Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88130
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧毅zh_TW
dc.contributor.advisorLouis Grilleten
dc.contributor.author廖小惟zh_TW
dc.contributor.authorSiao-Wei Liaoen
dc.date.accessioned2023-08-08T16:25:56Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-14-
dc.identifier.citationBashir, K., Inoue, H., Nagasaka, S., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2006). Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. Journal of Biological Chemistry 281(43): 32395-32402.
Beard, J. (2003). Iron deficiency alters brain development and functioning. The Journal of Nutrition 133(5): 1468S-1472S.
Beard, J. L. (2001). Iron biology in immune function, muscle metabolism and neuronal functioning. The Journal of Nutrition 131(2): 568S-580S.
Billings, J. L., Gordon, S. L., Rawling, T., Doble, P. A., Bush, A. I., Adlard, P. A., Finkelstein, D. I., & Hare, D. J. (2019). l‐3, 4‐dihydroxyphenylalanine (l‐DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha‐synuclein mouse models of Parkinson's disease. Journal of Neurochemistry 150(1): 88-106.
Birkmayer, W., & Hornykiewicz, O. (1961). The L-3, 4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wiener klinische Wochenschrift 73: 787-788.
Brabin, B. J., Hakimi, M., & Pelletier, D. (2001). An analysis of anemia and pregnancy-related maternal mortality. The Journal of Nutrition 131(2S-2): 604S-614S; discussion 614S.
Cakmak, I., Ozkan, H., Braun, H., Welch, R., & Romheld, V. (2000). Zinc and iron concentrations in seeds of wild, primitive, and modern wheats. Food and Nutrition Bulletin 21(4): 401-403.
Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil 383(1): 3-41.
Charkoudian, L. K., & Franz, K. J. (2006). Fe (III)-coordination properties of neuromelanin components: 5, 6-dihydroxyindole and 5, 6-dihydroxyindole-2-carboxylic acid. Inorganic Chemistry 45(9): 3657-3664.
Clark, R. B. (1982). Iron deficiency in plants grown in the Great Plains of the US. Journal of Plant Nutrition 5(4-7): 251-268.
De Valença, A., Bake, A., Brouwer, I., & Giller, K. (2017). Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security 12: 8-14.
Denic, S., & Agarwal, M. M. (2007). Nutritional iron deficiency: an evolutionary perspective. Nutrition 23(7-8): 603-614.
Dona, A., & Arvanitoyannis, I. S. (2009). Health risks of genetically modified foods. Critical Reviews in Food Science and Nutrition 49(2): 164-175.
Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196: 3-14.
Eide, D., Broderius, M., Fett, J., & Guerinot, M. L. (1996). A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences 93(11): 5624-5628.
Ems, T., St Lucia, K., & Huecker, M. R. (2021). Biochemistry, iron absorption. In StatPearls [Internet]. StatPearls Publishing.
Estelle, M. A., & Somerville, C. (1987). Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Molecular and General Genetics MGG 206: 200-206.
Fourcroy, P., Tissot, N., Gaymard, F., Briat, J.-F., & Dubos, C. (2016). Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe2+ transport system. Molecular Plant 9(3): 485-488.
Franceschi, F., & Gasbarrini, A. (2007). Helicobacter pylori and extragastric diseases. Best Practice & Research Clinical Gastroenterology 21(2): 325-334.
Frey, P. A., & Reed, G. H. (2012). The ubiquity of iron. ACS Chemical Biology 7(9): 1477-1481.
Gao, F., Robe, K., Bettembourg, M., Navarro, N., Rofidal, V., Santoni, V., Gaymard, F., Vignols, F., Roschzttardtz, H., & Izquierdo, E. (2020). The transcription factor bHLH121 interacts with bHLH105 (ILR3) and its closest homologs to regulate iron homeostasis in Arabidopsis. The Plant Cell 32(2): 508-524.
García-Bañuelos, M. L., Sida-Arreola, J. P., & Sánchez, E. (2014). Biofortification-promising approach to increasing the content of iron and zinc in staple food crops. Journal of Elementology 19(3).
Gessler, N., Egorova, A., & Belozerskaya, T. (2014). Melanin pigments of fungi under extreme environmental conditions. Applied Biochemistry and Microbiology 50: 105-113.
Golisz, A., Sugano, M., Hiradate, S., & Fujii, Y. (2011a). Microarray analysis of Arabidopsis plants in response to allelochemical L-DOPA. Planta 233(2): 231-240.
Golisz, A., Sugano, M., Hiradate, S., & Fujii, Y. (2011b). Microarray analysis of Arabidopsis plants in response to allelochemical L-DOPA. Planta 233: 231-240.
Goto, F., Yoshihara, T., Shigemoto, N., Toki, S., & Takaiwa, F. (1999). Iron fortification of rice seed by the soybean ferritin gene. Nature Biotechnology 17(3): 282-286.
Graham, R., Senadhira, D., Beebe, S., Iglesias, C., & Monasterio, I. (1999). Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Research 60(1-2): 57-80.
Grillet, L., Lan, P., Li, W., Mokkapati, G., & Schmidt, W. (2018). IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nature Plants 4(11): 953-963.
Grillet, L., Mari, S., & Schmidt, W. (2014). Iron in seeds–loading pathways and subcellular localization. Frontiers in Plant Science 4: 535.
Gupta, C. (2014). Role of iron (Fe) in body. IOSR Journal of Applied Chemistry 7(11): 38-46.
Haas, J. D., & Brownlie IV, T. (2001). Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. The Journal of Nutrition 131(2): 676S-690S.
Heath, C. W., Strauss, M. B., & Castle, W. B. (1932). Quantitative aspects of iron deficiency in hypochromic anemia:(The parenteral administration of iron). The Journal of Clinical Investigation 11(6): 1293-1312.
Hindt, M. N., & Guerinot, M. L. (2012). Getting a sense for signals: regulation of the plant iron deficiency response. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1823(9): 1521-1530.
Hurrell, R., & Egli, I. (2010). Iron bioavailability and dietary reference values. The American Journal of Clinical Nutrition 91(5): 1461S-1467S.
Itou, T., Ito, S., & Wakamatsu, K. (2019). Effects of aging on hair color, melanosome morphology, and melanin composition in Japanese females. International Journal of Molecular Sciences 20(15): 3739.
Kailasam, S., Chien, W.-F., & Yeh, K.-C. (2019). Small-molecules selectively modulate iron-deficiency signaling networks in Arabidopsis. Frontiers in Plant Science 10: 8.
Kappler, A., & Straub, K. L. (2005). Geomicrobiological cycling of iron. Reviews in Mineralogy and Geochemistry 59(1): 85-108.
Kauffman, G. L., Kneivel, D. P., & Watschke, T. L. (2007). Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Science 47(1): 261-267.
Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology 63: 131-152.
Kok, A. D.-X., Yoon, L. L., Sekeli, R., Yeong, W. C., Yusof, Z. N. B., Song, L. K., Shah, F., Kahn, Z., & Iqbal, A. (2018). Iron biofortification of rice: progress and prospects. F. Shah, ZH Khan and A. Iqbal (Norderstedt: IntechOpen: 25-44.
Kong, K. H., Lee, J. L., Park, H. J., & Cho, S. H. (1998). Purification and characterization of the tyrosinase isozymes of pine needles. IUBMB Life 45(4): 717-724.
Kulma, A., & Szopa, J. (2007). Catecholamines are active compounds in plants. Plant Science 172(3): 433-440.
López-Arredondo, D. L., Leyva-González, M. A., Alatorre-Cobos, F., & Herrera-Estrella, L. (2013). Biotechnology of nutrient uptake and assimilation in plants. International Journal of Developmental Biology 57(6-7-8): 595-610.
Li, Y., Lu, C. K., Li, C. Y., Lei, R. H., Pu, M. N., Zhao, J. H., Peng, F., Ping, H. Q., Wang, D., & Liang, G. (2021). IRON MAN interacts with BRUTUS to maintain iron homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences 118(39): e2109063118.
Lichtblau, D. M., Schwarz, B., Baby, D., Endres, C., Sieberg, C., & Bauer, P. (2022). The iron deficiency-regulated small protein effector FEP3/IRON MAN1 modulates interaction of BRUTUS-LIKE1 with bHLH subgroup IVc and POPEYE transcription factors. Frontiers in Plant Science 13.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4): 402-408.
Loeppert, R., & Hallmark, C. (1985). Indigenous soil properties influencing the availability of iron in calcareous soils. Soil Science Society of America Journal 49(3): 597-603.
Lozoff, B., Corapci, F., Burden, M. J., Kaciroti, N., Angulo-Barroso, R., Sazawal, S., & Black, M. (2007). Preschool-aged children with iron deficiency anemia show altered affect and behavior. The Journal of Nutrition 137(3): 683-689.
Ma, J. F., Taketa, S., Chang, Y.-C., Iwashita, T., Matsumoto, H., Takeda, K., & Nomoto, K. (1999). Genes controlling hydroxylations of phytosiderophores are located on different chromosomes in barley (Hordeum vulgare L.). Planta 207: 590-596.
Mallik, I., Azim, U. (2002). Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser Basel. Springer.
Marschner, H. (1995). Mineral nutrition of higher plants 2nd edn. Academic Press, London. Institute of Plant Nutrition University of Hohenheim, Germany.
Monsen, E. R., Hallberg, L., Layrisse, M., Hegsted, D. M., Cook, J., Mertz, W., & Finch, C. A. (1978). Estimation of available dietary iron. The American Journal of Clinical Nutrition 31(1): 134-141.
Mori, S., & Nishizawa, N. (1987). Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant and Cell Physiology 28(6): 1081-1092.
Nozoye, T. (2018). The nicotianamine synthase gene is a useful candidate for improving the nutritional qualities and Fe-deficiency tolerance of various crops. Frontiers in plant science 9: 340.
O'Dell, B. L., & Sunde, R. A. (1997). Handbook of Nutritionally Essential Mineral Elements. CRC Press.
Oppenheimer, S. J. (2001). Iron and its relation to immunity and infectious disease. The Journal of Nutrition 131(2): 616S-635S.
Ortiz-Monasterio, I., & Graham, R. (1999). Potential for enhancing the Fe and Zn concentration in the grain of wheat. Improving Human Nutrition through Agriculture: The role of International Agricultural Research. Proceedings of a Symposium. Los Baños, Philippines. 5-7 Oct.
Ozeki, H., Wakamatsu, K., Ito, S., & Ishiguro, I. (1997). Chemical characterization of eumelanins with special emphasis on 5, 6-dihydroxyindole-2-carboxylic acid content and molecular size. Analytical Biochemistry 248(1): 149-157.
Pamuk, G. E., Top, M. Ş., Uyanık, M. Ş., Köker, H., Akker, M., Ak, R., Yürekli, Ö. A., & Çelik, Y. (2016). Is iron-deficiency anemia associated with migraine? Is there a role for anxiety and depression? Wiener Klinische Wochenschrift 128(8): 576-580.
Prasad, R., Shivay, Y. S., & Kumar, D. (2014). Agronomic biofortification of cereal grains with iron and zinc. Advances in Agronomy 125: 55-91.
Pugalenthi, M., Vadivel, V., & Siddhuraju, P. (2005). Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. utilis—a review. Plant Foods for Human Nutrition 60(4): 201-218.
Rajniak, J., Giehl, R. F., Chang, E., Murgia, I., von Wirén, N., & Sattely, E. S. (2018). Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nature Chemical Biology 14(5): 442-450.
Rasmussen, K. M. (2001). Is there a causal relationship between iron deficiency or iron-deficiency anemia and weight at birth, length of gestation and perinatal mortality? The Journal of Nutrition 131(2): 590S-603S.
Riley, P. A. (1997). Melanin. The International Journal of Biochemistry & Cell Biology 29(11): 1235-1239.
Römheld, V., & Marschner, H. (1983). Mechanism of iron uptake by peanut plants: I. FeIII reduction, chelate splitting, and release of phenolics. Plant Physiology 71(4): 949-954.
Römheld, V., & Marschner, H. (1986). Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiology 80(1): 175-180.
Santi, S., & Schmidt, W. (2009). Dissecting iron deficiency‐induced proton extrusion in Arabidopsis roots. New Phytologist 183(4): 1072-1084.
Schmid, N. B., Giehl, R. F., Döll, S., Mock, H.-P., Strehmel, N., Scheel, D., Kong, X., Hider, R. C., & von Wirén, N. (2014). Feruloyl-CoA 6′-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiology 164(1): 160-172.
Schmidt, H., Günther, C., Weber, M., Spörlein, C., Loscher, S., Böttcher, C., Schobert, R., & Clemens, S. (2014). Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PloS One 9(7): e102444.
Scibior, D., & Czeczot, H. (2006). Katalaza–budowa, właściwości, funkcje [Catalase: structure, properties, functions]. Postepy Hig Med Dosw (Online) 60: 170-180.
Shojima, S., Nishizawa, N.-K., Fushiya, S., Nozoe, S., Irifune, T., & Mori, S. (1990). Biosynthesis of phytosiderophores: in vitro biosynthesis of 2′-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiology 93(4): 1497-1503.
Sillanpaa, M. (1997). Environmental Fate of EDTA and DTPA. 85–111. Springer, New York, NY.
Sisó-Terraza, P., Luis-Villarroya, A., Fourcroy, P., Briat, J.-F., Abadía, A., Gaymard, F., Abadía, J., & Álvarez-Fernández, A. (2016). Accumulation and secretion of coumarinolignans and other coumarins in Arabidopsis thaliana roots in response to iron deficiency at high pH. Frontiers in Plant Science 7: 1711.
Stansley, B. J., & Yamamoto, B. K. (2015). L-dopa and brain serotonin system dysfunction. Toxics 3(1): 75-88.
Steiner, U., Schliemann, W., & Strack, D. (1996). Assay for tyrosine hydroxylation activity of tyrosinase from betalain-forming plants and cell cultures. Analytical Biochemistry 238(1): 72-75.
Stoltzfus, R. J. (2003). Iron deficiency: global prevalence and consequences. Food and Nutrition Bulletin 24(4_suppl_1): S99-S103.
Sugumaran, M. (2002). Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Research 15(1): 2-9.
Suzuki, M., Urabe, A., Sasaki, S., Tsugawa, R., Nishio, S., Mukaiyama, H., Murata, Y., Masuda, H., Aung, M. S., & Mera, A. (2021). Development of a mugineic acid family phytosiderophore analog as an iron fertilizer. Nature Communications 12(1): 1558.
Taalab, A., Ageeb, G., Siam, H. S., & Mahmoud, S. A. (2019). Some Characteristics of Calcareous soils. A review AS Taalab1, GW Ageeb2, Hanan S. Siam1 and Safaa A. Mahmoud1. Middle East J 8(1): 96-105.
Theil, E. C. (2003). Ferritin: at the crossroads of iron and oxygen metabolism. The Journal of Nutrition 133(5): 1549S-1553S.
Timberlake, C. (1964). 975. Iron–malate and iron–citrate complexes. Journal of the Chemical Society (Resumed): 5078-5085.
Ueno, D., Rombola, A., Iwashita, T., Nomoto, K., & Ma, J. (2007). Identification of two novel phytosiderophores secreted by perennial grasses. New Phytologist 174(2): 304-310.
Vélez-Bermúdez, I. C., & Schmidt, W. (2022). How plants recalibrate cellular iron homeostasis. Plant and Cell Physiology 63(2): 154-162.
Vivas, A., Marulanda, A., Ruiz-Lozano, J. M., Barea, J. M., & Azcón, R. (2003). Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13(5): 249-256.
Wade, L., & Katzman, R. (1975). Synthetic amino acids and the nature of L‐DOPA transport at the blood‐brain barrier. Journal of Neurochemistry 25(6): 837-842.
Wang, J., & Blancafort, L. (2021). Stability and optical absorption of a comprehensive virtual library of minimal eumelanin oligomer models. Angewandte Chemie 133(34): 18948-18957.
Yanqun, Z., Li, Q., Fangdong, Z., Jiong, W., Yuan, L., Jianjun, C., Jixiu, W., & Wenyou, H. (2020). Intercropping of Sonchus asper and Vicia faba affects plant cadmium accumulation and root responses. Pedosphere 30(4): 457-465.
Zanin, L., Tomasi, N., Cesco, S., Varanini, Z., & Pinton, R. (2019). Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Frontiers in Plant Science 10: 675.
Zeng, H., Xia, C., Zhang, C., & Chen, L.-Q. (2018). A simplified hydroponic culture of Arabidopsis. Bio-protocol: e3121-e3121.
Zingore, S., Delve, R. J., Nyamangara, J., & Giller, K. E. (2008). Multiple benefits of manure: the key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms. Nutrient Cycling in Agroecosystems 80(3): 267-282.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88130-
dc.description.abstract不論對於動物或是植物而言,鐵都是十分重要的金屬元素。缺鐵性貧血 (Iron Deficiency Anemia, IDA)是世界上很普遍的健康問題,造成IDA的其中一個重要原因是世界主要農作物中缺乏鐵。本研究目的旨在利用生物刺激素 (biostimulant) 提升植物吸收鐵的能力以及植物種子中的鐵含量,做為增加作物鐵吸收的前期試驗。本實驗研究的生物刺激素為黑色素的前驅物左旋多巴 ( L-3,4-dihydroxyphenylalanine, L-DOPA)。經過水耕試驗,可以發現L-DOPA雖然具有植物相剋物質 (allelopathic compound) 的特性,卻能有效的提升阿拉伯芥根部吸收鐵的能力,並且能力提升隨著施用濃度而上升。不過,完全氧化的L-DOPA在水耕環境中並不能促進根部鐵吸收。另一方面,土耕試驗結果顯示,澆灌3 mM的 L-DOPA時阿拉伯芥種子中的鐵含量可以達到控制組的三倍之多。此外,黑色素生成路徑中除了L-DOPA的其他的前驅物(皆為indolic compounds)也能夠影響阿拉伯芥的鐵吸收能力,其影響如下述:當適量供應這些indolic compounds且環境中的鐵充足時,阿拉伯芥的鐵吸收能力增加;反之在鐵缺乏時,阿拉伯芥的鐵吸收能力則會遭到抑制。這些結果顯示,黑色素生合成路徑上之各類化合物能顯著的影響阿拉伯芥體內鐵的動態平衡,於提升作物鐵含量之應用上具成為生物刺激素的發展潛力。zh_TW
dc.description.abstractFe is an important metallic element for both animals and plants. Fe deficiency anemia (IDA) is a common health problem worldwide, and one of the fundamental causes is the lack of Fe in the world's major crops. The purpose of this study is to use a biostimulant to enhance the ability of plants to absorb Fe and increase the Fe content in plant seeds as a preliminary test for increasing crop Fe absorption. The biostimulant studied in this thesis is L-3,4-dihydroxyphenylalanine (L-DOPA), the precursor of melanin. Through hydroponic experiments, it was found that although L-DOPA has allelopathic properties, it can effectively enhance the capability of Arabidopsis roots to absorb Fe, and the capability to absorb Fe increases with the concentration applied. However, fully oxidized L-DOPA cannot promote root Fe absorption in hydroponic environments. On the other hand, soil-based experiments showed that watering with 3 mM of L-DOPA increase the Fe content in Arabidopsis seeds to more than three folds that of the control group. In addition, other precursors of melanin in the melanin biosynthetic pathway (two of which are indolic compounds) can also affect the Fe absorption ability of Arabidopsis. When these indolic compounds are supplied in moderation with sufficient Fe in the environment, the Fe absorption ability of Arabidopsis increases; otherwise when Fe is lacked, the Fe absorption ability is inhibited. These results suggest that various compounds in the melanin biosynthetic pathway can significantly affect the homeostasis of Fe in Arabidopsis and have the potential to become a biostimulant for increasing crop Fe content.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:25:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:25:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgement ii
List of Abbreviations iii
摘要 iv
Abstract v
Table of Contents vii
List of Figures xii
List of Supplementary Tables xiv
List of Supplementary Figures xv
1. Introduction 1
1.1 Societal background: Fe is important for humans 1
1.2 Plant Fe transport and Fe homeostasis 5
1.2.1 Fe uptake from soil: strategy I and II 5
1.2.2 Regulation of Fe uptake in plants 9
1.2.3 Fe translocation from root to shoot 12
1.3 Fe biofortification crop 14
1.4 The concept of biostimulants 16
1.5 L-DOPA, melanin and their relative compounds 18
1.6 L-DOPA and Fe: choosing L-DOPA as a plant Fe biostimulant 22
2. Materials and Methods 25
2.1 Plant materials 25
2.2 Chemicals used 25
2.3 Growing and harvesting hydroponic Arabidopsis 25
2.3.1 Hydroponic system 25
2.3.2 Sterilization and sowing of Arabidopsis seeds 29
2.3.3 Growth conditions 29
2.3.4 L-DOPA dissolution 30
2.3.5 L-DOPA treatment conditions 31
2.3.6 Direct germination of Arabidopsis in hydroponic system 32
2.3.7 Ferric-chelate reductase (FCR) assay 33
2.4 Arabidopsis cultivation on soil 35
2.4.1 Soil, pots, and watering 35
2.4.2 Sowing seeds onto the soil 35
2.4.3 Plant Growth conditions 36
2.4.4 L-DOPA treatment 36
2.5 Fe quantification 36
2.6 Synthesis of DHICA 38
2.5 Analytical procedures 41
2.7 Analytical procedures 41
2.7.1 High-performance liquid chromatography (HPLC) 41
2.7.2 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) 42
2.6 RNA analysis 43
2.8 Gene expression analysis 43
2.8.1 RNA extraction from roots 43
2.8.2 cDNA synthesis 43
2.8.3 qPCR 44
2.7 Rosette anthocyanin extraction and quantification 45
2.9 Anthocyanin extraction and quantification 45
2.9.1 Sample processing 45
2.9.2 Anthocyanin extraction 45
2.10 Fe-driven L-DOPA oxidation kinetics measurement 46
2.11 Statistical analysis 47
3. Results—Part I 48
3.1 L-DOPA increased Arabidopsis Fe uptake in hydroponics 48
3.1.1 L-DOPA enhanced FCR activity of Arabidopsis roots but arrests plant growth at high concentrations 48
3.1.2 The allelopathic properties of L-DOPA did not cause the plant growth inhibition at low concentration in hydroponics system 52
3.2 qPCRs confirm L-DOPA effect on Fe uptake capacity of Arabidopsis roots 56
3.3 Interactions between L-DOPA and EDTA 58
3.3.1 L-DOPA synergistically acts with EDTA for stimulating plant Fe uptake 58
3.3.2 L-DOPA reduces free Fe (III) and gets oxidized 60
3.4 L-DOPA application increases Fe concentration in Arabidopsis rosette 62
3.5 L-DOPA increases Fe concentration in soil-grown Arabidopsis 65
3.5.1 L-DOPA decreases rosette biomass but enhances rosette Fe concentration 65
3.5.2 L-DOPA increases seed Fe content while not severely affecting seed yields 69
3.6 Brief discussion of Part I 72
4. Results—Part II 73
4.1 L-DOPA oxidation in basic condition 76
4.2 Synthesis of high purity DHICA 81
4.3 L-DOPA and its indolic derivatives have similar effects on root FCR activity 83
4.4 Fully oxidized L-DOPA acts differently than L-DOPA 89
5. Discussion 93
5.1 L-DOPA application enables plants to take up more Fe 93
5.2 L-DOPA is not redundant with EDTA 94
5.3 L-DOPA or its oxidation products, which trigger the Fe deficiency response? 95
5.4 L-DOPA should be replenished to maintain high Fe uptake of plants 96
5.5 Novel repressors for Fe deficiency response are revealed 97
6. Conclusion 99
7. References 100
-
dc.language.isoen-
dc.subject鐵(Fe)zh_TW
dc.subject植物相剋物質zh_TW
dc.subject生物刺激素zh_TW
dc.subject缺鐵性貧血zh_TW
dc.subject黑色素前驅物zh_TW
dc.subject阿拉伯芥zh_TW
dc.subject左旋多巴(L-DOPA)zh_TW
dc.subjectL-DOPAen
dc.subjectFeen
dc.subjectallelopathic compoundsen
dc.subjectbiostimulantsen
dc.subjectmelanin precursorsen
dc.subjectIron Deficiency Anemia (IDA)en
dc.subjectArabidopsis thalianaen
dc.title黑色素前驅物控制阿拉伯芥鐵的吸收zh_TW
dc.titleMelanin precursors control Arabidopsis Fe uptakeen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪傳揚;林乃君;潘怡君zh_TW
dc.contributor.oralexamcommitteeChwan-Yang Hong;Nai-Chun Lin;I-Chun Panen
dc.subject.keyword鐵(Fe),左旋多巴(L-DOPA),阿拉伯芥,黑色素前驅物,缺鐵性貧血,生物刺激素,植物相剋物質,zh_TW
dc.subject.keywordFe,L-DOPA,Arabidopsis thaliana,melanin precursors,Iron Deficiency Anemia (IDA),biostimulants,allelopathic compounds,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202301575-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-17-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.87 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved