoporous Ag prepared from the melt-spun Cu-Ag alloys. Solid State Sciences, 2011. 13(7): p. 1379-1384.
36. Chi, H., et al., Highly reusable nanoporous silver sheet for sensitive SERS detection of pesticides. Analyst, 2020. 145(15): p. 5158-5165.
37. Song, T., et al., Dealloying behavior of rapidly solidified Al–Ag alloys to prepare nanoporous Ag in inorganic and organic acidic media. CrystEngComm, 2011. 13(23).
38. Jia, F., et al., Nanoporous metal (Cu, Ag, Au) films with high surface area: general fabrication and preliminary electrochemical performance. The Journal of Physical Chemistry C, 2007. 111(24): p. 8424-8431.
39. Wang, C., et al., Understanding the macroscopical flexibility/fragility of nanoporous Ag: Depending on network connectivity and micro-defects. Journal of Materials Science & Technology, 2020. 53: p. 91-101.
40. Formo, E.V., S.M. Mahurin, and S. Dai, Robust SERS Substrates Generated by Coupling a Bottom-Up Approach and Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2010. 2(7): p. 1987-1991.
41. Lucia, O., et al., Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges. IEEE Transactions on Industrial Electronics, 2014. 61(5): p. 2509-2520.
42. Karimi-Sibaki, E., et al., A Parametric Study of the Vacuum Arc Remelting (VAR) Process: Effects of Arc Radius, Side-Arcing, and Gas Cooling. Metallurgical and Materials Transactions B, 2019. 51(1): p. 222-235.
43. Shirzadi, A.A., et al., Development of Auto Ejection Melt Spinning (AEMS) and its application in fabrication of cobalt-based ribbons. Journal of Materials Processing Technology, 2019. 264: p. 377-381.
44. Strange, E.H. and C.A. Pim, Process of manufacturing thin sheets, foil, strips, or ribbons of zinc, lead, or other metal or alloy. 1908, Google Patents.
45. Pond, R., A method of producting rapidly solidified filamentary castings. Trans. Met. Soc. AIME, 1969. 245: p. 2475-2476.
46. Chen, H. and C. Miller, A rapid quenching technique for the preparation of thin uniform films of amorphous solids. Review of Scientific Instruments, 1970. 41(8): p. 1237-1238.
47. Chen, H. and C. Miller, Centrifugal spinning of metallic glass filaments. Materials Research Bulletin, 1976. 11(1): p. 49-54.
48. Liebermann, H. and C. Graham, Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions. IEEE Transactions on Magnetics, 1976. 12(6): p. 921-923.
49. Fiedler, H., H. Mühlbach, and G. Stephani, The effect of the main processing parameters on the geometry of amorphous metal ribbons during planar flow casting (PFC). Journal of materials science, 1984. 19: p. 3229-3235.
50. Thoma, D.J., Glasgow, T. K., Tewari, S. N., Perepezko, J. H., & Jayaraman, N., Effects of Process Parameters on Melt-spun Ag-Cu. Materials Science and Engineering, 1988. 98: p. 89-93.
51. Swaroopa, M., et al., Effect of crucible parameters on planar flow melt spinning process. Transactions of the Indian Institute of Metals, 2015. 68: p. 1125-1129.
52. Liu, Y., J. Goebl, and Y. Yin, Templated synthesis of nanostructured materials. Chem Soc Rev, 2013. 42(7): p. 2610-53.
53. Yi Ding , Z.Z., Nanoporous Metals for Advanced Energy Technologies. Cham: Springer International Publishing, 2016: p. 83-135.
54. Ding, Y. and Z. Zhang, Nanoporous metals for advanced energy technologies. 2016: Springer.
55. Erlebacher, J., et al., Evolution of nanoporosity in dealloying. Nature, 2001. 410(6827): p. 450-453.
56. Flowers, P., et al., Chemistry (OpenStax). 2015, OpenStax.
57. Su, Y.-R., T.-H. Wu, and I.C. Cheng, Synthesis and catalytical properties of hierarchical nanoporous copper from θ and η phases in CuAl alloys. Journal of Physics and Chemistry of Solids, 2021. 151.
58. Ding, Y., Zhang, Z., Ding, Y., & Zhang, Z., Formation and Microstructural Regulation of Nanoporous Metals. Nanoporous Metals for Advanced Energy Technologies, 2016: p. 37-81.
59. Xu, C., Su, J., Xu, X., Liu, P., Zhao, H., Tian, F., & Ding, Y. , Low Temperature CO Oxidation over Unsupported Nanoporous Gold. Journal of the American Chemical Society, 2007. 129(1): p. 42-43.
60. Dursun, A., Pugh, D. V., & Corcoran, S. G. , Dealloying of Ag-Au alloys in halide-containing electrolytes- affect on critical potential and pore size. ournal of the Electrochemical Society, , 2003. 150(7): p. B355.
61. Snyder J, L.K., Erlebacher J Dealloying silver gold alloys in neutral silver nitrate solution- porosity evolution, surface composition, and surface oxides. J Electrochem Soc 2008. 155(8): p. C464.
62. Snyder, J., et al., Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors. Advanced Materials, 2008. 20(24): p. 4883-4886.
63. Okman, O. and J.W. Kysar, Fabrication of crack-free blanket nanoporous gold thin films by galvanostatic dealloying. Journal of Alloys and Compounds, 2011. 509(22): p. 6374-6381.
64. Zhao, Z.J., et al., Effect of high temperature oxidation on dealloying mechanism of Ag-Cu alloy. Journal of Alloys and Compounds, 2022. 896.
65. Coaty, C.M., et al., Morphological Tuning of Nanoporous Metals Prepared with Conversion Reaction Synthesis via Thermal Annealing. The Journal of Physical Chemistry C, 2019. 123(29): p. 17873-17883.
66. Hui, H., et al., Effects of Cold Rolling and Annealing Prior to Dealloying on the Microstructure of Nanoporous Gold. Nanomaterials (Basel), 2018. 8(7).
67. Li, R. and K. Sieradzki, Ductile-brittle transition in random porous Au. Phys Rev Lett, 1992. 68(8): p. 1168-1171.
68. Cheng, I.C. and A.M. Hodge, High temperature morphology and stability of nanoporous Ag foams. Journal of Porous Materials, 2014. 21(4): p. 467-474.
69. Kertis, F., Snyder, J., Govada, L., Khurshid, S., Chayen, N., & Erlebacher, J. , Structure:processing relationships in the fabrication of nanoporous gold. Jom, 2010. 62: p. 50-56.
70. Wang, Y., et al., Tuning the ligament/channel size of nanoporous copper by temperature control. CrystEngComm, 2012. 14(24).
71. Vega, A.A. and R.C. Newman, Nanoporous Metals Fabricated through Electrochemical Dealloying of Ag-Au-Pt with Systematic Variation of Au:Pt Ratio. Journal of The Electrochemical Society, 2013. 161(1): p. C1-C10.
72. Saffarini, M.H., G.Z. Voyiadjis, and C.J. Ruestes, Temperature effect on nanoporous gold under uniaxial tension and compression. Computational Materials Science, 2021. 200.
73. Gibson, L.J., Cellular Solids. MRS Bulletin, 2011. 28(4): p. 270-274.
74. Kim, M.-S. and H. Nishikawa, Fabrication of nanoporous silver and microstructural change during dealloying of melt-spun Al–20 at.%Ag in hydrochloric acid. Journal of Materials Science, 2013. 48(16): p. 5645-5652.
75. Okamoto, H., H. Okamoto, and A.S.M. International, Desk handbook : phase diagrams for binary alloys. 2000, Materials Park, OH: ASM International. xliii, 828 p. : ill.
76. Dixon, M.C., et al., Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir, 2007. 23(5): p. 2414-2422.
77. Zhao, Z.-j., Effect of dealloying parameters on HER electrocatalytic performance of nanoporous silver. International Journal of Electrochemical Science, 2021.
78. Zhao, Z., et al., Effects of pre-oxidation conditions on microstructure evolution and hydrogen evolution reaction performance of nano-porous Ag. Journal of Materials Research and Technology, 2021. 15: p. 2221-2226.
79. Cheng, I.C. and A.M. Hodge, Morphology, Oxidation, and Mechanical Behavior of Nanoporous Cu Foams. Advanced Engineering Materials, 2012. 14(4): p. 219-226.
80. Tsang, C.F., & Woo, J., Effect of nitrogen and oxygen annealing on the morphology and hardness behavior of copper thin films. materials Characterization, 2000. 45(3): p. 187-194.
81. Kreuzeder, M., et al., Fabrication and thermo-mechanical behavior of ultra-fine porous copper. J Mater Sci, 2015. 50(2): p. 634-643.
82. Zeng, W.-Y., J.-H. Lai, and I.-C. Cheng, Effect of Dealloying Time and Post-Annealing on the Surface Morphology and Electrocatalytic Behavior of Nanoporous Copper Films for CO2 Reduction Reaction. Journal of The Electrochemical Society, 2021. 168(12): p. 123501.
83. Lee, Y.-Z., W.-Y. Zeng, and I.-C. Cheng, Synthesis and characterization of nanoporous copper thin films by magnetron sputtering and subsequent dealloying. Thin Solid Films, 2020. 699: p. 137913.
84. Jin, H.-J., J. Weissmüller, and D. Farkas, Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts. MRS Bulletin, 2018. 43(1): p. 35-42.
85. Hodge, A.M., et al., Scaling equation for yield strength of nanoporous open-cell foams. Acta Materialia, 2007. 55(4): p. 1343-1349.
86. Walch, E.B.T. and C. Roos, Measurement of the mechanical properties of silver and enamel thick films using nanoindentation. International Journal of Applied Glass Science, 2019. 11(1): p. 195-206.
87. Zhang, R., et al., Formation mechanism of nanoporous silver during dealloying
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88230-
dc.description.abstract奈米多孔金屬(NPMs)因其獨特的特性而受到廣泛關注,可應用於多種領域,奈米多孔銀(NP-Ag)具有高電、熱傳導,且在催化以及表面拉曼光譜(SERS)上有良好的表現,因此引起了眾多研究學者的關注。儘管先前的研究已經試圖通過添加其他元素或採用不同的去合金方法來改變NP-Ag的機械性質及微結構,但我們仍需要進一步研究在不同環境條件下NP-Ag的機械穩定性。考慮到潛在應用涉及在高溫過程中進行,因此我們針對NP-Ag在在相對較高的溫度環境下(200°C、400°C和600°C)的形貌和機械性質的穩定性及變化。
根據過去研究顯示,前驅合金(precursor)的晶粒或相(phase)大小會影響到NPMs的強度,本研究透過快速冷卻製程製作出有較細的相的前驅合金薄帶,透過調整不同參數改善薄帶的形貌。接著,我們也證實了,前驅合金的相較小時製作出的NP-Ag,相較於相較大的前驅合金,拉伸強度高了41MPa。根據實驗結果,NP-Ag在200°C的環境下,具有良好的熱穩定性,其表面形貌沒有明顯的改變,支架(ligament)尺寸則略粗了10nm,且在極表層Cu(II)的保護下,可獲得比室溫下的NP-Ag更好的機械性質以及支架連接性,拉伸強度高了6MPa,硬度則高了0.18GPa。然而當NP-Ag在400°C環境中,足夠的高溫使銀原子為了降低表面能而進行擴散與聚集,使支架粗化了338nm,根據過去的研究,支架尺寸越粗,則強度越弱,支架尺寸大幅度的粗化以及表面形貌顯著的改變,使400°C環境中的NP-Ag在拉伸強度上下降了29MPa,硬度則降低了0.07GPa。
zh_TW
dc.description.abstractNanoporous metals have garnered significant attention due to their unique properties and application in various fields. Nanoporous silver (NP-Ag) has been noted for its high electrical and thermal conductivity and excellent performance in catalysis and surface-enhanced Raman spectroscopy (SERS), making it a subject of interest among researchers. Despite previous attempts to improve the mechanical properties of NP-Ag by adding elements or other dealloying methods, further research is needed to investigate the stability of NP-Ag in different environmental conditions. However, further research is needed to investigate the mechanical stability of NP-Ag under different environmental conditions. Considering potential applications involving high-temperature processes, we studied the stability and changes in the morphology and mechanical properties of NP-Ag at higher temperatures (200°C, 400°C, and 600°C).
Past research has shown that the grain or phase size of the precursor alloy affects the strength of nanoporous metals. In this study, we produced the precursor(ribbon) with smaller phases through melt-spinning and improved the ribbon morphology by adjusting various parameters. We also confirmed that NP-Ag fabricated from precursor alloys with smaller phases exhibited a higher tensile strength compared to those with larger phases, with an increase of 41 MPa. Experimental results demonstrated that NP-Ag showed good thermal stability at 200°C, with a slight increase of 10 nm in ligament size. Moreover, under the protection of a Cu(II) surface layer, NP-Ag subjected to the 200°C environment exhibited improved mechanical properties and ligament connectivity with an increased tensile strength of 6 MPa and hardness of 0.18 GPa. However, when NP-Ag was exposed to a 400°C environment, the elevated temperature resulted in a significant coarsening of ligaments by 338 nm. The substantial coarsening of ligament size and significant changes in surface morphology at 400°C led to a decrease in tensile strength by 29 MPa and hardness by 0.07 GPa.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:06:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:06:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
第 1 章 緒論 1
1.1前言 1
1.2研究目的 3
第 2 章 文獻回顧 5
2.1 合金熔煉製程 5
2.1.1感應熔煉法(Induction Heating) 5
2.1.2真空電弧熔煉法(Vacuum Arc Remelting, VAR) 6
2.1.3快速冷卻製程(Rapid Solidification Process, RSP, Melt-spinning) 7
2.2 奈米多孔結構製程 10
2.2.1模板法(Templating) 10
2.2.2去合金法(Dealloying) 11
2.3 高溫熱處理對NPMs的影響 17
2.3.1 去合金前對前驅合金進行預熱處理 17
2.3.2 去合金後對NPMs進行熱處理 18
2.4金屬及奈米多孔結構金屬之機械性質分析 18
2.4.1拉伸試驗(Tension) 18
2.4.2奈米壓痕測試(Nanoindentation) 19
2.4.3多孔結構機械性質分析 19
第 3 章 實驗步驟 20
3.1 合金塊製備 21
3.2 金屬薄帶製備 23
3.3 NP-Ag製備 25
3.4 形貌與成分分析 27
3.5機械性質試驗 29
3.5.1拉伸試驗 29
3.5.2奈米壓痕試驗 30
第 4 章 結果與討論 31
4.1 以快速冷卻製程製備銀鋁(Ag-Al)薄帶及其去合金後之NP-Ag 31
4.1.1Ag-Al前驅合金薄帶之製備 34
4.1.2由Ag-Al前驅合金製備NP-Ag之形貌與成分分析 37
4.2 以快速冷卻製程製備銅銀(Cu-Ag)薄帶 41
4.2.1製備銅銀薄帶之參數 42
4.2.2 Cu-Ag前驅合金之微結構及使用不同溶液製備NP-Ag 46
4.3 由Cu-Ag(1000rpm, 0.005MPa)前驅合金製備NP-Ag的形貌與成分分析 51
4.3.1前驅合金形貌與元素分析 52
4.3.2去合金參數設定及NP-Ag在不同加熱溫度下之形貌分析 54
4.3.3 NP-Ag形貌與成分分析 57
4.4 NP-Ag機械性質分析 61
4.4.1拉伸測試 61
4.4.2奈米壓痕測試 64
第 5 章 結論與未來展望 67
第 6 章 附錄 69
A.石英管噴嘴形貌及尺寸 69
B. 以快速冷卻製程製備銅鋁(Cu-Al)薄帶及其去合金後之NPC 71
C. 以快速冷卻製程製備Ag-Al薄帶及去合金後之NP-Ag 74
D. CuAg前驅合金及其製備的NP-Ag樣品 81
D-1其他比例的Cu-Ag合金薄帶 81
D-2 透過Cu55Ag45成品顯示使用melt-spinning製備前驅合金的難處 84
D-3 氣相去合金(VPD) 86
D-4. H2O2加入腐蝕溶液 87
D-35攪拌去合金 89
E動態拉伸儀(DMA)實驗結果 91
F拉伸試驗及奈米壓痕試驗其他結果 93
文獻參考 95
-
dc.language.isozh_TW-
dc.title以快速冷卻製程及去合金法製備奈米多孔銀之表面形貌與機械性質zh_TW
dc.titleCharacterization and Mechanical Properties of Nanoporous Silver by Rapid Solidification Process and Dealloyingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳志軒;李岳聯zh_TW
dc.contributor.oralexamcommitteeChih-Hsuan Chen;Yueh-Lien Leeen
dc.subject.keyword細晶粒前驅合金,奈米多孔銀,熱穩定性,機械性質,快速冷卻製程,zh_TW
dc.subject.keywordFine-grain precursor,nanoporous silver,thermal stability,mechanical properties,melt-spinning,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202301806-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-24-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf42.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved