Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88204
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃育熙zh_TW
dc.contributor.advisorYu-Hsi Huangen
dc.contributor.author連振原zh_TW
dc.contributor.authorJen-Yuan Lienen
dc.date.accessioned2023-08-08T16:46:03Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-18-
dc.identifier.citation[1] Yeh Y, Cummins H Z, Localized flow measurements with a He-Ne laser spectrometer[J]. Appl Phys Letters, 1964, 4, 176.
[2] 黃至偉,「壓電陶瓷雙晶片於雙邊固定邊界之能量擷取及雷射都卜勒自動化陣列式量測模組」國立臺灣科技大學機械工程所碩士論文,2014。
[3] Y. H. Huang, H. Y. Chiang, “Vibrational mode and sound radiation of electrostatic speakers using circular and annular diaphragms.”, Journal of Sound and Vibration, vol.371, pp. 210-226, 2016.
[4] E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory.”, JOSA, vol. 52(10), pp. 1123-1130, 1962.
[5] J. Butters, J. Leendertz, “Speckle pattern and holographic techniques in engineering metrology.”, Optics Laser Technology, vol. 3(1), pp. 26-30, 1971.
[6] O. Lokberg, K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry.”, Journal of Physics E: Scientific Instruments, vol. 9(10) pp. 847, 1976.
[7] C. Wykes, “Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacements.”, Optical Engineering, 21(3), pp. 213400, 1982.
[8] W. C. Wang, C. H. Hwang, S. Y. Lin, “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods.”, Applied optics, vol. 35(22), pp. 4502-4509. 1996.
[9] 黃吉宏,「應用電子斑點干涉術探討三維壓電材料」,國立台灣大學機械工程研究所博士論文,1998。
[10] 黃育熙,「壓電石英晶體之平板結構的動態特性研究」,國立台灣大學機械工程研究所博士論文,2009。
[11] 張秀宜,「遺傳演算法搭配振動理論解析與機器學習結合共振頻率獲取壓電陶瓷材料常數」國立台灣大學機械工程研究所碩士論文,2022。
[12] 江信遠,「靜電和壓電揚聲器之圓形振膜振動與聲壓研究」,國立台灣科技大學機械工程研究所博士論文,2017。
[13] M. Allen, M. Sracic A new method for processing impact excited continuous-scan laser Doppler vibrometer measurements, Mech. Syst. Signal Process. 24 (3) (2010) 721–735.
[14] Shifei Yang, Matthew S. Allen, Output-only Modal Analysis using Continuous-Scan Laser Doppler Vibrometry and application to a 20 kW wind turbine, Mechanical Systems and Signal Processing 31 (2012) 228–2
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88204-
dc.description.abstract本研究基於單點式的雷射都卜勒振動儀(Laser Doppler Vibrometry, LDV),搭配兩種不同的全域式掃瞄儀器,分別為龍門式二維位移平台(Gantry Platform System)以及微動振鏡系統(Galvano Scanning System),整合為掃描型雷射都卜勒振動儀(Scanning Laser Doppler Vibrometry, SLDV)。SLDV系統中整合了訊號產生器為激振儀器,示波器或資料擷取系統(NI-DAQ)為量測資料接收儀器。分別透過MATLAB及LabVIEW為控制語言,撰寫出其對應的圖形用戶介面(GUI),方便量測者進行SLDV系統的使用。
接著對SLDV的量測訊號進行後處理,透過比較LDV的速度量測訊號及訊號產生器的輸入訊號,兩者之間的相位差,決定量測點的振動方向,並以頻率及相位判斷的方式優化量測資料,搭配所有離散點的座標內插後,即可繪出2D及3D的模態振形圖。隨後與不同的全域式面外振動量測法:電子斑點干涉術(Electronic Speckle Pattern Interferometry, ESPI) 量測的面外振動結果做比較,本研究開發的SLDV方法除了有更廣的速度量測範圍,同時可以數值化的顯示振動振幅與正確判斷全場振動相位。
成功量測出聲學元件振膜的振動模態後,透過聲學理論解析找出振動速度和聲壓關係,將振動場推估到聲學場上,並將多個量測的離散點用雷利積分(Rayleigh Integral)的方式,計算出聲學元件整體的聲壓貢獻,是為分布參數法(Distributed Parameter Method, DPM)。與無響室(Anechoic Room)中使用麥克風對自由音場的聲壓量測結果進行比較,本研究開發的DPM方法,得以在任何環境中利用光學方法量測出試片的聲壓情形,大幅節省建造無響室所需要的成本;與KLIPPEL公司利用雷射位移計的聲壓量測方法相比,DPM方法在高頻(3000Hz以上)的區域有更佳的量測能力;與Polytec 公司利用LDV結合振鏡系統的全場速度量測系統相比,本研究花費大約四分之一的建造成本,便可達成相同的功能,並可搭配聲學理論解析成功的將振動訊號直接推估到聲學領域上。
最後就本研究開發的SLDV進行改良。首先,開發出SLDV搭配掃頻(Chirp)訊號量測,此方法利用短時間內連續變化的頻率訊號為激振源,一次性完成所有頻率的量測,如此得以顯著提升量測效率,並快速判斷出試片全域的共振頻率;接著開發連續掃描型雷射都卜勒振動儀(Continuous Scanning Laser Doppler Vibrometry, CSLDV),將原先逐點振動量測的系統改為逐線段量測,一次性量測整條線段的振動資料,顯著地提升系統的量測效率,同時維持不錯的量測精度。
zh_TW
dc.description.abstractThis research is based on a single-point Laser Doppler Vibrometry (LDV) combined with two different full-field scanning instruments, a gantry platform system and a Galvano scanning system, integrated into a Scanning Laser Doppler Vibrometry (SLDV) system. The system incorporates a signal generator as an excitation instrument and an oscilloscope or NI-DAQ data acquisition system as a measurement data receiver. MATLAB or LabVIEW was used to develop corresponding graphical user interfaces (GUIs) to control and operate the entire system efficiently. Following that, we need to post-process the measurement data. We can determine the phase of vibration at each measurement point by utilizing the input signal from the signal generator and the measured signal from the LDV. The measurement data is then optimized using frequency and phase-based analysis methods. 2D and 3D mode shapes can successfully plot based on the optimized data. Subsequently, a comparison is made between the results obtained from the SLDV and Electronic Speckle Pattern Interferometry (ESPI). The aim is to validate SLDV's feasibility and evaluate the strengths and weaknesses of the two different measurement methods. The SLDV method developed in this research not only has a wider range of velocity measurement but also enables the numerical display of vibration amplitudes and accurate determination of the phase of full-field vibrations.
After successfully measuring the global out-of-plane vibration of the acoustic component, acoustic theory analyzes and extrapolates the vibration field to the acoustic field. The relationship between the vibration velocity and the sound pressure is determined. Rayleigh Integral calculates the contribution of multiple discrete measurement points to a specific location. This method is known as the Distributed Parameter Method (DPM). Compared with the measurement results of free sound field using a microphone in an anechoic room, the DPM method allows for optical measurements of the sound pressure of the test sample in any environment, significantly reducing the cost of constructing an anechoic room. Compared to KLIPPEL's sound pressure measurement method using a laser displacement sensor, the DPM method exhibits superior measurement capabilities, particularly in the high-frequency range (above 3000 Hz). Compared to Polytec's full-field velocity measurement system using LDV combined with a Galvano scanning system, this research achieves the same functionality at approximately one-fourth of the construction cost. Additionally, it successfully applies acoustic theory to directly estimate vibration signals in the field of acoustics.
Finally, improvements were made to the developed Scanning Laser Doppler Vibrometry (SLDV) system. Firstly, the SLDV system was integrated with the Chirp signal measurement method. This method utilizes a rapidly changing frequency excitation signal within a short time frame to measure all frequencies simultaneously. By measuring all frequencies at one time, the measurement efficiency is significantly improved, allowing for the rapid determination of the global resonance frequencies of the test sample. Next, a Continuous Scanning Laser Doppler Vibrometry (CSLDV) system was developed, replacing the previous point-by-point vibration measurement approach with a line-by-line measurement technique. It enables the simultaneous measurement of vibration data along the entire line segment, resulting in a significant improvement in measurement efficiency while maintaining a good level of accuracy.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:46:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:46:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
致謝 II
中文摘要 III
ABSTRACT V
目錄 VII
圖目錄 X
表目錄 XII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文內容簡介 5
第二章 實驗原理與架設 7
2.1 雷射都卜勒振動儀 7
2.2 電子斑點干涉術 11
2.3 阻抗分析儀 18
2.4 無響室量測 24
2.5 全域量測儀器介紹 26
2.5.1 龍門位移平台 26
2.5.2 微動振鏡組 28
第三章 雷射都卜勒之全域振動量測系統 30
3.1 龍門平台系統 32
3.1.1 控制方式 33
3.1.2 量測流程 33
3.1.3 量測GUI介面 34
3.1.4 龍門平台系統量測照片 35
3.2 微動振鏡系統 37
3.2.1 控制方式 38
3.2.2 量測流程 39
3.2.3 量測GUI介面 41
3.2.4 微動振鏡系統量測照片 42
3.3 量測參數選定 43
3.3.1 布點模式 43
3.3.2 量測模式 44
第四章 量測資料後處理與振動特性分析 45
4.1 量測資料後處理 46
4.2 相位處理 47
4.3 量測資料優化及繪圖 48
4.3.1 頻率判斷 49
4.3.2 相位差判斷 49
4.4 實際量測案例分析 50
4.4.1 串聯型壓電雙晶片以串聯電極連接方式於雙邊固定之模態量測 50
4.4.2 單層壓電圓盤薄板於自由邊界之模態量測 54
4.4.3 單邊固定之PLA懸臂板以壓電纖維激振之模態量測 58
4.5 SLDV量測系統比較結果 60
第五章 聲學元件之振動解析與實驗量測 62
5.1 聲學元件於無限大障板下自由音場之振動特性分析 62
5.1.1 聲學試片於自由音場下聲學特性分析 63
5.1.2 八音帶Octave Band 66
5.2 實際量測結果分析 67
5.2.1 高阻抗聲學元件: PE-68 68
5.2.2 低阻抗聲學元件: 動圈式揚聲器 72
5.2.3 聲學量測結果分析及比較 76
第六章 改良型雷射都普勒振動儀 77
6.1 掃頻量測(Chirp Signal) 77
6.1.1 掃頻量測流程 78
6.1.2 後處理與量測結果 80
6.1.3 Chirp訊號量測結果 81
6.1.4 Chirp量測比較及優勢 83
6.2 連續掃描型都卜勒振動儀(CSLDV) 86
6.2.1 CSLDV量測流程 88
6.2.2 CSLDV後處理 89
6.2.3 CSLDV量測結果 92
6.2.4 CSLDV與SLDV優劣比較 95
第七章 結論與未來展望 96
7.1 結論 96
7.2 未來展望 98
參考文獻 99
附錄 101
-
dc.language.isozh_TW-
dc.subject聲固耦合分析zh_TW
dc.subject全域式量測系統開發zh_TW
dc.subject連續掃描型雷射都卜勒振動儀zh_TW
dc.subject掃描型雷射都卜勒振動儀zh_TW
dc.subjectScanning Laser Doppler Vibrometry(SLDV)en
dc.subjectAcoustic-Vibration Interaction Analysisen
dc.subjectMeasuring System Developmenten
dc.subjectContinuous Scanning Laser Doppler Vibrometry(CSLDV)en
dc.title雷射都卜勒振動儀之自動化全場聲振量測系統開發zh_TW
dc.titleDevelopment of Automated Full-Field Sound and Vibration Measurement System for Laser Doppler Vibrometryen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee江信遠;林紀穎;王怡仁zh_TW
dc.contributor.oralexamcommitteeHsin-Yuan Chiang;Chi-Ying Lin;Yi-Ren Wangen
dc.subject.keyword掃描型雷射都卜勒振動儀,全域式量測系統開發,聲固耦合分析,連續掃描型雷射都卜勒振動儀,zh_TW
dc.subject.keywordScanning Laser Doppler Vibrometry(SLDV),Measuring System Development,Acoustic-Vibration Interaction Analysis,Continuous Scanning Laser Doppler Vibrometry(CSLDV),en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202301717-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-19-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf12.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved