請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88209
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃國芳 | zh_TW |
dc.contributor.advisor | Kuo-Fang Huang | en |
dc.contributor.author | 陳洪毅 | zh_TW |
dc.contributor.author | Hong-Yi Chen | en |
dc.date.accessioned | 2023-08-08T16:47:25Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-08 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-21 | - |
dc.identifier.citation | Alford, M.H., Peacock, T., MacKinnon, J.A., Nash, J.D., Buijsman, M.C., Centurioni, L.R., Chao, S.-Y., Chang, M.-H., Farmer, D.M., Fringer, O.B., 2015. The formation and fate of internal waves in the South China Sea. Nature 521, 65-69.
Allemand, D., Tambutté, É., Zoccola, D., Tambutté, S., 2011. Coral calcification, cells to reefs. Coral reefs: an ecosystem in transition, 119-150. Bauer, J.E., Cai, W.-J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S., Regnier, P.A., 2013. The changing carbon cycle of the coastal ocean. Nature 504, 61-70. Boyle, E.A., Lee, J.-M., Echegoyen, Y., Noble, A., Moos, S., Carrasco, G., Zhao, N., Kayser, R., Zhang, J., Gamo, T., 2014. Anthropogenic lead emissions in the ocean: The evolving global experiment. Oceanography 27, 69-75. Chang, S.-W., 2013. Seawater acidification over the past dacade (1992~2012) at the SEATS site, Institute of Marine Geology and Chemistry. National Sun Yat-sen University, p. 84. Chao, S.-Y., Shaw, P.-T., Wu, S.Y., 1996. El Niño modulation of the South China sea circulation. Progress in Oceanography 38, 51-93. Chen, C.-T.A., Wang, S.-L., Chou, W.-C., Sheu, D.D., 2006. Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea. Marine Chemistry 101, 277-305. Chen, M., Goodkin, N.F., Boyle, E.A., Switzer, A.D., Bolton, A., 2016. Lead in the western South China Sea: Evidence of atmospheric deposition and upwelling. Geophysical Research Letters 43, 4490-4499. Cheng, H., Hu, Y., 2010. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environmental pollution 158, 1134-1146. Chow, T.J., Johnstone, M., 1965. Lead isotopes in gasoline and aerosols of Los Angeles basin, California. Science 147, 502-503. D'Olivo, J., McCulloch, M.T., Eggins, S., Trotter, J., 2015. Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs. Biogeosciences 12, 1223-1236. D'Olivo, J.P., Ellwood, G., DeCarlo, T.M., McCulloch, M.T., 2019. Deconvolving the long-term impacts of ocean acidification and warming on coral biomineralisation. Earth and Planetary Science Letters 526, 115785. D'Olivo, J.P., Sinclair, D.J., Rankenburg, K., McCulloch, M.T., 2018. A universal multi-trace element calibration for reconstructing sea surface temperatures from long-lived Porites corals: Removing ‘vital-effects’. Geochimica et Cosmochimica Acta 239, 109-135. Dai, C.-F., 2004. Dong-sha Atoll in the South China Sea: Past, present and future, Islands of the world VIII international conference, Kinmen Island, Taiwan. Davis, K.A., Arthur, R.S., Reid, E.C., Rogers, J.S., Fringer, O.B., DeCarlo, T.M., Cohen, A.L., 2020. Fate of internal waves on a shallow shelf. Journal of Geophysical Research: Oceans 125, e2019JC015377. DeCarlo, T.M., Cohen, A.L., Wong, G.T., Davis, K.A., Lohmann, P., Soong, K., 2017. Mass coral mortality under local amplification of 2 C ocean warming. Scientific reports 7, 1-9. DeCarlo, T.M., Gaetani, G.A., Cohen, A.L., Foster, G.L., Alpert, A.E., Stewart, J.A., 2016. Coral Sr‐U thermometry. Paleoceanography 31, 626-638. DeCarlo, T.M., Gaetani, G.A., Holcomb, M., Cohen, A.L., 2015a. Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: Implications for interpreting coral skeleton. Geochimica et cosmochimica acta 162, 151-165. DeCarlo, T.M., Karnauskas, K.B., Davis, K.A., Wong, G.T., 2015b. Climate modulates internal wave activity in the Northern South China Sea. Geophysical Research Letters 42, 831-838. Dickson, A.G., 1990. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Research Part A. Oceanographic Research Papers 37, 755-766. Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J., Millero, F.J., 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362-366. Flegal, A.R., Smith, D.R., 1995. Measurements of environmental lead contamination and human exposure. Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, 1-45. Foster, G., Pogge von Strandmann, P.A., Rae, J., 2010. Boron and magnesium isotopic composition of seawater. Geochemistry, Geophysics, Geosystems 11. Foster, G.L., 2008. Seawater pH, pCO2 and [CO2− 3] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth and Planetary Science Letters 271, 254-266. Foster, G.L., Rae, J.W., 2016. Reconstructing ocean pH with boron isotopes in foraminifera. Annual Review of Earth and Planetary Sciences 44, 207-237. Fowell, S., Foster, G., Ries, J., Castillo, K., De La Vega, E., Tyrrell, T., Donald, H., Chalk, T., 2018. Historical trends in pH and carbonate biogeochemistry on the Belize Mesoamerican Barrier Reef System. Geophysical Research Letters 45, 3228-3237. Gaillardet, J., Lemarchand, D., Göpel, C., Manhès, G., 2001. Evaporation and sublimation of boric acid: application for boron purification from organic rich solutions. Geostandards Newsletter 25, 67-75. Gattuso, J.-P., Epitalon, J.-M., Lavigne, H., Orr, J., 2019. seacarb: Seawater Carbonate Chemistry. R package version 3.2. 12. Gerber, G., Leonard, A., Jacquet, P., 1980. Toxicity, mutagenicity and teratogenicity of lead. Mutation Research/Reviews in Genetic Toxicology 76, 115-141. Hathorne, E.C., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W., Caillon, N., Case, D., Cobb, K.M., Douville, E., 2013. Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements. Geochemistry, Geophysics, Geosystems 14, 3730-3750. Hemming, N., Reeder, R., Hanson, G., 1995. Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochimica et Cosmochimica Acta 59, 371-379. Hemming, N.G., Hanson, G.N., 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochimica et Cosmochimica Acta 56, 537-543. Holcomb, M., DeCarlo, T., Gaetani, G., McCulloch, M., 2016. Factors affecting B/Ca ratios in synthetic aragonite. Chemical Geology 437, 67-76. Hou, L.T., Wang, B.S., Lai, C.C., Chen, T.Y., Shih, Y.Y., Shiah, F.K., Ko, C.Y., 2022. Effects of mixed layer depth on phytoplankton biomass in a tropical marginal ocean: a multiple timescale analysis. Earth's Future 10, e2020EF001842. Huang, K.F., You, C.F., Lin, H.L., Shieh, Y.T., 2008. In situ calibration of Mg/Ca ratio in planktonic foraminiferal shell using time series sediment trap: A case study of intense dissolution artifact in the South China Sea. Geochemistry, Geophysics, Geosystems 9. Huang, T.-H., 2009. Carbon Dioxide Variation in Taiwan Strait and the northern South China Sea, Institute of Marine Geology and Chemistry. National Sun Yat-sen University, p. 135. Inoue, M., Hata, A., Suzuki, A., Nohara, M., Shikazono, N., Yim, W.W.-S., Hantoro, W.S., Donghuai, S., Kawahata, H., 2006. Distribution and temporal changes of lead in the surface seawater in the western Pacific and adjacent seas derived from coral skeletons. Environmental Pollution 144, 1045-1052. Juillet‐Leclerc, A., Schmidt, G., 2001. A calibration of the oxygen isotope paleothermometer of coral aragonite from Porites. Geophysical Research Letters 28, 4135-4138. Kakihana, H., Kotaka, M., Satoh, S., Nomura, M., Okamoto, M., 1977. Fundamental studies on the ion-exchange separation of boron isotopes. Bulletin of the chemical society of Japan 50, 158-163. Kayee, J., Bureekul, S., Sompongchaiyakul, P., Wang, X., Das, R., 2021. Sources of atmospheric lead (Pb) after quarter century of phasing out of leaded gasoline in Bangkok, Thailand. Atmospheric Environment 253, 118355. Klochko, K., Kaufman, A.J., Yao, W., Byrne, R.H., Tossell, J.A., 2006. Experimental measurement of boron isotope fractionation in seawater. Earth and Planetary Science Letters 248, 276-285. Lee, J.-M., Boyle, E.A., Nurhati, I.S., Pfeiffer, M., Meltzner, A.J., Suwargadi, B., 2014. Coral-based history of lead and lead isotopes of the surface Indian Ocean since the mid-20th century. Earth and Planetary Science Letters 398, 37-47. Lee, K., Do Hur, S., Hou, S., Burn-Nunes, L.J., Hong, S., Barbante, C., Boutron, C.F., Rosman, K.J., 2011. Isotopic signatures for natural versus anthropogenic Pb in high-altitude Mt. Everest ice cores during the past 800 years. Science of the Total Environment 412, 194-202. Lee, K., Kim, T.-W., Byrne, R.H., Millero, F.J., Feely, R.A., Liu, Y.-M., 2010. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochimica et Cosmochimica Acta 74, 1801-1811. Liu, Y.-H., Huang, K.-F., Lee, D.-C., 2018. Precise and accurate boron and lithium isotopic determinations for small sample-size geological materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry 33, 846-855. Liu, Y., Peng, Z., Zhou, R., Song, S., Liu, W., You, C.-F., Lin, Y.-P., Yu, K., Wu, C.-C., Wei, G., 2014. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2. Scientific Reports 4, 1-5. Lo, Y., 2008. High precision nanogram‐quantity Pb isotopic determination on multi‐collector inductively coupled plasma mass spectrometry (MC‐ICP–MS) and a case study in Guandu plain. Unpublished master’s thesis, National Taiwan University, Taiwan. Lui, H.-K., Arthur Chen, C.-T., 2015. Deducing acidification rates based on short-term time series. Scientific reports 5, 1-8. Luo, Y., Boudreau, B.P., 2016. Future acidification of marginal seas: A comparative study of the Japan/East Sea and the South China Sea. Geophysical Research Letters 43, 6393-6401. Martínez-Botí, M.A., Foster, G.L., Chalk, T.B., Rohling, E.J., Sexton, P.F., Lunt, D.J., Pancost, R.D., Badger, M.P., Schmidt, D.N., 2015. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49-54. Mavromatis, V., Montouillout, V., Noireaux, J., Gaillardet, J., Schott, J., 2015. Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate. Geochimica et Cosmochimica Acta 150, 299-313. McCulloch, M., Falter, J., Trotter, J., Montagna, P., 2012a. Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Climate Change 2, 623-627. McCulloch, M., Trotter, J., Montagna, P., Falter, J., Dunbar, R., Freiwald, A., Försterra, G., Correa, M.L., Maier, C., Rüggeberg, A., 2012b. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochimica et Cosmochimica Acta 87, 21-34. McCulloch, M.T., D’Olivo, J.P., Falter, J., Holcomb, M., Trotter, J.A., 2017. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation. Nature Communications 8, 1-8. Milliman, J.D., 1975. Dissolution of aragonite, Mg-calcite, and calcite in the North Atlantic Ocean. Geology 3, 461-462. Morton, B., Blackmore, G., 2001. South China Sea. Marine Pollution Bulletin 42, 1236-1263. Mukai, H., Furuta, N., Fujii, T., Ambe, Y., Sakamoto, K., Hashimoto, Y., 1993. Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes. Environmental Science & Technology 27, 1347-1356. Mulhall, M., 2008. Saving the rainforest of the sea: An analysis of international efforts to conserve coral reefs. Duke Envtl. L. & Pol'y F. 19, 321. Murozumi, M., Chow, T.J., Patterson, C., 1969. Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochimica et cosmochimica acta 33, 1247-1294. Nievales, M., Frances, J., 2009. Some structural changes of seagrass meadows in Taklong Island National Marine Reserve, Guimaras, Western Visayas Philippines after an oil spill. Publications of the Seto Marine Biological Laboratory. Special Publication Series. 9, 37-44. Nriagu, J.O., Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. nature 333, 134-139. Paris, G., Gaillardet, J., Louvat, P., 2010. Geological evolution of seawater boron isotopic composition recorded in evaporites. Geology 38, 1035-1038. Pin, C., Gannoun, A., Dupont, A., 2014. Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS. Journal of Analytical Atomic Spectrometry 29, 1858-1870. Rayner, N., Parker, D.E., Horton, E., Folland, C.K., Alexander, L.V., Rowell, D., Kent, E.C., Kaplan, A., 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres 108. Ren, H., Chen, Y.-C., Wang, X.T., Wong, G.T., Cohen, A.L., DeCarlo, T.M., Weigand, M.A., Mii, H.-S., Sigman, D.M., 2017. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science 356, 749-752. Reuer, M.K., 2002. Centennial-scale elemental and isotopic variability in the tropical and subtropical North Atlantic Ocean. MASSACHUSETTS INST OF TECH CAMBRIDGE. Reuer, M.K., Boyle, E.A., Cole, J.E., 2003a. A mid-twentieth century reduction in tropical upwelling inferred from coralline trace element proxies. Earth and Planetary Science Letters 210, 437-452. Reuer, M.K., Boyle, E.A., Grant, B.C., 2003b. Lead isotope analysis of marine carbonates and seawater by multiple collector ICP-MS. Chemical Geology 200, 137-153. Ross, C.L., Falter, J.L., McCulloch, M.T., 2017. Active modulation of the calcifying fluid carbonate chemistry (δ11B, B/Ca) and seasonally invariant coral calcification at sub-tropical limits. Scientific reports 7, 1-11. Shen, G.T., Boyle, E.A., 1987. Lead in corals: reconstruction of historical industrial fluxes to the surface ocean. Earth and Planetary Science Letters 82, 289-304. Shen, G.T., Boyle, E.A., 1988. Determination of lead, cadmium and other trace metals in annually-banded corals. Chemical Geology 67, 47-62. Spivack, A., Edmond, J., 1987. Boron isotope exchange between seawater and the oceanic crust. Geochimica et Cosmochimica Acta 51, 1033-1043. Stewart, J.A., Anagnostou, E., Foster, G.L., 2016. An improved boron isotope pH proxy calibration for the deep-sea coral Desmophyllum dianthus through sub-sampling of fibrous aragonite. Chemical Geology 447, 148-160. Stewart, J.A., Christopher, S.J., Kucklick, J.R., Bordier, L., Chalk, T.B., Dapoigny, A., Douville, E., Foster, G.L., Gray, W.R., Greenop, R., 2021. NIST RM 8301 boron isotopes in marine carbonate (simulated coral and foraminifera solutions): inter‐laboratory δ11B and trace element ratio value assignment. Geostandards and Geoanalytical Research 45, 77-96. Stewart, J.A., Strawson, I., Kershaw, J., Robinson, L.F., 2022. Stylasterid corals build aragonite skeletons in undersaturated water despite low pH at the site of calcification. Scientific Reports 12, 1-11. Tambutté, S., Holcomb, M., Ferrier-Pagès, C., Reynaud, S., Tambutté, É., Zoccola, D., Allemand, D., 2011. Coral biomineralization: From the gene to the environment. Journal of Experimental Marine Biology and Ecology 408, 58-78. Tarique, M., Rahaman, W., Fousiya, A., Lathika, N., Thamban, M., Achyuthan, H., Misra, S., 2021. Surface pH record (1990–2013) of the Arabian Sea from boron isotopes of Lakshadweep corals—trend, variability, and control. Journal of Geophysical Research: Biogeosciences 126, e2020JG006122. Thompson, D.M., 2022. Environmental records from coral skeletons: A decade of novel insights and innovation. Wiley Interdisciplinary Reviews: Climate Change 13, e745. Tkachenko, K.S., Soong, K., 2017. Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea. Marine environmental research 127, 112-125. Tseng, C.M., Wong, G.T., Lin, I.I., Wu, C.R., Liu, K.K., 2005. A unique seasonal pattern in phytoplankton biomass in low‐latitude waters in the South China Sea. Geophysical Research Letters 32. Wang, B.-S., You, C.-F., Huang, K.-F., Wu, S.-F., Aggarwal, S.K., Chung, C.-H., Lin, P.-Y., 2010. Direct separation of boron from Na-and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS. Talanta 82, 1378-1384. Wang, L., Chen, W., 2014. An intensity index for the East Asian winter monsoon. Journal of Climate 27, 2361-2374. Wang, P., Wang, L., Bian, Y., Jian, Z., 1995. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles. Marine Geology 127, 145-165. Wang, Y.H., Dai, C.F., Chen, Y.Y., 2007. Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophysical Research Letters 34. Wei, G., Wang, Z., Ke, T., Liu, Y., Deng, W., Chen, X., Xu, J., Zeng, T., Xie, L., 2015. Decadal variability in seawater pH in the West Pacific: Evidence from coral δ11 B records. Journal of Geophysical Research: Oceans 120, 7166-7181. Wei, H.-Z., Zhao, Y., Liu, X., Wang, Y.-J., Lei, F., Wang, W.-Q., Li, Y.-C., Lu, H.-Y., 2021. Evolution of paleo-climate and seawater pH from the late Permian to postindustrial periods recorded by boron isotopes and B/Ca in biogenic carbonates. Earth-Science Reviews 215, 103546. Wilkinson, C., 1998. The 1997-1998 mass bleaching event around the world. Wong, G.T., Ku, T.-L., Mulholland, M., Tseng, C.-M., Wang, D.-P., 2007. The SouthEast Asian time-series study (SEATS) and the biogeochemistry of the South China Sea—an overview. Deep Sea Research Part II: Topical Studies in Oceanography 54, 1434-1447. Wu, J., Boyle, E.A., 1997. Lead in the western North Atlantic Ocean: completed response to leaded gasoline phaseout. Geochimica et Cosmochimica Acta 61, 3279-3283. Yu, J., Anderson, R.F., Rohling, E.J., 2014. Deep ocean carbonate chemistry and glacial-interglacial atmospheric CO₂ changes. Oceanography 27, 16-25. Zeebe, R.E., Wolf-Gladrow, D., 2001. CO2 in seawater: equilibrium, kinetics, isotopes. Gulf Professional Publishing. Zhai, W., Dai, M., Cai, W.-J., Wang, Y., Wang, Z., 2005. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Marine Chemistry 93, 21-32. Zhu, L., Guo, L., Gao, Z., Yin, G., Lee, B., Wang, F., Xu, J., 2010. Source and distribution of lead in the surface sediments from the South China Sea as derived from Pb isotopes. Marine Pollution Bulletin 60, 2144-2153. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88209 | - |
dc.description.abstract | 人為活動排放的過量二氧化碳已造成海水pH值下降,造成海洋酸化,同時也降低海水碳酸鈣飽和度(Ω)。Ω及海水中碳酸根離子濃度([CO32-])的下降對鈣化生物生長有極大的威脅。此外,工業活動排放大量污染物(如重金屬鉛)進入海洋環境,特別是邊緣海地區,鉛汙染的程度隨著近期經濟與工業活動興起而日益嚴重。南中國海地區因同時受自然(如:季風系統)與人類活動之影響,是研究大氣-海洋-人為活動交互作用及近期環境變遷重要且關鍵的區域。
本研究分析取自東沙環礁北礁台的多孔珊瑚(Porites spp.),應用多重地球化學代用指標重建1968至2010年南海北部海洋環境之變遷記錄。珊瑚硼同位素以及硼鈣比分別為目前pH與[CO32-]最為可靠的指標,結合兩者可進一步計算完整的碳酸鹽化學參數(如:Ω,DIC,pCO2等)。研究結果顯示南海北部海水pH值自1968年以來有顯著的酸化趨勢(-0.0022 ± 0.0012 pH unit year-1),預期生活於南海的海洋鈣化生物將面臨更為艱困的環境。海水pCO2的上升則指示人為排放二氧化碳的影響。此外,在過去50年中珊瑚鈣化液pH值亦有顯著下降的趨勢(-0.0019 ± 0.0006 pH unit year-1),但鈣化液中的Ω與[CO32-]皆保持穩定,表明東沙的珊瑚可能受南海內波或自身調控機制而具有抵禦海洋酸化的能力。另一方面,珊瑚的鉛鈣比(Pb/Ca)與鉛同位素應用於重建南海北部鉛汙染史以及追蹤可能的鉛汙染源。Pb/Ca自1968年來呈現逐漸上升的趨勢,並在2000年後尤為明顯,可對應到中國與東南亞地區經濟快速發展的時段。珊瑚骨骼鉛同位素則指示出2000年後來自於中國地區燃油燃煤的貢獻增加,也可能提供關於南海中漏油事件的記錄。由於受陸源輸入影響較小,東沙提供一個更全面、具代表性的北南海海洋環境變遷記錄。 | zh_TW |
dc.description.abstract | Increasing anthropogenic CO2 from fossil fuel combustion and land-use practices is reducing surface ocean pH (i.e. ocean acidification, OA), leading to the reduction of marine carbonate saturation state (Ω). The associated decline in Ω (and seawater carbonate ion concentration, [CO32-]) could substantially impact marine calcifying organisms, such as scleractinian corals, and potentially threaten coral calcification and the existence of these unique reef ecosystems. Marginal seas are particularly susceptible to the influence of natural variability and human activities and are thus critical areas for studying the response of coral reef ecosystems to environmental changes. Additionally, metal pollutant emitted from industrial activities, such as lead (Pb), has become severe due to rapid developments of industries and populations in Southeast Asia. The South China Sea (SCS) is under the influence of the East Asia monsoon system and can serve as an ideal location for investigating interactions between the atmosphere, ocean, and anthropogenic influences.
Here we present multi-proxy coral records of Porites spp. collected from the Dongsha Atoll (DSA) in the northern SCS (NSCS) on a seasonal basis from 1968 to 2010 CE. Coralline δ11B and B/Ca are used as a proxy for calcifying fluid pH (pHcf) and [CO32-], respectively, to better constrain aragonite saturation state (Ωarag). The coralline δ11B-based surface ocean pH (pHsw) exhibits a secular trend of decreasing pH (-0.0022 ± 0.0012 pH unit year-1) since 1968 CE, implying a progressively difficult marine environment for marine calcifiers in the foreseeable future of the NSCS, and the rising pCO2 can be primarily attributed to the anthropogenic activity. The reconstructed pHcf also exhibits a rapid decline over the last 50 years (-0.0019 ± 0.0006 pH unit year-1). In contrast, the reconstructed Ωarag remains relatively constant, suggesting that Dongsha corals are resistant to OA by self-regulation on the carbonate system of the calcifying fluid. On the other hand, the coralline Pb/Ca and Pb isotope (206Pb/207Pb, 208Pb/206Pb) records are applied to reconstruct the pollution history of Pb and to trace the potential sources of Pb in the NSCS. Our results show a gradual increase in skeletal Pb/Ca since 1968 CE, indicating an elevated pollution of Pb, particularly after Year 2000, coincident with the period of rapid development of the economy in China and Southeast Asia. The coralline Pb isotopic composition clearly exhibits an increase in the contribution of Chinese petrol/coal after Year 2000. Compared to the other published SCS coral records that are influenced by terrestrial inputs, our record from DSA provides more representative and comprehensive information about the change in the ocean environment in the NSCS over the 50 years. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:47:25Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-08T16:47:25Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv Content vi Figure Content viii Table Content x CHAPTER 1. Introduction 1 1.1 Marine carbonate chemistry and boron system in the ocean 1 1.2 Anthropogenic impacts on the marginal seas 9 1.2.1 Ocean acidification 9 1.2.2 Marine lead pollution 13 1.3 Coral biology and vital effects 16 CHAPTER 2. Study Area 21 2.1 South China Sea 21 2.2 Dongsha Atoll 23 CHAPTER 3. Methodology 27 3.1 Sample pre-treatment 27 3.1.1 Sampling method and age model 27 3.1.2 Reagents and labwares 28 3.2 Trace element analysis 28 3.2.1 Cleaning procedure 28 3.2.2 Trace element ratios determined by HR-ICP-MS 31 3.3 Boron isotope measurement 34 3.3.1 Micro-sublimation 34 3.3.2 Boron isotopic measurement by MC-ICP-MS 35 3.4 Lead isotopic measurement 37 3.4.1 Column chemistry 37 3.4.2 Instrumentation for lead isotopic determination 39 CHAPTER 4. Results 42 4.1 Coral calcifying fluid carbonate chemistry and δ11B-based pHsw 42 4.2 Lead pollution in the northern South China Sea 46 CHAPTER 5. Discussion 47 5.1 Response of carbonate chemistry of coral’s calcifying fluid to anthropogenic impacts 47 5.2 The impacts of sampling limitation and cleaning protocols 49 5.3 Ocean acidification in the northern South China Sea based on coralline δ11B-based pH proxy 51 5.4 Sources of lead pollutants in the northern South China Sea and its seasonal variation 55 CHAPTER 6. Conclusions 61 References 62 | - |
dc.language.iso | en | - |
dc.title | 南海北部海洋酸化與鉛汙染的珊瑚紀錄 | zh_TW |
dc.title | Coral records of ocean acidification and marine lead pollution in the northern South China Sea | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 羅立 | zh_TW |
dc.contributor.coadvisor | Li Lo | en |
dc.contributor.oralexamcommittee | 任昊佳;謝玉德;劉怡偉 | zh_TW |
dc.contributor.oralexamcommittee | Hao-Jia Ren;Yu-Te Hsieh;Yi-Wei Liu | en |
dc.subject.keyword | 海洋酸化,硼同位素,海洋鉛汙染,鉛同位素,南中國海, | zh_TW |
dc.subject.keyword | Ocean acidification,Boron isotopes,Marine Pb pollution,Pb isotopes,South China Sea, | en |
dc.relation.page | 72 | - |
dc.identifier.doi | 10.6342/NTU202301852 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-07-24 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
dc.date.embargo-lift | 2028-07-21 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 6.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。