Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88170
Title: | 圖上的曲率及相關問題 On Curvature of Graphs and Related Problems |
Authors: | 陳威嘉 Wei-Chia Chen |
Advisor: | 崔茂培 Mao-Pei Tsui |
Keyword: | 距離矩陣,圖,Perron-Frobenius,曲率, Distance Matrix,Graph,Perron-Frobenius,Curvature, |
Publication Year : | 2023 |
Degree: | 碩士 |
Abstract: | 2022年,Steinerberger在圖上定義了一個曲率的概念,這個定義和圖的距離矩陣有關。在這篇論文,我們介紹Steinerberger曲率[27]、探討另一個他的相關研究[26],並提供新的結果。我們刻畫在經過圖操作後的距離矩陣,這些操作包括在兩個圖加入一條邊連接、在兩個圖在一個點合併,和在一個圖移除一個橋。我們證明了如果一個圖有正曲率,在這些操作下,新的圖除了至多兩個點外會有正曲率。若D是圖的距離矩陣,我們提供了一個方法來建構圖使得Dx = 1無解。最後,若v是一個樹的距離矩陣最大特徵值的特徵向量,且其元都為正,我們提供了一個和葉子個數有關的⟨v, 1⟩的下界估計。 In 2022, Steinerberger proposed a notion of curvature on graphs involving the graph distance matrix. In this thesis, we give a survey of his works [26, 27] and extend further results. We characterize the distance matrices when certain graph operations are applied, such as adding an edge between two graphs, merging two graphs at a vertex, or removing a bridge from a graph. We show that positive curvatures are preserved except for one or two vertices under these graph operations. Let D be the distance matrix of a graph. We provide a method to construct graphs with the property that Dx = 1 has no solution. Finally, let v be the first eigenvector of the distance matrix of a tree with positive entries, as guaranteed by the Perron-Frobienius theorem. We provide a lower bound of ⟨v, 1⟩ involving the number of leaves. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88170 |
DOI: | 10.6342/NTU202301030 |
Fulltext Rights: | 同意授權(全球公開) |
Appears in Collections: | 應用數學科學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-111-2.pdf | 1.14 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.