Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88118
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭旭君zh_TW
dc.contributor.advisorHsu-Chun Hsiaoen
dc.contributor.author宋哲寬zh_TW
dc.contributor.authorChe-Kuan Sungen
dc.date.accessioned2023-08-08T16:22:45Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-17-
dc.identifier.citation[1] 2017 was 'worst year ever'in data breaches and cyberattacks, thanks to ransomware.
[2] Android developers. 2017. ui/application exerciser monkey. (september 2017).
[3] boofuzz: Network protocol fuzzing for humans.
[4] Frida: Dynamic instrumentation toolkit for developers, reverse-engineers, and security researchers.
[5] Iot market by componment.
[6] D. D. Chen, M. Woo, D. Brumley, and M. Egele. Towards automated dynamic analysis for linux-based embedded firmware. In NDSS, volume 1, pages 1–1, 2016.
[7] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun, R. Yang, and K. Zhang. Iotfuzzer: Discovering memory corruptions in iot through app-based fuzzing. In NDSS, 2018.
[8] A. Cortesi, M. Hils, T. Kriechbaumer, and contributors. mitmproxy: A free and open source interactive HTTPS proxy, 2010–. [Version 9.0].
[9] B. Feng, A. Mera, and L. Lu. {P2IM}: Scalable and hardware-independent firmware testing via automatic peripheral interface modeling. In 29th USENIX Security Symposium (USENIX Security 20), pages 1237–1254, 2020.
[10] X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and Y. Xiang. Snipuzz: Black-box fuzzing of iot firmware via message snippet inference. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pages 337–350, 2021.
[11] Fitblip. Sulley - a pure-python fully automated and unattended fuzzing framework.
[12] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim. Firmae: Towards large-scale emulation of iot firmware for dynamic analysis. In Annual computer security
applications conference, pages 733–745, 2020.
[13] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. Ddos in the iot: Mirai and other botnets. Computer, 50(7):80–84, 2017.
[14] Z. Liu, C. Chen, J. Wang, X. Che, Y. Huang, J. Hu, and Q. Wang. Fill in the blank: Context-aware automated text input generation for mobile gui testing. arXiv preprint
arXiv:2212.04732, 2022.
[15] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés. Test coverage criteria for restful
web apis. In Proceedings of the 10th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation, pages 15–21, 2019.
[16] N. Redini, A. Continella, D. Das, G. De Pasquale, N. Spahn, A. Machiry, A. Bianchi, C. Kruegel, and G. Vigna. Diane: Identifying fuzzing triggers in apps to generate under-constrained inputs for iot devices. In 2021 IEEE Symposium on Security and Privacy (SP), pages 484–500. IEEE, 2021.
[17] X. Wang, Y. Sun, S. Nanda, and X. Wang. Looking from the mirror: Evaluating {IoT} device security through mobile companion apps. In 28th USENIX Security Symposium (USENIX Security 19), pages 1151–1167, 2019.
[18] M. You, Y. Kim, J. Kim, M. Seo, S. Son, S. Shin, and S. Lee. Fuzzdocs: An automated security evaluation framework for iot. IEEE Access, 2022.
[19] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun. {FIRM-AFL}:{High-Throughput} greybox fuzzing of {IoT} firmware via augmented process emulation. In 28th USENIX Security Symposium (USENIX Security 19), pages 1099–1114, 2019.
[20] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and Y. Zhang. Discovering and understanding the security hazards in the interactions between {IoT} devices, mobile apps, and clouds on smart home platforms. In 28th USENIX security
symposium (USENIX security 19), pages 1133–1150, 2019.
[21] C. Zuo, W. Wang, Z. Lin, and R. Wang. Automatic forgery of cryptographically consistent messages to identify security vulnerabilities in mobile services. In NDSS, 2016.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88118-
dc.description.abstract物聯網設備在現今生活中變得普及,引起了安全問題的重要性。模糊測試是一種用於檢測物聯網韌體中安全漏洞的常用技術。在各種類型的模糊測試中,黑盒模糊測試成為相對有效的解決方案,因為它不需要韌體的獲取和仿真。然而,如何生成可以被目標設備接受的有效輸入成為一個關鍵問題。此外,一般的突變策略不適合在保持結構良好的輸入的同時高效突變請求,因為涉及到複雜的數據格式。
在本文中,我們提出了一個名為 APAfuzzer 的自動化黑盒模糊測試框架,旨在克服先前提到的問題。在以往的研究中,實現結構良好的輸入通常涉及繁重的應用程序分析或使用文檔生成種子的方法。然而,這些方法往往難以在效果和自動化之間取得平衡。相比之下,我們的工作利用應用程序生成種子和封包進行突變,還使用勾子函數來攔截加密功能,從而實現了效果和自動化的雙重目標。我們將 APAfuzzer 與三種最先進的黑盒模糊測試器進行了比較,包括 Diane、Boofuzz 和 Snipuzz。我們在模擬設備和實際設備上對我們的模糊測試器進行了評估。結果顯示,APAfuzzer 能夠觸發已知的 CVE 漏洞,並發現新的漏洞。此外,與其他模糊測試器相比,它表現出更高的效率,並成功觸發更多的漏洞。
zh_TW
dc.description.abstractInternet of Things (IoT) devices have become prevalent in nowadays life and bring up the importance of security issues. Fuzzing is a popular technique to detect security vul-nerabilities in IoT firmware. Among various types of fuzzing, black-box fuzzing becomes a relatively effective solution because it requires no firmware acquisition and emulation.
However, how to generate valid input, which could be accepted for the target devices, becomes a critical problem. In addition, general mutation strategies are not suitable for efficiently mutating the requests while preserving the input structure due to the complex data format.
In this paper, we proposed an automated blackbox fuzzing framework called APAfuzzer to overcome the previously mentioned problems. In previous work, achieving well-structured input often involved heavyweight app analysis or the use of documents to generate seeds. However, these approaches often struggle to strike a balance between effectiveness and automation. In contrast, our work utilizes the app to generate seeds and packets for mutation; hooking encryption functions, allowing us to achieve both effectiveness and automation. We compared APAfuzzer to three state-of-the-art black-box fuzzers, i.e., Diane, Boofuzz, and Snipuzz. We evaluated our fuzzer on both emulated devices and real-world devices. Our results show that APAfuzzer could trigger well-known CVEs and also discover new
bugs. Also, compared to other fuzzers, it demonstrates higher efficiency and successfullytriggers more vulnerabilities
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:22:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:22:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xv
Chapter1 Introduction 1
Chapter2 Background & Related Work 5
2.1 Introduction of IoT devices 5
2.1.1 Importance of well-structured requests in IoT fuzzing 5
2.1.2 IoT communication model 6
2.2 Related work 7
2.2.1 App-based fuzzer 7
2.2.2 API-based fuzzer 8
2.3 Goals and Challenges 9
2.4 Motivation 11
Chapter 3 Design 13
3.1 Target and Assumption 13
3.2 Initial seed creation 14
3.2.1 Proxy creation 14
3.2.2 Encryption 15
3.2.3 Certificate unpinning 15
3.3 App analysis 16
3.3.1 Certificate module hooking 16
3.3.2 Cipher module tracing 17
3.3.3 Keyword extraction 17
3.4 Mutator 18
3.4.1 Request clustering 18
3.4.2 Mutation workflow 19
3.4.3 Encrypted component 19
3.4.4 Mutation strategy 20
3.5 Response monitor 21
3.5.1 Response monitor 21
3.5.2 Crash detection 21
Chapter 4 Implementation and Evaluation 23
4.1 Implementation 24
4.2 Dataset and Environment setup 24
4.2.1 Known bug IoT devices collection 24
4.2.2 Unknown-bug IoT devices collection 25
4.2.3 Environment setup 26
4.2.4 Experiment design 26
4.3 RQ1. Experiment result on emulated devices 27
4.4 RQ2. Experiment result on real-world devices 28
4.5 RQ3. Performance result of each fuzzer 29
Chapter 5 Discussion And Limitations 31
5.1 Discussion 31
5.1.1 APAfuzzer vs. Snipuzz 31
5.1.2 APAfuzzer vs. Diane 32
5.1.3 APAfuzzer vs. Boofuzz 32
5.1.4 Case study: Belkin Wemo smart plug 33
5.2 Limitations 33
5.2.1 Different types of vulnerability 33
5.2.2 Test coverage 34
5.2.3 Custom cryptographic functions 34
5.2.4 Communication mode 34
5.2.5 Manual interaction 35
5.3 Quantifying required manual effort 35
Chapter 6 Conclusion 37
References 39
-
dc.language.isoen-
dc.subject模糊測試zh_TW
dc.subject物聯網zh_TW
dc.subjectIoTen
dc.subjectFuzzingen
dc.title利用應用程式和封包分析引導物聯網黑箱模糊測試zh_TW
dc.titleIoT Blackbox Fuzzing Guided by App and Packet Analysisen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃世昆;黃俊穎;田維誠zh_TW
dc.contributor.oralexamcommitteeShih-Kun Huang;Chun-Ying Huang;Wei-Cheng Tianen
dc.subject.keyword模糊測試,物聯網,zh_TW
dc.subject.keywordFuzzing,IoT,en
dc.relation.page41-
dc.identifier.doi10.6342/NTU202301492-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-18-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf950.31 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved