Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88144
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇zh_TW
dc.contributor.advisorGuang-Yu Guoen
dc.contributor.author黃奕軒zh_TW
dc.contributor.authorYi-Shiuan Huangen
dc.date.accessioned2023-08-08T16:29:45Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-13-
dc.identifier.citationY.-S. Huang, Y.-H. Chan, G.-Y. Guo, Large shift current via in-gap and charge-neutral exciton excitations in BN nanotubes and single BN layer, arXiv:2305.12439 [condmat.mes-hall]
N. A. Pike and D. Stroud, Tight-binding model for adatoms on graphene: Analytical density of states, spectral function, and induced magnetic moment, Phys. Rev. B 89, 115428 (2014).
H. C. Hsueh, G. Y. Guo, and S. G. Louie, Excitonic effects in the optical properties of a SiC sheet and nanotubes, Phys. Rev. B 84, 085404 (2011).
A. Rubio, J. L. Corkill, and M. L. Cohen, Theory of graphitic boron nitride nanotubes, Phys. Rev. B 49, 5081 (1994).
E. Kaxiras, J. D. Joannopoulos - Quantum Theory of Materials (2019, Cambridge University Press)
W. Kraut and R. v. Baltz, Anomalous bulk photovoltaic effect in ferroelectrics: A quadratic response theory: A quadratic response theory, Phys. Rev. B 19, 1548 (1979).
B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials, (Gordon and Breach Science Publishers, 1992).
C. Aversa and J. E. Sipe, Nonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysis, Phys. Rev. B 52, 14636 (1995).
J. E. Sipe and A. I. Shkrebtii, Second-order optical response in semiconductors, Phys. Rev. B 61, 5337 (2000).
小川直毅, 五月女真人, 中村優男, and 森本高裕, 光起電力の新しい量子力学的描像「シフト電流」, 日本物理学會誌 75, No. 3, (2020).
R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, (Imperial College, London, 1998).
L. Wirtz, A. Marini, and A. Rubio, Excitons in Boron Nitride Nanotubes: Dimensionality Effects, Phys. Rev. Lett. 96, 126104 (2006).
C. H. Park, C. D. Spataru, and S. G. Louie, Excitons and Many-Electron Effects in the Optical Response of Single-Walled Boron Nitride Nanotubes, Phys. Rev. Lett. 96, 126105 (2006).
L. H. Li, Y. Chen, M. Y. Lin, A. M. Glushenkov, B. M. Cheng, and J. Yu, Single deep ultraviolet light emission from boron nitride nanotube film, Appl. Phys. Lett. 97,141104 (2010).
J. Yu, D. Yu, Y. Chen, H. Chen, M. Y. Lin, B. M. Cheng, J. Li, and W. H. Duan, Narrowed bandgaps and stronger excitonic effects from small boron nitride nanotubes, Chem. Phys. Lett. 476, 240-243 (2009).
P. Král, E. J. Mele, and D. Tománek, Photogalvanic Effects in Heteropolar Nanotubes, Phys. Rev. Lett. 85, 1512 (2000).
S. Konabe, Exciton effect on shift current in single-walled boron-nitride nanotubes, Phys. Rev. B 103, 075402 (2021).
R. S. Lee, J. Gavillet, M. Lamy de la Chapelle, A. Loiseau, J. L. Cochon, D. Pigache, J. Thibault, and F. Willaime, Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration, Phys. Rev. B 64, 121405(R) (2001).
M. Sotome, M. Nakamura, T. Morimoto, Y. Zhang, G.-Y. Guo, M. Kawasaki, N. Nagaosa, Y. Tokura, and N. Ogawa, Terahertz emission spectroscopy of ultrafast exciton shift current in the noncentrosymmetric semiconductor CdS, Phys. Rev. B 103, L241111 (2021).
G. Y. Guo and J. C. Lin, Systematic ab initio study of the optical properties of BN nanotubes, Phys. Rev. B 71, 165402 (2005).
Y. H. Chan, D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Giant exciton-enhanced shift currents and direct current conduction with subbandgap photo excitations produced by many-electron interactions, Proc. Natl. Acad. Sci. USA 118, e1906938118 (2021).
R. Fei, L. Z. Tan, and A. M. Rappe, Shift-current bulk photovoltaic effect influenced by quasiparticle and exciton, Phys. Rev. B 101, 045104 (2020).
A. Taghizadeh, and T. G. Pedersen, Gauge invariance of excitonic linear and nonlinear optical response, Phys. Rev. B 97, 205432 (2018).
W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133 (1965).
J. C. Slater, A Simplification of the Hartree-Fock Method, Phys. Rev. 81, 385 (1951).
P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864 (1964).
S. G. Louie in Topics in Computational Materials Science (ed. Fong, C. Y.) 96–142 (World Scientifc, 1998).
S. G. Louie, Y. H. Chan, F. H. da Jornada , Z. Li , and D. Y. Qiu, Discovering and understanding materials through computation, Nat. Mater. 20, 728–735 (2021).
L. Hedin, New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem, Phys. Rev. 139, A796 (1965).
D. Golze, M. Dvorak and P. Rinke, The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy, Frontiers in chemistry 7, 377 (2019).
D. Pines and D. Bohm, A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions, Phys. Rev. 85, 338 (1952).
D. Bohm and D. Pines, A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas, Phys. Rev. 92, 609 (1953).
H. Ehrenreich and M. H. Cohen, Self-Consistent Field Approach to the ManyElectron Problem, Phys. Rev. 115, 786 (1959).
D. Y. Qiu, Many-body Effects on the Quasiparticle and Optical Properties of Quasitwo-dimensional Systems. UC Berkeley.
M. Wu, Spin-Orbit Coupling, Broken Time-Reversal Symmetry, and Polarizability Self-Consistency in GW and GW-BSE Theory with Applications to Two-Dimensional Materials. UC Berkeley.
M. Rohlfing and S. G. Louie, Electron-Hole Excitations in Semiconductors and Insulators, Phys. Rev. Lett. 81, 2312 (1998).
M. Rohlfing and S. G. Louie, Electron-hole excitations and optical spectra from first principles, Phys. Rev. B 62, 5188 (2000).
A. Bhatnagar, A. R. Chaudhuri, Y. H. Kim, D. Hesse and M. Alexe, Role of domain walls in the abnormal photovoltaic effect in BiFeO3, Nature Commun. 61, 5337 (2000).
M. A. Green and S. P. Bremner, Energy conversion approaches and materials for high-efficiency photovoltaics, Nat. Mater. 16, 23 (2016).
T.-Y. Cai, S.-C. Liu, S. Ju, C.-Y. Liu and G.-Y. Guo, Multiferroic double perovskites ScFe1−xCrxO3 (1/6 ≤ x ≤ 5/6) for highly efficient photovoltaics and spintronics, Phys. Rev. Appl. 8, 034034 (2017).
T. Morimoto and N. Nagaosa, Topological aspects of nonlinear excitonic processes in noncentrosymmetric crystals, Phys. Rev. B 94, 035117 (2016).
G. Y. Guo,and J. C. Lin, Second-harmonic generation and linear electro-optical coefficients of BN nanotubes, Phys. Rev. B 72, 075416 (2005).
R. W. Boyd, Nonlinear Optics, (Elsevier, Amsterdam, 2003).
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558 (1993).
G. Kresse and J. Furthmuller, Efficient interactive schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).
P. Giannozzi, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009).
D. R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev. B 88, 085117 (2013).
H. J. Monkhorst and J. D. Pack, Special points for Brillonin-zone integrations, Phys. Rev. B 13, 5188 (1976).
M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34, 5390 (1986).
M. Rohlfing and S. G. Louie, Electron-hole excitations and optical spectra from first principles, Phys. Rev. B 62, 5188 (2000).
J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, S. G. Louie, BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures, Comp. Phys. Commun. 183, 1269-1289 (2012).
F. H. d. Jornada, D. Y. Qiu, and S. G. Louie, Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality, Phys. Rev. B 95, 035109 (2017).
S. Ismail-Beigi, Truncation of periodic image interactions for confined systems, Phys. Rev. B 73, 233103 (2006).
J. Ibanez-Azpiroz, S. S. Tsirkin, and I. Souza, Ab initio calculation of the shift photocurrent by Wannier interpolation, Phys. Rev. B 97, 245143 (2018).
I. Souza, J. Íñiguez, and D. Vanderbilt, Dynamics of Berry-phase polarization in time-dependent electric fields, Phys. Rev. B 69, 085106 (2004).
K. S. Virk and J. E. Sipe, Semiconductor optics in length gauge: A general numerical approach, Phys. Rev. B 76, 035213 (2007).
F. Zhang, C. S. Ong, J. W. Ruan, M. Wu, X. Q. Shi, Z. K. Tang, and S. G. Louie, Intervalley Excitonic Hybridization, Optical Selection Rules, and Imperfect Circular Dichroism in Monolayer h-BN, Phys. Rev. Lett. 128, 047402 (2022).
H. Ahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations, Phys. Rev. B 80, 155453 (2009).
F. A. Rasmussen, P. S. Schmidt, K. T. Winther, and K. S. Thygesen, Efficient manybody calculations for two-dimensional materials using exact limits for the screened potential: Band gaps of MoS2, h-BN, and phosphorene, Phys. Rev. B 94, 155406 (2016).
I. Guilhon, M. Marques, L. K. Teles, M. Palummo, O. Pulci, Silvana Botti, and F. Bechstedt, Out-of-plane excitons in two-dimensional crystals, Phys. Rev. B 99, 161201 (2019).
H. Mishra and S. Bhattacharya, Giant exciton-phonon coupling and zero-point renormalization in hexagonal monolayer boron nitride, Phys. Rev. B 99, 165201 (2019).
F. Ferreira, A. J. Chaves, N. M. R. Peres, and R. M. Ribeiro, Excitons in hexagonal boron nitride single-layer: a new platform for polaritonics in the ultraviolet, J. Opt. Soc. Am. B 36, 674-683 (2019).
T. Galvani, F. Palean, H. P. C. Miranda, A. Molina-Sanchez, L. Wirtz, S. Latil, H. Amara and F. Ducastelle, Excitons in boron nitride single layer, Phys. Rev. B 94, 125303 (2016).
A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface, Phys. Rev. B 51, 4606 (1995).
C. Elias, P. Valvin, T. Pelini, A. Summerfield, C. J. Mellor, T. S. Cheng, L. Eaves, C. T. Foxon, P. H. Beton, S. V. Novikov, B. Gil and G. Cassabois, Direct band-gap crossover in epitaxial monolayer boron nitride, Nat. Commun. 10, 2639 (2019).
X. Li, H. Qiu, X. F. Liu, J. Yin, and W. Guo, Wettability of Supported Monolayer Hexagonal Boron Nitride in Air, Adv. Funct. Mater. 27, 1603181 (2017).
R. J. P. Roman, F. J. R. Costa Costa, A. Zobelli, C. Elias, P. Valvin, G. Cassabois, B. Gil, A. Summerfield, T. S. Cheng, C. J. Mellor, P. H. Beton, S. V. Novikov and L. F. Zagonel, Band gap measurements of monolayer h-BN and insights into carbon-related point defects, 2D Mater. 8, 044001 (2021).
C. Thomsen, S. Reich, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, (WILEY‐VCH, 2004).
X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Stability and Band Gap Constancy of Boron Nitride Nanotubes, Europhys. Lett. 28, 335 (1994).
R. Arenal, O. Stéphan, M. Kociak, D. Taverna, A. Loiseau, and C. Colliex, Electron Energy Loss Spectroscopy Measurement of the Optical Gaps on Individual Boron Nitride Single-Walled and Multiwalled Nanotubes, Phys. Rev. Lett. 95, 127601 (2005).
G. G. Fuentes, E. Borowiak-Palen, T. Pichler, X. Liu, A. Graff, G. Behr, R. J. Kalenczuk, M. Knupfer, and J. Fink, Electronic structure of multiwall boron nitride nanotubes, Phys. Rev. B 67, 035429 (2003).
D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Screening and many-body effects in two-dimensional crystals: Monolayer MoS2, Phys. Rev. B 93, 235435 (2016).
B. Arnaud, S. Lebegue, P. Rabiller and M. Alouani, Huge excitonic effects in layered hexagonal boron nitride, Phys. Rev. Lett. 96, 026402 (2006).
A. R. Beal, J. C. Knights, and W. Y. Liang, Transmission spectra of some transition metal dichalcogenides. II. Group VIA: Trigonal prismatic coordination, J. Phys. C: Solid State Phys. 5, 3540 (2006).
A. Strasser, H. Wang, and X. Qian, Nonlinear Optical and Photocurrent Responses in Janus MoSSe Monolayer and MoS2-MoSSe van der Waals Heterostructure, Nano Lett. 22, 4145–4152 (2022).
E. J. Mele and P. Král, Electric Polarization of Heteropolar Nanotubes as a Geometric Phase, Phys. Rev. Lett. 88, 056803 (2002).
B. M. Fregoso, T. Morimoto and J. E. Moore, Quantitative relationship between polarization differences and the zero-averaged shift photocurrent, Phys. Rev. B 96, 075421 (2017).
S. M. Nakhmanson, A. Calzolari, V. Meunier, J. Bernholc, and M. B. Nardelli, Spontaneous polarization and piezoelectricity in boron nitride nanotubes, Phys. Rev. B 67, 235406 (2003).
W. T. H. Koch, R. Munser, W. Ruppel and P. Wurfel, Anomalous photovoltage in BaTiO3, Ferroelectrics 13, 305 (1976).
M. Sotome, M. Nakamura, J. Fujioka, M. Ogino, Y. Kaneko, T. Morimoto, Y. Zhang, M. Kawasaki, N. Nagaosa, Y. Tokura, and N. Ogawa, Spectral dynamics of shift current in ferroelectric semiconductor SbSI, Proc. Natl. Acad. Sci. USA 116, 1929 (2019).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88144-
dc.description.abstract低於能隙的激子位移電流近期在非中心對稱半導體硫化鎘中被發現,而且激子位移電流的大小與自由電子-電洞對激發所驅動的常規位移電流相當。由於其光譜被電子-電洞相互作用強烈的重整化,氮化硼奈米管的激子吸收光譜與自由電子-電洞激發的連續譜明顯分離。而且,具有大結合能的強束縛激子可以抑制電子-空穴對的熱解離。基於以上兩個特點,我們預計氮化硼奈米管將成為低於能隙 的激子位移電流的理想材料。我們使用先進的第一原理多體微擾理論 GW 以及 Bethe-Salpeter 方程來研究單壁zigzag [(5,0),(6,0),(7,0),(8,0)]氮化硼奈米管中的激子位移電流。我們的結果顯示位移電流譜被電子-電洞相互作用強烈的重整化。激子效應使得位移電流的最大峰值提高了三倍以上。這是由於低於能隙的A激子態共 振的光學偶極子矩陣元素發生了顯著的放大。與早期的模型研究相反,位移電流的方向與氮化硼奈米管的手性指數無關。然而我們的研究表明,氮化硼奈米管中的激子位移光譜隨著手性指數的降低而發生紅移。而該紅移是由氮化硼奈米管曲率引起的軌道再雜化所導致的。我們的研究表明,奈米管曲率和多體效應在小直徑氮化硼奈米管的位移電流產生中起著重要作用。zh_TW
dc.description.abstractRecent observations of the sub-bandgap exciton shift current in the noncentrosym- metric semiconductor CdS at 2 K using THz emission spectroscopy have been reported. The magnitude of the exciton shift current is comparable to that of the shift current driven by the excitation of free electron-hole pairs. In addition, we anticipate that BN nanotubes will be ideal for studying the subbandgap exciton shift current due to the following two features. Because of their strongly renormalized optical spectra and high exciton bind- ing energy, the exciton absorption spectra of BN nanotubes are clearly separated from the continuum of free electron-hole excitation. Second, strongly bound excitons with a large binding energy inhibit the thermal dissociation of electron-hole pairs. We investigate the exciton shift current in single-walled zigzag [(5,0),(6,0),(7,0),(8,0)] BN nanotubes by per- forming ab initio many-body calculations using the most recent GW plus Bethe-Salpeter equation approaches. We demonstrate that the excitonic effect substantially renormalizes the shift current spectrum. The maximal peak value of the shift current is enhanced by more than three times via the excitonic effect. Due to the large optical dipole matrix element of the sub-bandgap A exciton resonance, a significant amplification has occurred. Contrary to earlier model research, the direction of the shift current is independent of the chiral index. However, our research suggests that the exciton shift spectra in BN nan- otubes have a red shift with respect to the decreasing chiral index. The red shift is caused by the orbital rehybridization induced by curvature. Our research indicates that the cur- vature and many-electron effects play a significant role in the shift current generation in small diameter BN nanotubes.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:29:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:29:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements ⅰ
摘要 ⅲ
Abstract ⅴ
Contents ⅶ
List of Figures ⅸ
List of Tables xiii
Chapter 1 Introduction 1
1.1 Exciton and exciton shift current 3
1.2 BN nanotubes 5
1.3 The sgn(Jshift) = mod(n, 3) rule of shift current direction 6
1.4 Why do we need ab initio exciton shift current calculations? 7
1.5 Theoretical development of ab initio exciton shift current 7
Chapter 2 Theoretical background 9
2.1 Density functional theory 9
2.2 G0W0 approximation and quasiparticle excitation 11
2.3 Bethe-Salpeter equation 13
Chapter 3 Crystal structures and computational methods 15
3.1 Symmetry and shift conductivity tensor 15
3.2 Density functional theory calculations 16
3.3 Quasiparticle band structure calculations 17
3.4 Exciton excitation calculations 18
3.5 Shift current calculations 19
3.6 Exciton shift current calculations 20
Chapter 4 RESULTS AND DISCUSSION 23
4.1 Electronic and optical properties of the single BN sheet 23
4.2 Electronic properties of BN nanotubes 29
4.3 Absorption spectra of BN nanotubes 34
4.4 Exciton shift current of BN nanotubes 35
Chapter 5 CONCLUSIONS 41
References 43
-
dc.language.isoen-
dc.title以多體理論研究氮化硼奈米管及單原子層之強激子增幅位移電流zh_TW
dc.titleShift current generated via in-gap and charge-neutral exciton excitations in BN nanotubes and single BN layer: An ab initio many-body theoretical studyen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李啟正;鄭舜仁;詹楊皓;溫昱傑zh_TW
dc.contributor.oralexamcommitteeChi-Cheng Lee;Shun-Jen Cheng;Yang-hao Chan;Yu-Chieh Wenen
dc.subject.keywordGW,BSE,激子效應,第一原理計算,位移電流,光生伏打效應,二階非線性光學,二維材料,奈米管,zh_TW
dc.subject.keywordGW,BSE,excitonic effects,first principle calculation,shift current,bulk photovoltaic effects,second order nonlinear optics,two-dimensional material,nanotube,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202301521-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.89 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved