請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88139完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳嘉文 | zh_TW |
| dc.contributor.advisor | Kevin C.-W. Wu | en |
| dc.contributor.author | 陸建宇 | zh_TW |
| dc.contributor.author | Jian-Yu Lu | en |
| dc.date.accessioned | 2023-08-08T16:28:27Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-17 | - |
| dc.identifier.citation | 1. Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S. L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M., Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change 2021, 2.
2. E. Dlugokencky and P. Tans, NOAA/GML (http://gml.noaa.gov/ccgg/trends). 3. Sanz-Pérez, E. S.; Murdock, C. R.; Didas, S. A.; Jones, C. W., Direct capture of CO2 from ambient air. Chemical reviews 2016, 116 (19), 11840-11876. 4. Glasgow Climate Pact. UNFCCC. . 2021-11-13. 5. Lackner, K.; Ziock, H.-J.; Grimes, P. Carbon dioxide extraction from air: is it an option?; Los Alamos National Lab.(LANL), Los Alamos, NM (United States): 1999. 6. Kato, E.; Kurosawa, A., Role of negative emissions technologies (NETs) and innovative technologies in transition of Japan’s energy systems toward net-zero CO2 emissions. Sustainability Science 2021, 16 (2), 463-475. 7. Metz, B.; Davidson, O.; De Coninck, H.; Loos, M.; Meyer, L., Intergovernmental panel on climate change special report on carbon dioxide capture and storage. Cambridge, UK and New York, USA 2005. 8. Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C., Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical engineering research and design 2011, 89 (9), 1609-1624. 9. Quader, M. A.; Ahmed, S.; Ghazilla, R. A. R.; Ahmed, S.; Dahari, M., A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renewable and Sustainable Energy Reviews 2015, 50, 594-614. 10. Li, S.; Deng, S.; Zhao, L.; Xu, W.; Yuan, X.; Guo, Z.; Du, Z., Energy dissipation evaluation of temperature swing adsorption (TSA) cycle based on thermodynamic entropy insights. Scientific Reports 2019, 9 (1), 1-10. 11. Lu, G.; Da Costa, J. D.; Duke, M.; Giessler, S.; Socolow, R.; Williams, R.; Kreutz, T., Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of colloid and interface science 2007, 314 (2), 589-603. 12. Merkel, T.; Amo, K.; Baker, R.; Daniels, R.; Friat, B.; He, Z.; Lin, H.; Serbanescu, A. Membrane process to sequester CO2 from power plant flue gas; Membrane Technology & Research Incorporated: 2009. 13. Stookey, D.; Graham, T.; Pope, W., Natural gas processing with PRISM separators. Environ. Prog.;(United States) 1984, 3 (3). 14. WIKLUND, A., The genus Cynara L.(Asteraceae-Cardueae). Botanical Journal of the Linnean Society 1992, 109 (1), 75-123. 15. Fujikawa, S.; Selyanchyn, R., Direct air capture by membranes. MRS Bulletin 2022, 47 (4), 416-423. 16. Shenvi, S. S.; Isloor, A. M.; Ismail, A., A review on RO membrane technology: Developments and challenges. Desalination 2015, 368, 10-26. 17. Kim, Y. S.; Lee, K.-S., Fuel cell membrane characterizations. Polymer Reviews 2015, 55 (2), 330-370. 18. Rezakazemi, M.; Younas, M., Membrane Contactor Technology: Water Treatment, Food Processing, Gas Separation, and Carbon Capture. John Wiley & Sons: 2021. 19. Mulder, M.; Mulder, J., Basic principles of membrane technology. Springer science & business media: 1996. 20. Nasser, R., Chapter 5 - Separation processes with (bio)membranes: Overview and new phenomenological classification. In Biopolymer Membranes and Films, de Moraes, M. A.; da Silva, C. F.; Vieira, R. S., Eds. Elsevier: 2020; pp 119-137. 21. Drioli, E.; Giorno, L., Comprehensive membrane science and engineering. Newnes: 2010; Vol. 1. 22. Sardarabadi, H.; Kiani, S.; Karkhanechi, H.; Mousavi, S. M.; Saljoughi, E.; Matsuyama, H., Effect of Nanofillers on Properties and Pervaporation Performance of Nanocomposite Membranes: A Review. Membranes 2022, 12 (12), 1232. 23. Hegde, V. H.; Doherty, M. F.; Squires, T. M., A two-phase model that unifies and extends the classical models of membrane transport. Science 2022, 377 (6602), 186-191. 24. Mehrabian, M.; Kargari, A., Chapter 16 - Prospects of nanocomposite membranes for the recovery of hydrogen and production of syngas. In Nanocomposite Membranes for Water and Gas Separation, Sadrzadeh, M.; Mohammadi, T., Eds. Elsevier: 2020; pp 397-437. 25. Perez, E. V.; Karunaweera, C.; Musselman, I. H.; Balkus Jr, K. J.; Ferraris, J. P., Origins and evolution of inorganic-based and MOF-based mixed-matrix membranes for gas separations. Processes 2016, 4 (3), 32. 26. Yasuda, H., Units of gas permeability constants. Journal of Applied Polymer Science 1975, 19 (9), 2529-2536. 27. 蔡心瑀. 金屬有機骨架混合基質薄膜於二氧化碳分離之應用. 國立臺灣大學, 2022. 28. 鄭博修. 聚醯亞胺/胺改質二氧化矽混合基質薄膜應用於氣體分離之研究. 中原大學, 2016. 29. Hu, G. In Novel promoters for carbon dioxide absorption in potassium carbonate solutions, 2018. 30. Lasseuguette, E.; Comesaña-Gándara, B., Polymer Membranes for Gas Separation. Membranes (Basel) 2022, 12 (2). 31. Hsieh, H., Inorganic membrane reactors. Catalysis Reviews 1991, 33 (1-2), 1-70. 32. Gholamibozanjani, G.; Takht Ravanchi, M.; Soleimani, M., Application of carbon membranes for gas separation: a review. J. Ind. Res. Technol 2013, 3, 53-58. 33. Ismail, A. F.; Khulbe, K. C.; Matsuura, T., Gas separation membranes. Switz. Springer 2015, 10, 973-978. 34. Ismail, A. F.; David, L. I. B., A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science 2001, 193 (1), 1-18. 35. Soria, R., Overview on industrial membranes. Catalysis Today 1995, 25 (3-4), 285-290. 36. Keizer, K.; Verweij, H., Progress in inorganic membranes. Chemtech 1996, 26 (1), 37-41. 37. Scholes, C. A.; Stevens, G. W.; Kentish, S. E., Membrane gas separation applications in natural gas processing. Fuel 2012, 96, 15-28. 38. Chung, T.-S.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S., Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in polymer science 2007, 32 (4), 483-507. 39. Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J., Ultrahigh porosity in metal-organic frameworks. Science 2010, 329 (5990), 424-428. 40. Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R., Carbon dioxide capture in metal–organic frameworks. Chemical reviews 2012, 112 (2), 724-781. 41. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–organic frameworks for separations. Chemical reviews 2012, 112 (2), 869-932. 42. Murray, L. J.; Dincă, M.; Long, J. R., Hydrogen storage in metal–organic frameworks. Chemical Society Reviews 2009, 38 (5), 1294-1314. 43. Robeson, L. M., The upper bound revisited. Journal of Membrane Science 2008, 320 (1), 390-400. 44. Budhathoki, S.; Ajayi, O.; Steckel, J. A.; Wilmer, C. E., High-throughput computational prediction of the cost of carbon capture using mixed matrix membranes. Energy & Environmental Science 2019, 12 (4), 1255-1264. 45. Qian, Q.; Asinger, P. A.; Lee, M. J.; Han, G.; Mizrahi Rodriguez, K.; Lin, S.; Benedetti, F. M.; Wu, A. X.; Chi, W. S.; Smith, Z. P., MOF-based membranes for gas separations. Chemical reviews 2020, 120 (16), 8161-8266. 46. Lv, X.; Huang, L.; Ding, S.; Wang, J.; Li, L.; Liang, C.; Li, X., Mixed matrix membranes comprising dual-facilitated bio-inspired filler for enhancing CO2 separation. Separation and Purification Technology 2021, 276, 119347. 47. Hu, L.; Clark, K.; Alebrahim, T.; Lin, H., Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. Journal of Membrane Science 2022, 644, 120140. 48. Shen, J.; Liu, G.; Huang, K.; Li, Q.; Guan, K.; Li, Y.; Jin, W., UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science 2016, 513, 155-165. 49. Yuan, J.; Zhu, H.; Sun, J.; Mao, Y.; Liu, G.; Jin, W., Novel ZIF-300 mixed-matrix membranes for efficient CO2 capture. ACS applied materials & interfaces 2017, 9 (44), 38575-38583. 50. Ding, R.; Dai, Y.; Zheng, W.; Li, X.; Yan, X.; Liu, Y.; Ruan, X.; Li, S.; Yang, X.; Yang, K., Vesicles-shaped MOF-based mixed matrix membranes with intensified interfacial affinity and CO2 transport freeway. Chemical Engineering Journal 2021, 414, 128807. 51. Xie, K.; Fu, Q.; Kim, J.; Lu, H.; He, Y.; Zhao, Q.; Scofield, J.; Webley, P. A.; Qiao, G. G., Increasing both selectivity and permeability of mixed-matrix membranes: Sealing the external surface of porous MOF nanoparticles. Journal of Membrane Science 2017, 535, 350-356. 52. Yong, W. F.; Ho, Y. X.; Chung, T. S., Nanoparticles embedded in amphiphilic membranes for carbon dioxide separation and dehumidification. ChemSusChem 2017, 10 (20), 4046-4055. 53. Prasetya, N.; Ladewig, B. P., An insight into the effect of azobenzene functionalities studied in UiO-66 frameworks for low energy CO 2 capture and CO 2/N 2 membrane separation. Journal of Materials Chemistry A 2019, 7 (25), 15164-15172. 54. Wang, Z.; Ren, H.; Zhang, S.; Zhang, F.; Jin, J., Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO 2 separation. Journal of Materials Chemistry A 2017, 5 (22), 10968-10977. 55. Yu, G.; Zou, X.; Sun, L.; Liu, B.; Wang, Z.; Zhang, P.; Zhu, G., Constructing connected paths between UiO‐66 and PIM‐1 to improve membrane CO2 separation with crystal‐like gas selectivity. Advanced Materials 2019, 31 (15), 1806853. 56. Maserati, L.; Meckler, S. M.; Bachman, J. E.; Long, J. R.; Helms, B. A., Diamine-appended Mg2 (dobpdc) nanorods as phase-change fillers in mixed-matrix membranes for efficient CO2/N2 separations. Nano letters 2017, 17 (11), 6828-6832. 57. Benzaqui, M.; Pillai, R. S.; Sabetghadam, A.; Benoit, V.; Normand, P.; Marrot, J.; Menguy, N.; Montero, D.; Shepard, W.; Tissot, A., Revisiting the aluminum trimesate-based MOF (MIL-96): From structure determination to the processing of mixed matrix membranes for CO2 capture. Chemistry of Materials 2017, 29 (24), 10326-10338. 58. Dai, D.; Wang, H.; Li, C.; Qin, X.; Li, T., A physical entangling strategy for simultaneous interior and exterior modification of metal–organic framework with polymers. Angewandte Chemie 2021, 133 (13), 7465-7472. 59. Wang, H.; He, S.; Qin, X.; Li, C.; Li, T., Interfacial engineering in metal–organic framework-based mixed matrix membranes using covalently grafted polyimide brushes. Journal of the American Chemical Society 2018, 140 (49), 17203-17210. 60. Thür, R.; Van Havere, D.; Van Velthoven, N.; Smolders, S.; Lamaire, A.; Wieme, J.; Van Speybroeck, V.; De Vos, D.; Vankelecom, I. F., Correlating MOF-808 parameters with mixed-matrix membrane (MMM) CO 2 permeation for a more rational MMM development. Journal of Materials Chemistry A 2021, 9 (21), 12782-12796. 61. Zhang, Y.; Tong, Y.; Li, X.; Guo, S.; Zhang, H.; Chen, X.; Cai, K.; Cheng, L.; He, W., Pebax mixed-matrix membrane with highly dispersed ZIF-8@ CNTs to enhance CO2/N2 separation. ACS omega 2021, 6 (29), 18566-18575. 62. Deng, Y. H.; Chen, J. T.; Chang, C. H.; Liao, K. S.; Tung, K. L.; Price, W. E.; Yamauchi, Y.; Wu, K. C. W., A drying‐free, water‐based process for fabricating mixed‐matrix membranes with outstanding pervaporation performance. Angewandte Chemie 2016, 128 (41), 12985-12988. 63. Gargiulo, N.; Pepe, F.; Caputo, D., CO2 adsorption by functionalized nanoporous materials: a review. Journal of nanoscience and nanotechnology 2014, 14 (2), 1811-1822. 64. 廖祐德. 原位合成法製備含金屬奈米粒子之有機金屬骨架衍生擔體及其應用於多種催化反應. 國立臺灣大學, 2018. 65. Liao, Y. T.; Chen, J. E.; Isida, Y.; Yonezawa, T.; Chang, W. C.; Alshehri, S. M.; Yamauchi, Y.; Wu, K. C. W., De Novo Synthesis of Gold‐Nanoparticle‐Embedded, Nitrogen‐Doped Nanoporous Carbon Nanoparticles (Au@ NC) with Enhanced Reduction Ability. ChemCatChem 2016, 8 (3), 502-509. 66. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; Streek, J., Mercury: visualization and analysis of crystal structures. Journal of applied crystallography 2006, 39 (3), 453-457. 67. Standard Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting, ASTM D1434 − 82, ASTM International, West Conshohocken, United States (2015), pp. 19428-22959. 68. Pye, D.; Hoehn, H.; Panar, M., Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus. Journal of Applied Polymer Science 1976, 20 (7), 1921-1931. 69. Brubaker, D. W.; Kammermeyer, K., Separation of Gases by Means of Permeable Membranes. Permeability of Plastic Membranes to Gases. Industrial & Engineering Chemistry 1952, 44 (6), 1465-1474. 70. Baschetti, M. G.; Minelli, M., Test methods for the characterization of gas and vapor permeability in polymers for food packaging application: A review. Polymer Testing 2020, 89, 106606. 71. 甘名揚. 金屬有機骨架薄膜之氣體分離應用與質傳性質探討. 國立臺灣大學, 2021. 72. Chang, C.-K.; Yu, H. J.; Jang, H.; Hung, T.-H.; Chang, C.-K.; Kim, J.; Lee, J. S.; Kang, D.-Y., Conformational-change-induced selectivity enhancement of CAU-10-PDC membrane for H2/CH4 and CO2/CH4 separation. Journal of Membrane Science Letters 2021, 1 (1). 73. Morris, W.; Stevens, C. J.; Taylor, R.; Dybowski, C.; Yaghi, O. M.; Garcia-Garibay, M. A., NMR and X-ray study revealing the rigidity of zeolitic imidazolate frameworks. The Journal of Physical Chemistry C 2012, 116 (24), 13307-13312. 74. Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y., Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15 (9), 1794-1801. 75. Osterrieth, J. W.; Rampersad, J.; Madden, D.; Rampal, N.; Skoric, L.; Connolly, B.; Allendorf, M. D.; Stavila, V.; Snider, J. L.; Ameloot, R., How Reproducible are Surface Areas Calculated from the BET Equation?(Adv. Mater. 27/2022). Advanced Materials 2022, 34 (27), 2270205. 76. Smit, B., Grand canonical Monte Carlo simulations of chain molecules: adsorption isotherms of alkanes in zeolites. Molecular Physics 1995, 85 (1), 153-172. 77. Pakizeh, M.; Rouhani, R.; Chenar, M. P., A new route for ZIF-8 synthesis and its application in MMM preparation for toluene removal from water using PV process. Chemical Engineering Research and Design 2023, 190, 730-744. 78. Zhang, C.; Dai, Y.; Johnson, J. R.; Karvan, O.; Koros, W. J., High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. Journal of Membrane Science 2012, 389, 34-42. 79. Song, C.; Li, R.; Fan, Z.; Liu, Q.; Zhang, B.; Kitamura, Y., CO2/N2 separation performance of Pebax/MIL-101 and Pebax /NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation. Separation and Purification Technology 2020, 238, 116500. 80. Nagar, H.; Vadthya, P.; Prasad, N. S.; Sridhar, S., Air separation by facilitated transport of oxygen through a Pebax membrane incorporated with a cobalt complex. RSC advances 2015, 5 (93), 76190-76201. 81. Sarmadi, R.; Salimi, M.; Pirouzfar, V., The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal–organic frameworks to modify the morphology and performance of Pebax® 1657-based gas separation membranes for CO 2 capture applications. Environmental Science and Pollution Research 2020, 27, 40618-40632. 82. Liu, N.; Cheng, J.; Hou, W.; Yang, X.; Zhou, J., Pebax‐based mixed matrix membranes loaded with graphene oxide/core shell ZIF‐8@ ZIF‐67 nanocomposites improved CO2 permeability and selectivity. Journal of Applied Polymer Science 2021, 138 (23), 50553. 83. Lin, H.; Freeman, B. D., Materials selection guidelines for membranes that remove CO2 from gas mixtures. Journal of Molecular Structure 2005, 739 (1-3), 57-74. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88139 | - |
| dc.description.abstract | 自19世紀工業革命以來,大氣中CO2濃度持續上升,造成顯著的全球氣候變遷。因此從大氣中捕捉CO2是目前非常重要的課題。在此研究中,我們使用薄膜分離的方式來分離空氣中的CO2,並利用免乾燥法混合高分子Pebax和金屬有機框架(MOFs) ZIF-8,形成混合基質薄膜(ZIF-8/Pebax® MH 2030 MMMs),設法提升高分子薄膜的氣體分離效能。
在此研究中,我們利用FE-SEM和EDX觀察到免乾燥混合法可以有效地提升ZIF-8在高分子中的分散性,有效避免ZIF-8的聚集。此外,透過DSC分析,我們利用Tg變化觀察到ZIF-8和Pebax之間的親和性會使部分的高分子產生鏈剛硬化(Polymer chain rigidification)的現象。 我們對ZIF-8/Pebax® MH 2030 MMMs進行氣體分離效能的測試。實驗結果顯示,在單一氣體的環境中,當ZIF-8的添加量為5 wt%時,氣體通透率從115 barrer提升至140 barrer,同時CO2/N2選擇率從26提升至35。除此之外,我們還模擬了大氣環境來捕捉CO2。在ZIF-8的添加量同樣為5 wt%時,氣體通透率從460 barrer提升至500 barrer ,CO2/N2選擇率從19提升至69。相較於未添加ZIF-8的Pebax,選擇率增加了263%。此研究不僅發現利用免乾燥法可以有效的改善ZIF-8在Pebax中的分散性,更重要的是,參雜適當比例的ZIF-8可以有效的提升Pebax薄膜在大氣環境下的氣體分離效能。 | zh_TW |
| dc.description.abstract | Significant global climate change has resulted from the continuous increase in atmospheric CO2 concentration since the Industrial Revolution in the 19th century. Therefore, capturing CO2 from the atmosphere is currently a crucial issue. In this study, we used the mixed matrix membranes (MMMs) for CO2/N2 separation. We incorporated the metal-organic frameworks (MOFs) ZIF-8 into Pebax® MH 2030 to form the mixed matrix membrane (ZIF-8/Pebax® MH 2030 MMMs) by the drying-free method.
In this research, we use FE-SEM and EDX analysis to observe that the drying-free method can effectively improve the dispersion of ZIF-8 in the polymer, effectively avoiding ZIF-8 aggregation. Additionally, based on DSC analysis, we found that the polymer chain rigidification phenomenon will increase glass transition temperature (Tg), which is due to the affinity between ZIF-8 and Pebax® MH 2030. We measured the gas separation performance of the ZIF-8/Pebax® MH 2030 MMMs. In a single gas environment case, the 5 wt% loading ZIF-8 MMMs can get higher permeability (140 barrer) than the pure Pebax® MH 2030 (115 barrer), as well as the CO2/N2 selectivity (increased from 26 to 35). Furthermore, we simulated CO2 capture in the atmospheric environment to test the gas separation performance. Adding 5 wt% ZIF-8 into Pebax® MH 2030 can increase gas permeability from 460 barrer to 500 barrer, and the CO2/N2 selectivity increased from 19 to 69 (263% increased). This study shows that the drying-free method effectively improves the dispersion of ZIF-8 in Pebax® MH 2030 . More importantly, the incorporation of an appropriate proportion of ZIF-8 significantly enhances the direct air capture (DAC) performance of Pebax® MH 2030 membranes in an atmospheric environment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:28:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-08T16:28:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Table of Content v List of Figures ix List of Tables xiii 1. Introduction 1 1.1. Direct air capture (DAC) 1 1.2. Gas separation technology 3 1.2.1. Chemical absorption 4 1.2.2. Adsorption 5 1.2.3. Membrane separation 6 1.3. Membrane separation technology 8 1.4. Gas separation mechanism 10 1.4.1. Solution-diffusion model 11 1.4.2. Molecular sieve model 13 1.5. Type of membrane 14 1.5.1. Polymeric membrane 14 1.5.2. Inorganic membrane 14 1.5.3. Mixed-matrix membrane 16 2. Literature Review 18 2.1. Polymeric membrane 18 2.2. Mixed-matrix membrane 19 2.3. Drying-free method 21 3. Objectives 22 4. Experimental 23 4.1. Chemicals and Materials 23 4.2. Equipment 23 4.3. Synthesis of ZIF-8 nanoparticles 25 4.3.1. Synthesis of ZIF-8 nanoparticles suspension solution 25 4.3.2. Synthesis of ZIF-8 nanoparticles powder 26 4.4. Fabrication of Pebax® MH 2030 membrane 26 4.5. Fabrication of ZIF-8/Pebax® MH 2030 membrane 27 4.5.1. Drying-free method 27 4.5.2. Drying method 27 4.6. Characterization of MOF 28 4.6.1. X-ray diffraction analysis (XRD) 28 4.6.2. Transmission electron microscope (TEM) 28 4.6.3. Dynamic Light Scattering (DLS) 29 4.6.4. Specific Surface Area and Porosimetry Analyzer (BET) 29 4.6.5. Thermogravimetric Analysis (TGA) 29 4.7. Characterization of ZIF-8/Pebax® MH 2030 membranes 30 4.7.1. Field Emission Scanning Electron Microscope (FE-SEM) 30 4.7.2. Energy-Dispersive X-ray Spectroscopy (EDX) 30 4.7.3. X-ray diffraction analysis (XRD) 31 4.7.4. Differential Scanning Calorimetry (DSC) 31 4.7.5. Fourier-Transform Infrared Spectrometer (FTIR) 32 4.7.6. Mechanical strength test 32 4.8. Single gas permeability measurement 33 4.8.1. Gas permeation system introduction 33 4.8.2. Single gas permeation system installation 34 4.8.3. Performance Testing of Gas Permeation System 35 4.8.4. Gas permeation measurement 36 4.9. Mixed gas permeability measurement 38 5. Results and Discussion 39 5.1. ZIF-8 characterization 39 5.1.1. XRD analysis 39 5.1.2. TEM analysis 40 5.1.3. DLS analysis 41 5.1.4. BET analysis 41 5.1.5. FTIR analysis 43 5.1.6. TGA analysis 44 5.2. ZIF-8/Pebax® MH 2030 characterization 45 5.2.1. FE-SEM analysis 45 5.2.2. EDX analysis 47 5.2.3. XRD analysis 48 5.2.4. FTIR analysis 50 5.2.5. DSC analysis 52 5.2.6. TGA analysis 54 5.2.7. The mechanical properties of membranes 55 5.3. ZIF-8/Pebax® MH 2030 gas separation performance 56 5.3.1. Single gas performance 56 5.3.2. Mixed gas performance 60 6. Conclusion 63 References 64 | - |
| dc.language.iso | en | - |
| dc.subject | Pebax® MH 2030 | zh_TW |
| dc.subject | 沸石咪唑酯骨架 | zh_TW |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 有機無機複合薄膜 | zh_TW |
| dc.subject | 免乾燥混合法 | zh_TW |
| dc.subject | 二氧化碳/氮氣分離 | zh_TW |
| dc.subject | MMM | en |
| dc.subject | CO2/N2 separations | en |
| dc.subject | Pebax® MH 2030 | en |
| dc.subject | Drying-Free Mixing | en |
| dc.subject | Nanoparticles | en |
| dc.subject | ZIF-8 | en |
| dc.title | 使用免乾燥混合法結合沸石咪唑酯骨架-8奈米粒子與Pebax® MH 2030 之高效有機無機複合薄膜在二氧化碳/氮氣分離上的應用 | zh_TW |
| dc.title | A Drying-Free Mixing Process of Zeolitic Imidazolate Frameworks-8 (ZIF-8) Nanoparticles and Pebax® MH 2030 for Fabricating Highly Efficient Mixed-Matrix Membrane (MMM) in CO2/N2 Separation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 湯偉鉦;康敦彥;郭紹偉;葉禮賢 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Cheng Tang;Dun-Yen Kang;Shiao Wei Kuo;Li-Hsien Yeh | en |
| dc.subject.keyword | 沸石咪唑酯骨架,奈米粒子,有機無機複合薄膜,免乾燥混合法,Pebax® MH 2030,二氧化碳/氮氣分離, | zh_TW |
| dc.subject.keyword | ZIF-8,Nanoparticles,MMM,Drying-Free Mixing,Pebax® MH 2030,CO2/N2 separations, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202301497 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-17 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 7.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
