請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88199完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張國鎮 | zh_TW |
| dc.contributor.advisor | Kuo-Chun Chang | en |
| dc.contributor.author | 謝享浩 | zh_TW |
| dc.contributor.author | Hsiang-Hao Hsieh | en |
| dc.date.accessioned | 2023-08-08T16:44:45Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-20 | - |
| dc.identifier.citation | Farzad Naeim and James M. Kelly, Design of Seismic Isolated Structures: From Theory to Practice: John Wiley & Sons Inc, 1999.
Meseguer F, Holgado M, Caballero D, Benaches N, Sánchez-Dehesa J, López C, et al. Rayleigh wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal. Phys Rev B 1999; 59:12169. Achaoui Y, Khelif A, Benchabane S, Robert L, Laude V. Experimental observation of locally resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars. Phys Rev B 2011; 83:104201. Veselago VG. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi 1968; 10(4): 509-514. JB Pendry. Negative refraction makes a perfect lens. Physical Review Letters 2000; 85(18): 3966-3969. L. Brillouin, Wave Propagation in Periodic Structures, McGraw-Hill Book Company Inc., 1946. W. Witarto, "Periodic materials for seismic base isolation: theory and applications to small modular reactors," PhD diss., University of Houston, 2018. Younes Achaoi, Bogdan Ungureanu, Stefan Enoch, Stéphane Brûlé, "Seismic waves damping with arrays of inertial resonators," Extreme Mechanics Letters, Volume 8, September 2016, Pages 30-37. M. Miniaci, A. Krushynska, F. Bosia, and N. M. Pugno, "Large scale mechanical metamaterials as seismic shields," New Journal of Physics, vol. 18, no. 8, p.083041,2016. 李宇軒,有限元素法於樁型地震超材料之數值模擬,國立台灣大學土木工程學系碩士論文, 2020 羅川琇,樁型地震超材料與共振筒單元之可行性研究分析,國立台灣大學土木工程學系碩士論文,2021 S. Krödel, N. Thomé, C. Daraio,"Wide band-gap seismic metastructures," Extreme Mechanics Letters,Volume 4, September 2015, Pages 111-117. R. Shahar, P. Zaslansky, M. Barak, A. Friesem, J. Currey, and S. J. J. o. b. Weiner, "Anisotropic Poisson's ratio and compression modulus of cortical bone determined by speckle interferometry," vol. 40, no. 2, pp. 252-264, 2007. R.S. Lakes, Foam structures with a negative Poisson’s ratio, Science 235 (1987) 1038–1040. B. Ungureanu, Y. Achaoui, S. Enoch, S. Brûlé, and S. J. a. p. a. Guenneau, "Auxetic-like metamaterials as novel earthquake protections," EPJ Appl. Metamat, 2015. 張雯桂,拉脹幾何地震超材料可行性研究,國立陽明交通大學土木工程學系碩士論文, 2021 Ting Ting Huang, Xin Ren, Yi Zeng, Yi Zhang, Chen Luo, Xiang Yu Zhang, Yi Min Xie, "Based on auxetic foam: A novel type of seismic metamaterial for Lamb waves, " Engineering Structures Volume 246, 1 November 2021, 112976. I-Ling Chang, Zhen-Xian Liang, Hao-Wei Kao, Shih-Hsiang Chang, Chih-Ying Yang,"The wave attenuation mechanism of the periodic local resonant metamaterial," Volume 412, 6 January 2018, Pages 349-359. Wei Jiang, Xin Ren, Shi Long Wang, Xue Gang Zhang, X.Y Zhang, Chen Luo, Y M Xie, Fabrizio Scarpa, Andrew Alderson, "Manufacturing, characteristics and applications of auxetic foams: A state-of-the-art review," Composites Part B: Engineering Volume 235, 15 April 2022, 109733 Auxadyne, http://www.auxadyne.com By Joseph N. Grima*, Daphne Attard, Ruben Gatt and Richard N. Cassar,"A Novel Process for the Manufacture of Auxetic Foams and for Their re-Conversion to Conventional Form." V.A. Lvov, F.S. Senatov, A.M. Korsunsky, A.I. Salimon, "Design and mechanical properties of 3D-printed auxetic honeycomb structure,"Materials Today Communications, Volume 24, September 2020, 101173. 3D MART digital manufacturing solutions, https://3dmart.com.tw/ Vasseur, J.O. (2021). Periodic Structures, Irreducible Brillouin Zone, Dispersion Relations and the Plane Wave Expansion Method. In: Jiménez, N., Umnova, O., Groby, JP. (eds) Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media. Topics in Applied Physics, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-84300-7_1 TEAMA 3D SOLUTION EXPERT, https://www.taiwanteama.com.tw/ 3M™ Scotch®, https://www.3m.com.tw/3M/zh_TW/p/d/v100837658/ 簡廷字、黃瑜、吳逸軒、李冠慈、翁崇寧、陳東陽,新型態外部隔減震技術-地震超材料之設計與分析,中國土木水利工程學刊,31卷4期,p.395-410 ,2019. 吳逸軒、汪向榮、張國鎮、陳東陽,多類型複合地震超結構之寬頻帶設計與分析,中國木水利工程學刊,31卷1期,pp.103-118 ,2019 M Saleh Asheghabadi, Z Ali," Infinite element boundary conditions for dynamic models under seismic loading," Indian J Phys (June 2020) 94(6):907–917 Abaqus Analysis User's Guide (6.6), 3.3 Infinite elements 李冠慧,地震超材料設計之減震模擬及效益評估, 國立成功大學土木工程學系碩士論文, 2019 Daniel C. Bowden, Victor C. Tsai,"Earthquake ground motion amplification for surface waves," Geophysical Research Letters,Volume44, Issue116, January 2017,Pages 121-127. Burtin, Arnaud & Hovius, Niels & Turowski, Jens. (2016). Seismic monitoring of torrential and fluvial processes. Earth Surface Dynamics. 4. 10.5194/esurf-4-285-2016. Maodan Yuan, Jianhai Zhang, Sung-Jin Song, Hak-Joon Kim,"Numerical simulation of Rayleigh wave interaction with surface closed cracks under external pressure," Volume 57, 2015, Pages 143-153, ISSN0165-2125. Philip St J Russell,"Photonic band gaps," Phys. World 5 (8) 37, 1992. 中央氣象局, https://scweb.cwb.gov.tw/ Palermo, A., Krödel, S., Marzani, A. et al. Engineered metabarrier as shield from seismic surface waves. Sci Rep 6, 39356 (2016). Jiankun Huang et al,"A periodic foundation with rotational oscillators for extremely low-frequency seismic isolation: analysis and experimental verification," 2017 Smart Mater. Struct. 26 035061 Yi Zeng, Yang Xu, Keke Deng, Pai Peng, Hongwu Yang, Muhammad Muzamil, Qiujiao Du,"A broadband seismic metamaterial plate with simple structure and easy realization," Journal of Applied Physics 125, 224901 (2019) 許巧臻,樁型地震超材料的隔減振效益:單元晶格分析、設計與試驗,國立台灣 大學土木工程學系碩士論文,2022 國家地震工程研究中心, https://www.ncree.narl.org.tw/home Mahmoud I. Hussein, Michael J. Leamy, Massimo Ruzzene, "Dynamics of Phononic Material sand Structures: Historical Origins, Recent Progress, and Future Outlook," Appl. Mech. Rev. Jul 2014, 66(4): 040802. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88199 | - |
| dc.description.abstract | 地震超材料,是一種以結構被動控制之精神所延伸出的一種新型態,其最核心的表徵在於能夠阻隔特定頻率內涵的波傳。地震超材料的理論基礎源自於聲子晶體的觀點並將其應用於固體力學中的波傳問題。地震超材料蘊含之頻率帶隙特性能干擾特定頻率的入射波傳遞進而保護建築物乃至一個城市範圍,然而,因超材料原先的發展是應用於抵擋高頻率的聲波甚至光波,面對結構工程等大尺度物理問題就得面臨許多挑戰,地震超材料之技術發展的最大的瓶頸在於如何在經濟與土地使用空間等綜合考量下去設計出與地震波頻率相互匹配的帶隙。
近年來的研究已經展現出拉脹材料及拉脹結構對於巨大的能量吸收與緩衝有優異的效果,除此之外,亦有許多研究指出拉脹結構本身因其特殊的力學模態特性對於產生出帶隙與加寬帶隙的頻率範圍有潛力,因此,為了能夠達到超低頻率帶隙的需求,本研究將整合樁型地震超材料與拉脹結構的優點去設計出新型態之樁型拉脹結構地震超材料以利更加符合針對低頻率地震波的需求。 在本研究中,首先推導了一維數學模型來解釋與驗證週期性排列結構的行為和性質,並將其布洛赫定理與不可約化布里淵區導入有限元素數值模擬之的邊界條件與波傳假設。並且根據一維數學模型與有限元素法分析結果可以推斷,負波松比材料確實會對帶隙產生影響,因此可以將其視為設計時可納入考量的材料性質。此外,為了更進一步設計出低頻率帶隙之單元晶格,將利用有限元素法軟體計算二維和三維單元晶格的頻散關係,並且為了確保此特殊物理性質存在於固體力學之波傳問題的統御方程式中,將同時使用 ABAQUS 和 COMSOL Multiphysics 來進 行交互比對,從而提高此數值結果的可靠性,以及排除前人們兩種軟體擬合問題。透過參數分析可以發現,針對某些幾何與材料性質之下,拉脹結構之負波松比可以急速加寬帶隙,進而設計出有效之地震超材料。此外,為了確認所設計之拉脹結構具有實際的拉脹特性,本研究使用 3D 列印熱堆疊技術製作出了三維拉脹結構用於測試其波松比性質與幾何推導公式答案一致以利後續最佳化設計。 此外,建立了一系列三維實尺數值模型來研究波傳與帶隙之機制,並評估保護區之位移場和加速度場的折減效果,因這些物理特性是影響結構系統的關鍵因素。並且由數值模擬結果可以發現,局部共振的生成確實是阻止波傳的機制。最後,真實的地震波也會被採納為入射波用以測試拉脹樁型地震超材料之可行性與效益。分析結果表明,這種創新的地震超材料能夠衰減低頻帶隙內的響應,為結構工程領域帶來新的思維。 | zh_TW |
| dc.description.abstract | A seismic metamaterial is an innovative form of passive control technology that can block wave propagation within a particular frequency range. The fundamental spirit of seismic metamaterials is derived from the viewpoint of phononic crystals and is extended to the application of wave propagation in solid mechanics. These metamaterials possess unique properties such as frequency band gaps, which prohibit the passage of incoming waves with frequencies falling within the range of these gaps. However, the research and development of seismic metamaterials are ongoing because achieving a low-frequency band gap with a sensible lattice constant still presents a challenge.
Numerous recent studies have demonstrated that auxetic materials or structures can offer protective applications, such as blast and impact energy absorption. Besides, the auxetic structure itself also owns the potential to create band gaps and broaden the width of the band gap. Thus, in order to achieve a low-frequency band gap, this study will utilize seismic pile-type metamaterials as a foundation and integrate an advantageous auxetic structures. In this study, a one-dimensional theoretical mathematical model was first derived to explain the behavior and property of the periodic structure. According to the mathematical model, it can be inferred that the negative Poisson’s ratio material indeed widen the width of the band gap. To further design the unit cell, finite element software was utilized to calculate the dispersion relationship of the two-dimensional and three-dimensional unit cells. To ensure calculating accuracy, both ABAQUS and COMSOL Multiphysics will be used simultaneously to compare results, thereby increasing the reliability of the study and solving the mismatch from previous research. The optimal value of the negative Poisson’s ratio can be determined by analyzing the parameters, and the auxetic structure can be designed. To confirm that the designed auxetic structure exhibits actual auxetic characteristics, a three-dimensional auxetic structure was produced by using 3D printer technology for testing purposes. Moreover, three-dimensional full-scale numerical models were established to study the mechanism of wave propagation blocking and assess the reduction in displacement and acceleration, which are crucial factors for structural systems. Based on the simulation results, the existence of local resonance could be observed and proved that this type of mechanism indeed blocks the propagation of waves. The true seismic events were also set as incoming waves for simulating the actual scenario. The analysis results demonstrate that this innovative seismic metamaterial is capable of attenuating the response within the low-frequency band gap, offering significant benefits to the field of structural engineering. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:44:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-08T16:44:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
ACKNOWLEDGEMENTS II ABSTRACT III 中文摘要 VI Chapter 1 1 1.1 Significance of Research 1 1.2 Research Objective 4 1.3 Organization of Thesis 6 Chapter 2 7 2.1 Overview of Metamaterials 7 2.2 Overview of Seismic Metamaterials 8 2.3 Pile-Type Seismic Metamaterials 11 2.4 Auxetic-Like Seismic Metamaterials 13 2.5 Inspiration From Literature Review 16 Chapter 3 18 3.1 Dispersion relation and band gap 18 3.2 Reciprocal Lattice 24 3.3 Brillouin Zone 26 3.4 Bloch’s Theorem and Floquet Theorem 28 3.5 Local Resonance 29 3.6 Reflection and Transmission 32 Chapter 4 36 4.1 Parameter Analysis in The Tetragonal Crystal System 36 4.1.1 Symmetry in The Unit Cell 36 4.1.2 Young’s Modulus Effect 40 4.1.3 Poisson’s Ratio Effect 43 4.1.4 Density Effect 46 4.2 Introduction to Auxetic Foam 48 4.3 Auxetic Structure Unit Design 51 4.3.1 Bow-tie Auxetic Structure 51 4.3.2 Auxetic Structure Unit Test 53 4.3.3 Produce Auxetic Structures Using 3D Printing Technology 55 4.4 Auxetic Pile-type Unit Cell Design 61 4.4.1 Simulation Method and Case Study 62 4.4.2 The Final Design of Auxetic Pile-type Seismic Metamaterial 69 4.5 Fabrication of Auxetic Pile-type Seismic Metamaterial 72 4.6 Potential Analysis 77 Chapter 5 81 5.1 3D ABAQUS Model for P Waves 81 5.1.1 Introduction to 3D ABAQUS Model for P waves Case 81 5.1.2 Single Frequency Test in Time Domain (P Waves) 85 5.1.3 Sweep Frequency Test in Time Domain (P Waves) 88 5.1.4 Row Number Analysis for P Waves 91 5.2 3D ABAQUS Model for S Waves 94 5.2.1 Introduction to 3D ABAQUS Model for S waves Case 94 5.2.2 Single Frequency Test in Time Domain (S Waves) 95 5.2.3 Sweep Frequency Test in Time Domain (S Waves) 97 5.2.4 Row Number Analysis for S Waves 99 5.3 3D ABAQUS Model for Surface Waves 101 5.3.1 Introduction to 3D ABAQUS Model for Surface Waves 102 5.3.2 Single Frequency Test in Time Domain (Surface Waves) 105 5.3.3 Sweep Frequency Test in Time Domain (Surface Waves) 108 5.3.4 Row Number Analysis for Surface Waves 110 5.4 Energy and Mechanism 112 5.4.1 Energy Ablance in ABAQUS 112 5.4.2 Energy Transformation in Seismic Metamaterials 114 5.4.3 Standing Wave in Metamaterials 116 5.5 True Seismic Events 118 5.5.1 The Selected Seismic Waves 119 5.5.2 Simulation Results for Using Seismic Waves as Input 120 5.5.3 Disadvantages of Pile-type Seismic Metamaterials 123 Chapter 6 125 6.1 Literature Review of Metamaterials Experiments 125 6.2 Experimental Configuration 129 6.2.1 Actuator 129 6.2.2 Steel Box 131 6.2.3 Medium and Boundary 132 6.3 Size Effect 134 6.4 Scaled-Down(1:10) Model in ABAQUS 136 6.4.1 Introduction to 3D ABAQUS Scaled-Down Model 136 6.4.2 Sweep Frequency Test in Scaled-Down Model 138 Chapter 7 142 7.1 Conclusion 142 7.2 Suggestions 145 REFERENCES 148 | - |
| dc.language.iso | en | - |
| dc.subject | 局部共振 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 週期性排列 | zh_TW |
| dc.subject | 地震超材料 | zh_TW |
| dc.subject | 帶隙 | zh_TW |
| dc.subject | 拉脹材料 | zh_TW |
| dc.subject | band gap | en |
| dc.subject | auxetic materials | en |
| dc.subject | finite element method | en |
| dc.subject | periodic arrangement | en |
| dc.subject | seismic metamaterials | en |
| dc.subject | local resonance | en |
| dc.title | 樁型拉脹地震超材料之減振研究 | zh_TW |
| dc.title | Developments of Auxetic Pile-Type Metamaterials for Relieving Seismic Impact on Structures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳東諭;吳日騰;汪向榮 | zh_TW |
| dc.contributor.oralexamcommittee | Tung-Yu Wu;Rih-Teng Wu;Shiang-Jung Wang | en |
| dc.subject.keyword | 地震超材料,帶隙,週期性排列,拉脹材料,有限元素法,局部共振, | zh_TW |
| dc.subject.keyword | seismic metamaterials,band gap,periodic arrangement,auxetic materials,finite element method,local resonance, | en |
| dc.relation.page | 151 | - |
| dc.identifier.doi | 10.6342/NTU202301832 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-21 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 24.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
