Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88115
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林詩舜zh_TW
dc.contributor.advisorShih-Shun Linen
dc.contributor.author洪瑄斐zh_TW
dc.contributor.authorSyuan-Fei Hongen
dc.date.accessioned2023-08-08T16:21:59Z-
dc.date.available2023-11-10-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-06-07-
dc.identifier.citation1. Ala-Poikela M, Goytia E, Haikonen T, Rajamaki ML, Valkonen JPT (2011) Helper component proteinase of the genus Potyvirus is an interaction partner of translation initiation factors eIF(iso)4E and eIF4E and contains a 4E binding motif. J Virol 85: 6784-6794
2. Albert NW, Thrimawithana AH, McGhie TK, Clayton WA, Deroles SC, Schwinn KE, Bowman JL, Jordan BR, Davies KM (2018) Genetic analysis of the liverwort Marchantia polymorpha reveals that R2R3MYB activation of flavonoid production in response to abiotic stress is an ancient character in land plants. New Phytol 218: 554-566
3. Allen E, Xie ZX, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207-221
4. Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith TH, Vance VB (1998) A viral suppressor of gene silencing in plants. P Natl Acad Sci USA 95: 13079-13084
5. Annacondia ML, Martinez G (2021) Reprogramming of RNA silencing triggered by cucumber mosaic virus infection in Arabidopsis. Genome Biol 22: 340
6. Arif MA, Frank W, Khraiwesh B (2013) Role of RNA interference (RNAi) in the moss Physcomitrella patens. Int J Mol Sci 14: 1516-1540
7. Arribas-Hernandez L, Marchais A, Poulsen C, Haase B, Hauptmann J, Benes V, Meister G, Brodersen P (2016) The slicer activity of ARGONAUTE1 is required specifically for the phasing, not production, of trans-acting short interfering RNAs in Arabidopsis. Plant Cell 28: 1563-1580
8. Axtell M (2009) The small RNAs of Physcomitrella patens: expression, function and evolution. In: Annual Plant Reviews: The moss Physcomitrella patens, Knight C., Perroud P.-F., Cove D. (eds.) pp. 113-142. Wiley-Blackwell: Oxford, UK
9. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64: 137-159
10. Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13: 343-349
11. Axtell MJ, Snyder JA, Bartell DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19: 1750-1769
12. Baranauske S, Mickute M, Plotnikova A, Finke A, Venclovas C, Klimasauskas S, Vilkaitis G (2015) Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Res 43: 2802-2812
13. Baulcombe D (2004) RNA silencing in plants. Nature 431: 356-363
14. Baulcombe DC (2022) The role of viruses in identifying and analyzing RNA silencing. Annu Rev Virol 9: 353-373
15. Baumberger N, Baulcombe DC (2005a) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. P Natl Acad Sci USA 102: 11928-11933
16. Baumberger N, Baulcombe DC (2005b) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering RNAs. P Natl Acad Sci USA 102: 11928-11933
17. Baumberger N, Baulcombe DC (2005c) ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering RNAs. P Natl Acad Sci USA 102: 11928-11933
18. Baumberger N, Tsai CH, Lie M, Havecker E, Baulcombe DC (2007) The polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol 17: 1609-1614
19. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27: 343-350
20. Berruezo F, de Souza FSJ, Picca PI, Nemirovsky SI, Tosar LM, Rivero M, Mentaberry AN, Zelada AM (2017) Sequencing of small RNAs of the fern Pleopeltis minima (Polypodiaceae) offers insight into the evolution of the microrna repertoire in land plants. PLoS ONE 12: e0177573
21. Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F, Hohn T et al (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34: 6233-6246
22. Boland A, Huntzinger E, Schmidt S, Izaurralde E, Weichenrieder O (2011) Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. P Natl Acad Sci USA 108: 10466-10471
23. Bologna NG, Iselin R, Abriata LA, Sarazin A, Pumplin N, Jay F, Grentzinger T, Dal Peraro M, Voinnet O (2018) Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Mol Cell 69: 709-719
24. Bologna NG, Schapire AL, Zhai JX, Chorostecki U, Boisbouvier J, Meyers BC, Palatnik JF (2013) Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Res 23: 1675-1689
25. Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65: 473-503
26. Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Bio 16: 727-741
27. Bortolamiol D, Pazhouhandeh M, Marrocco K, Genschik P, Ziegler-Graff V (2007) The polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr Biol 17: 1615-1621
28. Bouche N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25: 3347-3356
29. Bowman JL, Araki T, Kohchi T (2016) Marchantia: past, present and future. Plant Cell Physiol 57: 205-209
30. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu SQ, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171: 287-304
31. Burgyan J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16: 265-272
32. CABI (2022) Tobacco etch virus (tobacco etch). CABI International
33. Carbonell A, Carrington JC (2015) Antiviral roles of plant ARGONAUTES. Current Opinion in Plant Biology 27: 111-117
34. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136: 642-655
35. Casal JJ, Balasubramanian S (2019) Thermomorphogenesis. Annual Review of Plant Biology, Vol 70 70: 321-346
36. Casas-Mollano JA, Rohr J, Kim EJ, Balassa E, van Dijk K, Cerutti H (2008) Diversification of the core RNA interference machinery in Chlamydomonas reinhardtii and the role of DCL1 in transposon silencing. Genetics 179: 69-81
37. Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. P Natl Acad Sci USA 107: 15269-15274
38. Chen HY, Yang J, Lin CQ, AdamYuan Y (2008) Structural basis for RNA-silencing suppression by Tomato aspermy virus protein 2b. EMBO Rep 9: 754-760
39. Cheng XF, Wang AM (2017) The potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways. J Virol 91: e01478-01416
40. Chung BYW, Valli A, Deery MJ, Navarro FJ, Brown K, Hnatova S, Howard J, Molnar A, Baulcombe DC (2019) Distinct roles of Argonaute in the green alga Chlamydomonas reveal evolutionary conserved mode of miRNA-mediated gene expression. Scientific Reports 9: 11091
41. Coruh C, Cho SH, Shahid S, Liu QK, Wierzbicki A, Axtell MJ (2015) Comprehensive annotation of Physcomitrella patens small RNA loci reveals that the heterochromatic short interfering RNA pathway Is largely conserved in land plants. Plant Cell 27: 2148-2162
42. Csorba T, Pantaleo V, Burgyan J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75: 35-71
43. Cui YW, Fang XF, Qi YJ (2016) TRANSPORTIN1 promotes the association of microRNA with. ARGONAUTE1 in Arabidopsis. Plant Cell 28: 2576-2585
44. Dalmadi A, Gyula P, Balint J, Szittya G, Havelda Z (2019) AGO-unbound cytosolic pool of mature miRNAs in plant cells reveals a novel regulatory step at AGO1 loading. Nucleic Acids Res 47: 9803-9817
45. Dalmadi A, Miloro F, Balint J, Varallyay E, Havelda Z (2021) Controlled RISC loading efficiency of miR168 defined by miRNA duplex structure adjusts ARGONAUTE1 homeostasis. Nucleic Acids Res 49: 12912-12928
46. de Felippes FF, Waterhouse PM (2020) The whys and wherefores of transitivity in plants. Front Plant Sci 11: 579376
47. De S, Pollari M, Varjosalo M, Makinen K (2020) Association of host protein VARICOSE with HCPro within a multiprotein complex is crucial for RNA silencing suppression, translation, encapsidation and systemic spread of potato virus A infection. PLoS Pathog 16
48. del Toro F, Fernandez FT, Tilsner J, Wright KM, Tenllado F, Chung BN, Praveen S, Canto T (2014) Potato virus Y HCPro localization at distinct, dynamically related and environment-influenced structures in the cell cytoplasm. Mol Plant Microbe In 27: 1331-1343
49. del Toro FJ, Donaire L, Aguilar E, Chung BN, Tenllado F, Canto T (2017) Potato virus Y HCPro suppression of antiviral silencing in Nicotiana benthamiana plants correlates with its ability to bind in vivo to 21-and 22-nucleotide small RNAs of viral sequence. J Virol 91: e00367-00317
50. Deleris A, Gallego-Bartolome J, Bao JS, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313: 68-71
51. Derrien B, Baumberger N, Schepetilnikov M, Viotti C, De Cillia J, Ziegler-Graff V, Isono E, Schumacher K, Genschik P (2012) Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. P Natl Acad Sci USA 109: 15942-15946
52. Derrien B, Clavel M, Baumberger N, Iki T, Sarazin A, Hacquard T, Ponce MR, Ziegler-Graff V, Vaucheret H, Micol JL et al (2018) A suppressor screen for AGO1 degradation by the viral F-box P0 protein uncovers a role for AGO DUF1785 in sRNA duplex unwinding. Plant Cell 30: 1353-1374
53. Desbiez C, Lecoq H (1997) Zucchini yellow mosaic virus. Plant Pathol 46: 809-829
54. Devers EA, Brosnan CA, Sarazin A, Albertini D, Amsler AC, Brioudes F, Jullien PE, Lim P, Schott G, Voinnet O (2020) Movement and differential consumption of short interfering RNA duplexes underlie mobile RNA interference. Nat Plants 6: 789–799
55. Diaz-Pendon JA, Li F, Li WX, Ding SW (2007) Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19: 2053-2063
56. Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10: 632-644
57. Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392: 203-214
58. Dougherty WG, Carrington JC (1988) Expression and function of potyviral gene-products. Annu Rev Phytopathol 26: 123-143
59. Du YJ, Roldan MVG, Haraghi A, Haili N, Izhaq F, Verdenaud M, Boualem A, Bendahmane A (2022) Spatially expressed WIP genes control Arabidopsis embryonic root development. Nat Plants 8: 635–645
60. Duan CG, Fang YY, Zhou BJ, Zhao JH, Hou WN, Zhu H, Ding SW, Guo HS (2012) Suppression of Arabidopsis ARGONAUTE1-mediated slicing, transgene-induced RNA silencing, and DNA methylation by distinct domains of the Cucumber mosaic virus 2b protein. Plant Cell 24: 259-274
61. Eamens AL, Smith NA, Curtin SJ, Wang MB, Waterhouse PM (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15: 2219-2235
62. Earley K, Smith M, Weber R, Gregory B, Poethig R (2010) An endogenous F-box protein regulates ARGONAUTE1 in Arabidopsis thaliana. Silence 1: 15
63. Earley KW, Poethig RS (2011) Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis. J Biol Chem 286: 38184-38189
64. Eklund DM, Ishizaki K, Flores-Sandoval E, Kikuchi S, Takebayashi Y, Tsukamoto S, Hirakawa Y, Nonomura M, Kato H, Kouno M et al (2016) Auxin produced by the indole-3-pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. Plant Cell 28: 266-266
65. Endo Y, Iwakawa HO, Tomari Y (2013) Arabidopsis ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly. EMBO Rep 14: 652-658
66. Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L (2013) The making of a slicer: activation of human Argonaute-1. Cell Rep 3: 1901-1909
67. Fan LS, Zhang C, Gao B, Zhang Y, Stewart E, Jez J, Nakajima K, Chen XM (2022) Microtubules promote the non-cell autonomous action of microRNAs by inhibiting their cytoplasmic loading onto ARGONAUTE1 in Arabidopsis. Dev Cell 57: 995-1008
68. Fang XF, Qi YJ (2016) RNAi in plants: An Argonaute-centered view. Plant Cell 28: 272-285
69. Fang YD, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17: 818-823
70. Fang YY, Zhao JH, Liu SW, Wang S, Duan CG, Guo HS (2016) CMV2b-AGO interaction is required for the suppression of RDR-dependent antiviral silencing in Arabidopsis. Front Microbiol 7: 1329
71. Fernandez FT, Gonzalez I, Doblas P, Rodriguez C, Sahana N, Kaur H, Tenllado F, Praveen S, Canto T (2013) The influence of cis-acting P1 protein and translational elements on the expression of Potato virus Y helper-component proteinase (HCPro) in heterologous systems and its suppression of silencing activity. Mol Plant Pathol 14: 530-541
72. Flores-Jasso CF, Salomon WE, Zamore PD (2013) Rapid and specific purification of Argonaute-small RNA complexes from crude cell lysates. RNA 19: 271-279
73. Flores-Sandoval E, Dierschke T, Fisher TJ, Bowman JL (2016) Efficient and inducible use of artificial microRNAs in Marchantia polymorpha. Plant Cell Physiol 57: 281-290
74. Flores-Sandoval E, Eklund DM, Bowman JL (2015) A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLoS Genet 11: e1005900
75. Flores-Sandoval E, Eklund DM, Hong SF, Alvarez JP, Fisher TJ, Lampugnani ER, Golz JF, Vazquez-Lobo A, Dierschke T, Lin SS et al (2018a) Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. New Phytol 218: 1612-1630
76. Flores-Sandoval E, Romani F, Bowman JL (2018b) Co-expression and transcriptome analysis of Marchantia polymorpha transcription factors supports class c ARFs as independent actors of an ancient auxin regulatory module. Front Plant Sci 9: 1345
77. Floyd SK, Bowman JL (2004) Gene regulation: Ancient microRNA target sequences in plants. Nature 428: 485-486
78. Frank F, Hauver J, Sonenberg N, Nagar B (2012) Arabidopsis Argonaute MID domains use their nucleotide specificity loop to sort small RNAs. EMBO J 31: 3588-3595
79. Gadhave KR, Gautam S, Rasmussen DA, Srinivasan R (2020) Aphid transmission of potyvirus: the largest plant-infecting RNA virus genus. Viruses-Basel 12: 773
80. Gal-On A (2000) A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology 90: 467-473
81. Gal-On A (2007) Zucchini yellow mosaic virus: insect transmission and pathogenicity - the tails of two proteins. Mol Plant Pathol 8: 139-150
82. Garcia-Ruiz H, Carbonell A, Hoyer JS, Fahlgren N, Gilbert KB, Takeda A, Giampetruzzi A, Ruiz MTG, McGinn MG, Lowery N et al (2015) Roles and programming of Arabidopsis ARGONAUTE proteins during Turnip mosaic virus infection. PLoS Pathog 11: e1004755
83. Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip mosaic virus infection. Plant Cell 22: 481-496
84. Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15: 1494-1500
85. Gibbs AJ, Ohshima K, Phillips MJ, Gibbs MJ (2008) The prehistory of potyviruses: their initial radiation was during the dawn of agriculture. PLoS ONE 3: e2523
86. Gonzalo L, Tossolini I, Gulanicz T, Cambiagno DA, Kasprowicz-Maluski A, Smolinski DJ, Mammarella MF, Ariel FD, Marquardt S, Szweykowska-Kulinska Z et al (2022) R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants. Nat Plants 8: 402–418
87. Goto K, Kobori T, Kosaka Y, Natsuaki T, Masuta C (2007) Characterization of silencing suppressor 2b of cucumber mosaic virus based on examination of its small RNA-Binding abilities. Plant Cell Physiol 48: 1050-1060
88. Hacquard T, Clavel M, Baldrich P, Lechner E, Perez-Salamo I, Schepetilnikov M, Derrien B, Dubois M, Hammann P, Kuhn L et al (2022) The Arabidopsis F-box protein FBW2 targets AGO1 for degradation to prevent spurious loading of ille-gitimate small RNA. Cell Rep 39: 110671
89. Hafren A, Lohmus A, Makinen K (2015) Formation of Potato virus A-induced RNA granules and viral translation are interrelated processes required for optimal virus accumulation. PLoS Pathog 11: e1005314
90. Hafren A, Ustun S, Hochmuth A, Svenning S, Johansen T, Hofius D (2018) Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCpro. Plant Physiol 176: 649-662
91. Hamera S, Song XG, Su L, Chen XY, Fang RX (2012) Cucumber mosaic virus suppressor 2b binds to AGO4-related small RNAs and impairs AGO4 activities. Plant J 69: 104-115
92. Han MH, Goud S, Song L, Fedoroff N (2004) The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. P Natl Acad Sci USA 101: 1093-1098
93. Hauptmann J, Dueck A, Harlander S, Pfaff J, Merkl R, Meister G (2013) Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat Struct Mol Biol 20: 814-817
94. Henderson IR, Zhang XY, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38: 721-725
95. Higo A, Niwa M, Yamato KT, Yamada L, Sawada H, Sakamoto T, Kurata T, Shirakawa M, Endo M, Shigenobu S et al (2016) Transcriptional framework of male gametogenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 57: 325-338
96. Hong SF, 2015. Establishment of T-DNA insertion identification and antibodies affinity purification for studying the mechanism on autophagic AGO1 degradation by HC-Pro, Department of Horticulture and Landscape Architecture. National Taiwan University.
97. Hu P, Zhao HW, Zhu P, Xiao YS, Miao WL, Wang YS, Jin HL (2019) Dual regulation of Arabidopsis AGO2 by arginine methylation. Nat Commun 10: 844
98. Hu SF, Wei WL, Hong SF, Fang RY, Wu HY, Lin PC, Sanobar N, Wang HP, Sulistio M, Wu CT et al (2020) Investigation of the effects of P1 on HC-pro-mediated gene silencing suppression through genetics and omics approaches. Bot Stud 61: 22
99. Hur JK, Zinchenko MK, Djuranovic S, Green R (2013) Regulation of Argonaute slicer activity by guide RNA 3' end interactions with the N-terminal lobe. J Biol Chem 288: 7829-7840
100. Iki T, Clery A, Bologna NG, Sarazin A, Brosnan CA, Pumplin N, Allain FHT, Voinnet O (2018) Structural flexibility enables alternative maturation, ARGONAUTE sorting and activities of miR168, a global gene silencing regulator in plants. Mol Plant 11: 1008-1023
101. Iki T, Yoshikawa M, Meshi T, Ishikawa M (2012) Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J 31: 267-278
102. Iki T, Yoshikawa M, Nishikiori M, Jaudal MC, Matsumoto-Yokoyama E, Mitsuhara I, Meshi T, Ishikawa M (2010) In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 39: 282-291
103. Inoue-Nagata AK, Jordan R, Kreuze J, Li F, Lopez-Moya JJ, Makinen K, Ohshima K, Wylie SJ, Consortium IR (2022) ICTV virus taxonomy profile: Potyviridae. J Gen Virol 103
104. Ishizaki K, Chiyoda S, Yamato KT, Kohchi T (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 49: 1084-1091
105. Ivanov KI, Eskelin K, Basic M, De S, Lohmus A, Varjosalo M, Makinen K (2016) Molecular insights into the function of the viral RNA silencing suppressor HCPro. Plant J 85: 30-45
106. Iwata Y, Takahashi M, Fedoroff NV, Hamdan SM (2013) Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing. Nucleic Acids Res 41: 9129-9140
107. Jamous RM, Boonrod K, Fuellgrabe MW, Ali-Shtayeh MS, Krczal G, Wassenegger M (2011) The helper component-proteinase of the Zucchini yellow mosaic virus inhibits the Hua Enhancer 1 methyltransferase activity in vitro. J Gen Virol 92: 2222-2226
108. Jones VAS, Dolan L (2017) MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha. Development 144: 1472-1476
109. Jouannet V, Moreno AB, Elmayan T, Vaucheret H, Crespi MD, Maizel A (2012) Cytoplasmic Arabidopsis AGO7 accumulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis. EMBO J 31: 1704-1713
110. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428: 84-88
111. Jullien PE, Grob S, Marchais A, Pumplin N, Chevalier C, Bonnet DMV, Otto C, Schott G, Voinnet O (2020) Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissues. Plant J 103: 1796-1809
112. Jung JH, Park CM (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225: 1327-1338
113. Kasschau KD, Carrington JC (1998) A counterdefensive strategy of plant viruses: Suppression of posttranscriptional gene silencing. Cell 95: 461-470
114. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4: 205-217
115. Kato H, Kouno M, Takeda M, Suzuki H, Ishizaki K, Nishihama R, Kohchi T (2017) The roles of the sole activator-type auxin response factor in pattern formation of Marchantia polymorpha. Plant Cell Physiol 58: 1642-1651
116. Kawakubo S, Gao FL, Li SF, Tan ZY, Huang YK, Adkar-Purushothama CR, Gurikar C, Maneechoat P, Chiemsombat P, San Aye S et al (2021) Genomic analysis of the brassica pathogen turnip mosaic potyvirus reveals its spread along the former trade routes of the Silk Road. P Natl Acad Sci USA 118
117. Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V et al (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42: 84-94
118. Kohchi T, Yamato KT, Ishizaki K, Yamaoka S, Nishihama R (2021) Development and Molecular Genetics of Marchantia polymorpha. Annual Review of Plant Biology, Vol 72, 2021 72: 677-702
119. Kontra L, Csorba T, Tavazza M, Lucioli A, Tavazza R, Moxon S, Tisza V, Medzihradszky A, Turina M, Burgyan J (2016) Distinct effects of p19 RNA silencing suppressor on small RNA mediated pathways in plants. PLoS Pathog 12: e1005935
120. Korner CJ, Pitzalis N, Pena EJ, Erhardt M, Vazquez F, Heinlein M (2018) Crosstalk between PTGS and TGS pathways in natural antiviral immunity and disease recovery. Nat Plants 4: 157-164
121. Kruszka K, Pacak A, Swida-Barteczka A, Nuc P, Alaba S, Wroblewska Z, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2014) Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 65: 6123-6135
122. Kubota A, Ishizaki K, Hosaka M, Kohchi T (2013) Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochem 77: 167-172
123. Kung YJ, Lin PC, Yeh SD, Hong SF, Chua NH, Liu LY, Lin CP, Huang YH, Wu HW, Chen CC et al (2014) Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Mol Plant Microbe In 27: 944-955
124. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. P Natl Acad Sci USA 101: 12753-12758
125. Kwak PB, Tomari Y (2012) The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol 19: 145-151
126. Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu YP, Dolja VV, Calvino LF, Lopez-Moya JJ, Burgyan J (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25: 2768-2780
127. Li SB, Le B, Ma X, Li SF, You CJ, Yu Y, Zhang BL, Liu L, Gao L, Shi T et al (2016) Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. Elife 5: e22750
128. Li SB, Liu L, Zhuang XH, Yu Y, Liu XG, Cui X, Ji LJ, Pan ZQ, Cao XF, Mo BX et al (2013) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153: 562-574
129. Li WX, Ding SW (2001) Viral suppressors of RNA silencing. Current Opinion in Biotechnology 12: 150-154
130. Li ZC, Li WQ, Guo MX, Liu SM, Liu L, Yu Y, Mo BX, Chen XM, Gao L (2022) Origin, evolution and diversification of plant ARGONAUTE proteins. Plant J 109: 1086-1097
131. Lin P-C, Lu C-W, Shen B-N, Lee G-Z, Bowman JL, Arteaga-Vazquez MA, Liu L-Y, Hong S-F, Lo C-F, Su G-M et al (2016) Identification of miRNAs and their targets in the liverwort Marchantia polymorpha by integrating RNA-seq and degradome analyses. Plant Cell Physiol 57: 339-358
132. Lin SS, Bowman JL (2018) MicroRNAs in Marchantia polymorpha. New Phytol 220: 409-416
133. Lisa V, Boccardo G, D'Agostino G, Dellavalle G, d'Aquilio M (1981) Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology 71: 667-672
134. Liu Q, Shi LL, Fang YD (2012) Dicing Bodies. Plant Physiol 158: 61-66
135. Liu QL, Yao XZ, Pi LM, Wang H, Cui XF, Huang H (2009) The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J 58: 27-40
136. Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep 7: 1052-1058
137. Lopez-Gomollon S, Baulcombe DC (2022) Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Bio 23: 645-662
138. Lozsa R, Csorba T, Lakatos L, Burgyan J (2008) Inhibition of 3' modification of small RNAs in virus-infected plants require spatial and temporal co-expression of small RNAs and viral silencing-suppressor proteins. Nucleic Acids Res 36: 4099-4107
139. Ludwig W, Hayes S, Trenner J, Delker C, Quint M (2021) On the evolution of plant thermomorphogenesis. J Exp Bot 72: 7345-7358
140. Ma JB, Ye KQ, Patel DJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429: 318-322
141. Makinen K, Lohmus A, Pollari M (2017) Plant RNA regulatory network and RNA granules in virus infection. Front Plant Sci 8
142. Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22: 3879-3889
143. Mallory AC, Hinze A, Tucker MR, Bouche N, Gasciolli V, Elmayan T, Lauressergues D, Jauvion V, Vaucheret H, Laux T (2009) Redundant and specific roles of the ARGONAUTE proteins AGO1 and ZLL in development and small RNA-directed gene silencing. PLoS Genet 5: e1000646
144. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO J 23: 3356-3364
145. Mallory AC, Vaucheret H (2009) ARGONAUTE 1 homeostasis invokes the coordinate action of the microRNA and siRNA pathways. EMBO Rep 10: 521-526
146. Marchetti F, Cainzos M, Cascallares M, Distefano AM, Setzes N, Lopez GA, Zabaleta E, Pagnussat GC (2021) Heat stress in Marchantia polymorpha: Sensing and mechanisms underlying a dynamic response. Plant Cell and Environment 44: 2134-2149
147. Mauck KE, Chesnais Q, Shapiro LR (2018) Evolutionary determinants of host and vector manipulation by plant viruses. Adv Virus Res 101: 189-250
148. Melnyk CW, Molnar A, Baulcombe DC (2011) Intercellular and systemic movement of RNA silencing signals. EMBO J 30: 3553-3563
149. Merai Z, Kerenyi Z, Kertesz S, Magna M, Lakatos L, Silhavy D (2006) Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol 80: 5747-5756
150. Mi SJ, Cai T, Hu YG, Chen Y, Hodges E, Ni FR, Wu L, Li S, Zhou H, Long CZ et al (2008a) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5 ' terminal nucleotide. Cell 133: 116-127
151. Mi SJ, Cai T, Hu YG, Chen Y, Hodges E, Ni FR, Wu L, Li S, Zhou H, Long CZ et al (2008b) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell 133: 116-127
152. Michaeli S, Clavel M, Lechner E, Viotti C, Wu J, Dubois M, Hacquard T, Derrien B, Izquierdo E, Lecorbeiller M et al (2019) The viral F-box protein P0 induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1. P Natl Acad Sci USA 116: 22872-22883
153. Mittag J, Gabrielyan A, Ludwig-Muller J (2015) Knockout of GH3 genes in the moss Physcomitrella patens leads to increased IAA levels at elevated temperature and in darkness. Plant Physiology and Biochemistry 97: 339-349
154. Molinier J (2020) The multilayer's control of ARGONAUTE 1 contents. Mol Plant 13: 1-3
155. Montgomery SA, Tanizawa Y, Galik B, Wang N, Ito T, Mochizuki T, Akimcheva S, Bowman JL, Cognat V, Marechal-Drouard L et al (2020) Chromatin organization in early land plants reveals an ancestral association between H3K27me3, transposons, and constitutive heterochromatin. Curr Biol 30: 573-588
156. Montgomery TA, Howell MD, Cuperus JT, Li DW, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133: 128-141
157. Morel JB, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14: 629-639
158. Moro B, Chorostecki U, Arikit S, Suarez IP, Hobartner C, Rasia RM, Meyers BC, Palatnik JF (2018) Efficiency and precision of microRNA biogenesis modes in plants. Nucleic Acids Res 46: 10709-10723
159. Moury B, Desbiez C (2020) Host range evolution of potyviruses: A global phylogenetic analysis. Viruses-Basel 12: 111
160. Nakanishi K, Weinberg DE, Bartel DP, Patel DJ (2012) Structure of yeast Argonaute with guide RNA. Nature 486: 368–374
161. Nigam D, LaTourrette K, Souza PFN, Garcia-Ruiz H (2019) Genome-wide variation in potyviruses. Front Plant Sci 10: 1439
162. Ono K (1976) Cytological observations on the calluses and restored thallus in Marchantia polymorpha. Jpn J Genet 51: 11-18
163. Pagano L, Rossi R, Paesano L, Marmiroli N, Marmiroli M (2021) miRNA regulation and stress adaptation in plants. Environ Exp Bot 184: 104369
164. Parent JS, Bouteiller N, Elmayan T, Vaucheret H (2015) Respective contributions of Arabidopsis DCL2 and DCL4 to RNA silencing. Plant J 81: 223-232
165. Park MS, Phan HD, Busch F, Hinckley SH, Brackbill JA, Wysocki VH, Nakanishi K (2017) Human Argonaute3 has slicer activity. Nucleic Acids Res 45: 11867-11877
166. Pazhouhandeh M, Dieterle M, Marrocco K, Lechner E, Berry B, Brault V, Hemmer O, Kretsch T, Richards KE, Genschik P et al (2006) F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. P Natl Acad Sci USA 103: 1994-1999
167. Pietrykowska H, Sierocka I, Zielezinski A, Alisha A, Carrasco-Sanchez JC, Jarmolowski A, Karlowski WM, Szweykowska-Kulinska Z (2022) Biogenesis, conservation, and function of miRNA in liverworts. J Exp Bot 73: 4528-4545
168. Pollari M, De S, Wang AM, Makinen K (2020) The potyviral silencing suppressor HCPro recruits and employs host ARGONAUTE1 in pro-viral functions. PLoS Pathog 16: e1008965
169. Pontes O, Li CF, Nunes PC, Haag J, Ream T, Vitins A, Jacobsen SE, Pikaard CS (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126: 79-92
170. Poulsen C, Vaucheret H, Brodersen P (2013) Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. Plant Cell 25: 22-37
171. Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11: 745-760
172. Qin C, Li B, Fan YY, Zhang X, Yu ZM, Ryabov E, Zhao M, Wang H, Shi NN, Zhang PC et al (2017) Roles of Dicer-like proteins 2 and 4 in intra-and intercellular antiviral silencing. Plant Physiol 174: 1067-1081
173. Re DA, Cambiagno DA, Arce AL, Tomassi AH, Giustozzi M, Casati P, Ariel FD, Manavella PA (2020) CURLY LEAF regulates microRNA activity by controlling ARGONAUTE 1 degradation in plants. Mol Plant 13: 72-87
174. Ren GD, Xie M, Zhang SX, Vinovskis C, Chen XM, Yu B (2014) Methylation protects microRNAs from an AGO1-associated activity that uridylates 5' RNA fragments generated by AGO1 cleavage. P Natl Acad Sci USA 111: 6365-6370
175. Revers F, Garcia JA (2015) Molecular biology of potyviruses. Adv Virus Res 92: 101-199
176. Rodriguez-Leal D, Castillo-Cobian A, Rodriguez-Arevalo I, Vielle-Calzada JP (2016) A primary sequence analysis of the ARGONAUTE protein family in plants. Front Plant Sci 7: 1347
177. Rogers K, Chen XM (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25: 2383-2399
178. Roldan MVG, Izhaq F, Verdenaud M, Eleblu J, Haraghi A, Sommard V, Chambrier P, Latrasse D, Jegu T, Benhamed M et al (2020) Integrative genome-wide analysis reveals the role of WIP proteins in inhibition of growth and development. Communications Biology 3: 239
179. Rosas-Diaz T, Zhang D, Fan PF, Wang LP, Ding X, Jiang YL, Jimenez-Gongora T, Medina-Puche L, Zhao XY, Feng ZY et al (2018) A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. P Natl Acad Sci USA 115: 1388-1393
180. Sahana N, Kaur H, Jain RK, Palukaitis P, Canto T, Praveen S (2014) The asparagine residue in the FRNK box of potyviral helper-component protease is critical for its small RNA binding and subcellular localization. J Gen Virol 95: 1167-1177
181. Sanobar N, Lin PC, Pan ZJ, Fang RY, Tjita V, Chen FF, Wang HC, Tsai HL, Wu SH, Shen TL et al (2021) Investigating the viral suppressor HC-Pro inhibiting small RNA methylation through functional comparison of HEN1 in angiosperm and bryophyte. Viruses 13: 1837
182. Schirle NT, Sheu-Gruttadauria J, MacRae IJ (2014) Structural basis for microRNA targeting. Science 346: 608-613
183. Sheu-Gruttadauria J, MacRae IJ (2018) Phase transitions in the assembly and function of human miRISC. Cell 173: 946-957
184. Shiboleth YM, Haronsky E, Leibman D, Arazi T, Wassenegger M, Whitham SA, Gaba V, Gal-On A (2007) The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J Virol 81: 13135-13148
185. Silhavy D, Molnar A, Lucioli A, Szittya G, Hornyik C, Tavazza M, Burgyan J (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21-to 25-nucleotide double-stranded RNAs. EMBO J 21: 3070-3080
186. Smibert P, Yang JS, Azzam G, Liu JL, Lai EC (2013) Homeostatic control of Argonaute stability by microRNA availability. Nat Struct Mol Biol 20: 789-795
187. Solly JE, Cunniffe NJ, Harrison CJ (2017) Regional growth rate differences specified by apical notch activities regulate liverwort thallus shape. Curr Biol 27: 16-26
188. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of argonaute and its implications for RISC slicer activity. Science 305: 1434-1437
189. Song L, Han MH, Lesicka J, Fedoroff N (2007) Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. P Natl Acad Sci USA 104: 5437-5442
190. Song XW, Li Y, Cao XF, Qi YJ (2019) MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol 70: 489-525
191. Sugano SS, Nishihama R, Shirakawa M, Takagi J, Matsuda Y, Ishida S, Shimada T, Hara-Nishimura I, Osakabe K, Kohchi T (2018) Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS ONE 13: e0205117
192. Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T (2014) CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 55: 475-481
193. Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biology 8: 37
194. Tang GL, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Gene Dev 17: 49-63
195. Thieme CJ, Schudoma C, May P, Walther D (2012a) Give it AGO: the search for miRNA-Argonaute sorting signals in Arabidopsis thaliana indicates a relevance of sequence positions other than the 5 '-position alone. Front Plant Sci 3: 272
196. Thieme CJ, Schudoma C, May P, Walther D (2012b) Give it AGO: the search for miRNA-Argonaute sorting signals in Arabidopsis thaliana indicates a relevance of sequence positions other than the 5′-position alone. Front Plant Sci 3: 272
197. Tolia NH, Joshua-Tor L (2007) Slicer and the Argonautes. Nat Chem Biol 3: 36-43
198. Tomassi AH, Re DA, Romani F, Cambiagno DA, Gonzalo L, Moreno JE, Arce AL, Manavella PA (2020) The intrinsically disordered protein CARP9 bridges HYL1 to AGO1 in the nucleus to promote micro RNA activity. Plant Physiol 184: 316-329
199. Tsuboyama-Tanaka S, Kodama Y (2015) AgarTrap-mediated genetic transformation using intact gemmae/gemmalings of the liverwort Marchantia polymorpha L. J Plant Res 128: 337-344
200. Tsuzuki M, Futagami K, Shimamura M, Inoue C, Kunimoto K, Oogami T, Tomita Y, Inoue K, Kohchi T, Yamaoka S et al (2019) An early arising role of the mcroRNA156/529-SPL module in reproductive development revealed by the liverwort Marchantia polymorpha. Curr Biol 29: 3307-3314
201. Tsuzuki M, Nishihama R, Ishizaki K, Kurihara Y, Matsui M, Bowman JL, Kohchi T, Hamada T, Watanabe Y (2016) Profiling and characterization of small RNAs in the liverwort, Marchantia polymorpha, belonging to the first diverged land plants. Plant Cell Physiol 57: 359-372
202. Ueda M, Kuniyoshi T, Yamamoto H, Sugimoto K, Ishizaki K, Kohchi T, Nishimura Y, Shikanai T (2012) Composition and physiological function of the chloroplast NADH dehydrogenase-like complex in Marchantia polymorpha. Plant J 72: 683-693
203. Valli AA, Gallo A, Rodamilans B, Lopez-Moya JJ, Garcia JA (2018) The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. Mol Plant Pathol 19: 744-763
204. Vargason JM, Szittya G, Burgyan J, Hall TMT (2003) Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115: 799-811
205. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3: 12
206. Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13: 350-358
207. Vaucheret H (2009) AGO1 homeostasis involves differential production of 21-nt and 22-nt miR168 species by MIR168a and MIR168b. PLoS ONE 4: e6442
208. Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22: 129-136
209. Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Gene Dev 18: 1187-1197
210. Voshall A, Kim EJ, Ma XR, Moriyama EN, Cerutti H (2015) Identification of AGO3-associated miRNAs and computational prediction of their targets in the green alga Chlamydomonas reinhardtii. Genetics 200: 105-121
211. Wang XB, Jovel J, Udomporn P, Wang Y, Wu QF, Li WX, Gasciolli V, Vaucheret H, Ding SW (2011) The 21-nucleotide, but Not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative Argonautes in Arabidopsis thaliana. Plant Cell 23: 1625-1638
212. Wang XB, Wu QF, Ito T, Cillo F, Li WX, Chen XM, Yu JL, Ding SW (2010) RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. P Natl Acad Sci USA 107: 484-489
213. Wang ZM, Hardcastle TJ, Pastor AC, Yip WH, Tang SY, Baulcombe DC (2018) A novel DCL2-dependent miRNA pathway in tomato affects susceptibility to RNA viruses. Gene Dev 32: 1155-1160
214. Wei WL, Tran PA, Fang RY, Pham TH, Bowman JL, Hong SF, Pan ZJ, Shang QW, Lin PC, Shen BN et al (2022) The additional unique ability of TuMV HC-Pro in inhibiting HEN1 activity for enhancing the autophagic AGO1 degradation in RNA silencing suppression. Research Square Preprint: doi: 10.21203/rs.21203.rs-2131027/v2131021
215. Weiberg A, Wang M, Bellinger M, Jin HL (2014) Small RNAs: A new paradigm in plant-microbe interactions. Annu Rev Phytopathol 52: 495-516
216. Wu HW, Lin SS, Chen KC, Yeh SD, Chua NH (2010a) Discriminating mutation of HC-Pro of Zucchini yellow mosaic virus with differential effects on small RNA pathways involved in viral pathogenicity and symptom development. Mol Plant Microbe In 23: 17-28
217. Wu HW, Lin SS, Chen KC, Yeh SD, Chua NH (2010b) Discriminating mutations of HC-Pro of zucchini yellow mosaic virus with differential effects on small RNA pathways involved in viral pathogenicity and symptom development. Mol Plant Microbe In 23: 17-28
218. Wu J, Yang Z, Wang Y, Zheng L, Ye R, Ji Y, Zhao S, Ji S, Liu R, Xu L et al (2015a) Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. Elife 4: e05733
219. Wu JG, Yang ZR, Wang Y, Zheng LJ, Ye RQ, Ji YH, Zhao SS, Ji SY, Liu RF, Xu L et al (2015b) Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. Elife 4: e05733
220. Wu L, Zhang QQ, Zhou HY, Ni FR, Wu XY, Qi YJ (2009) Rice MicroRNA effector complexes and target. Plant Cell 21: 3421-3435
221. Xia R, Xu J, Meyers BC (2017) The emergence, evolution, and diversification of the miR390-TAS3-ARF pathway in land plants. Plant Cell 29: 1232-1247
222. Xie ZX, Allen E, Wilken A, Carrington JC (2005) DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. P Natl Acad Sci USA 102: 12984-12989
223. Xu Y, Zhang Y, Li Z, Soloria AK, Potter S, Chen X (2023) The N-terminal extension of Arabidopsis ARGONAUTE 1 is essential for microRNA activities. PLoS Genet 19: e1010450
224. Yamasaki T, Kim EJ, Cerutti H, Ohama T (2016) Argonaute3 is a key player in miRNA-mediated target cleavage and translational repression in Chlamydomonas. Plant J 85: 258-268
225. Yang ML, Woolfenden HC, Zhang YY, Fang XF, Liu Q, Vigh ML, Cheema J, Yang XF, Norris M, Yu S et al (2020) Intact RNA structurome reveals mRNA structure-mediated regulation of miRNA cleavage in vivo. Nucleic Acids Res 48: 8767-8781
226. Yang XY, You CJ, Wang XF, Gao L, Mo BX, Liu L, Chen XM (2021) Widespread occurrence of microRNA-mediated target cleavage on membrane-bound polysomes. Genome Biol 22: 15
227. Yang ZR, Li Y (2018) Dissection of RNAi-based antiviral immunity in plants. Current Opinion in Virology 32: 88-99
228. Yang ZY, Ebright YW, Yu B, Chen XM (2006) HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide. Nucleic Acids Res 34: 667-675
229. Ye KQ, Malinina L, Patel DJ (2003) Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426: 874-878
230. You C, He W, Hang R, Zhang C, Cao X, Guo H, Chen X, Cui J, Mo B (2019) FIERY1 promotes microRNA accumulation by suppressing rRNA-derived small interfering RNAs in Arabidopsis. Nat Commun 10: 4424
231. Yu B, Chapman EJ, Yang Z, Carrington JC, Chen X (2006) Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in Arabidopsis. FEBS letters 580: 3117-3120
232. Yu B, Yang ZY, Li JJ, Minakhina S, Yang MC, Padgett RW, Steward R, Chen XM (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307: 932-935
233. Yu Y, Jia TR, Chen XM (2017) The "how' and "where' of plant microRNAs. New Phytol 216: 1002-1017
234. Zhang BL, You CJ, Zhang Y, Zeng LP, Hu J, Zhao ML, Chen XM (2020) Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex inArabidopsis. Nat Plants 6: 957–969
235. Zhang XM, Niu DD, Carbonell A, Wang AR, Lee A, Tun V, Wang ZH, Carrington JC, Chang CEA, Jin HL (2014) ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nat Commun 5: 5468
236. Zhang XR, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Gene Dev 20: 3255-3268
237. Zhao JG, He QS, Chen G, Wang L, Jin B (2016) Regulation of non-coding RNAs in heat stress responses of plants. Front Plant Sci 7: 1213
238. Zheng ZH, Reichel M, Deveson I, Wong GG, Li JY, Millar AA (2017) Target RNA secondary structure is a major determinant of miR159 efficacy. Plant Physiol 174: 1764-1778
239. Zhu HL, Hu FQ, Wang RH, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang XR (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145: 242-256
240. Zhu JY, Li CH, Peng X, Zhang XR (2021) RNA architecture influences plant biology. J Exp Bot 72: 4144-4160
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88115-
dc.description.abstract植物基因靜默系統利用小分子 RNA 和 ARGONAUTE (AGO) 蛋白質,可調節發育過程以及面對生物和非生物逆境時的基因表現。本論文使用專一性的抗體進行 AGO1 免疫沉澱 (immunoprecipitation; IP) 並建立試管外生物活性測試系統,以分析阿拉伯芥和地錢 Marchantia polymorpha 中 RNA 誘導緘默化複合體 (RNA-induced silencing complex; RISC) 的剪切效率。第二章的研究揭示部分馬鈴薯 Y 病毒屬病毒 (Potyvirus) 的基因靜默抑制子 HC-Pro 抑制 AGO1 功能,達到抵抗基因靜默途徑目的。將 HC-Pro 轉基因植物中 AGO1 處理免疫沉澱後分析生化活性,顯示蕪菁嵌紋病毒的 HC-Pro 顯著抑制 RISC 切割,以利病毒入侵寄主植物。論文第三章提出 MpAGO1 在小分子 RNA 結合和 miRNA 剪切中的特性。此外,MIR11707 基因於高溫環境下負向控制 MpAGO1 平衡。結果顯示,地錢在較高環境溫度生長時加速 miR11707*降解,激活 miR11707 負調控 MpAGO1 表現。此外地錢適應溫度升高時雖降低 miRNA 生合成量,依然可穩定與 AGO1 結合。本論文凸顯 HC-Pro 通過抑制 RISC 活性干擾 AGO1 的功能,也同時提 出地錢適應環境溫度升高時,MpAGO1 調節和表型可塑性之間的聯繫。zh_TW
dc.description.abstractPlant gene silencing system comprising microRNAs (miRNA) and ARGONAUTE proteins (AGOs) regulates multiple gene in developmental processes, and responses to biotic and abiotic stress. In this thesis, we established an in vitro assay system using specific AGO1 antibodies to analyze the cleavage efficiency of RNA-induced silencing complex (RISC) through AGO1 immunoprecipitation (IP) in different Arabidopsis and Marchantia polymorpha plants. The investigation in Chapter II uncovers a possibility that HC-Pros from different potyviruses evolve distinct suppression mechanisms to invade host plants. The suppression of RISC activity was confirmed through AGO1-IP of three P1/HC-Pro transgenic plants. Our results indicated that only the P1/HC-Pro of turnip mosaic virus harbored a unique ability to repress RISC slicing. In Chapter III, the intrinsic features of MpAGO1 in small RNA sorting and miRNA cleavage were confirmed. The activation of miR11707 through the acceleration of miR11707* turnover negatively regulated MpAGO1 at high ambient temperature. Besides, the reduction of miRNA biogenesis is not correlated to its AGO1 binding efficiency in response to elevated temperature acclimation. Our study highlights a conserved AGO1 regulatory pathway in bryophyte and the homeostasis of MpAGO1 is control by a novel MIR11707 gene. Taken together, this thesis provides the evidence to support HC-Pro mediated AGO1 suppression pathway via the inhibition of RISC activity. The study implies the link between AGO1 regulation and phenotype plasticity in acclimation to high ambient temperature in M. Polymorpha.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:21:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:21:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文審訂書……………………I
致謝……………………II
摘要……………………IV
Abstract……………………V
Content……………………VI

Chapter 1 Literature review……………………1
1.1 Introduction……………………2
1.2 RNA silencing machinery……………………2
1.2.1 Small RNA biogenesis……………………2
1.2.2 RISC assembly……………………3
1.2.3 AGO1 slicer activity……………………6
1.2.4 AGO1 feedback regulatory……………………7
1.3. RNA silencing in antiviral defense……………………8
1.3.1 Viral-derived siRNAs as a key factor in activation of antiviral immunity……………………8
1.3.2 Inhibition of RNA silencing by viral suppressor……………………9
1.3.3 TuMV, ZyMV, and TEV in Potyvirus……………………11
1.3.4 The common functions of HC-Pro in potyviruses……………………13
1.4 Gene silencing in Marchantia polymorpha……………………14
1.4.1 General description of M. polymorpha……………………14
1.4.2 Recent study of RNA silencing in M. polymorpha……………………14
1.5 Aims of this thesis……………………16
1.6 Reference……………………17

Chapter 2 Suppression of host RISC activity by a potyvirus RNA silencing suppressor, HC-Pro……………………36
2.1 Abstract……………………37
2.2 Introduction……………………38
2.3 Materials and methods……………………40
2.3.1 Plant materials and virus inoculum……………………40
2.3.2 AGO1-IP and in vitro RISC assay……………………40
2.3.3 Immunoblotting……………………42
2.3.4 RNA extraction and bioinformatic analysis……………………42
2.4 Results……………………43
2.4.1 Establishment of the in vitro RISC activity assay……………………43
2.4.2 Unpairing nucleotides on the target site are essential but not sufficient for RISC cleavage……………………44
2.4.3 Suppression of RISC activity in P1/HC-Pro plants……………………45
2.4.4 Suppression of AGO1 activity in TuMV-infected Arabidopsis……………………47
2.4.5 Evaluation of AGO1-IP targeting viral RNA cleavage activity……………………48
2.5 Discussion……………………48
2.5.1 HC-Pro triggering AGO1 suppression……………………49
2.5.2 HC-Pro suppressing RISC cleavage……………………50
2.6 References……………………53
2.7 Figures and Legends……………………58
Figure 1. Establishment of an in vitro RISC assay……………………58
Figure 2. In vitro RISC assay for various miR166-target substrates……………………59
Figure 3. In vitro RISC assay for various miR159/ miR319-target substrates……………………61
Figure 4. Evaluation of HC-Pro suppressing AGO1 activities……………………63
Figure 5. AGO1 abundance and evaluation of miRNA-mediated target cleavage in TuMV-infected plants……………………65
Figure 6. in vitro RISC activity using TuMV-infected plants……………………66
Figure 7. in vitro RISC assay for viral RNA cleavage……………………67
2.8 Supplementary Table: The primer list for this study……………………68

Chapter 3 Features of MpAGO1 and its regulator miR11707 in high temperature acclimation……………………70
3.1. Abstract……………………71
3.2. Introduction……………………72
3.3. Materials & Methods……………………74
3.3.1 Plant materials and growth conditions……………………74
3.3.2 Vector Construction……………………74
3.3.3 Sporeling transformation……………………75
3.3.4 Structural modeling for AtAGO1 and MpAGO1……………………75
3.3.5 Antibody production……………………75
3.3.6 Immunoprecipitation (IP)……………………76
3.3.7 in vitro RISC assay……………………76
3.3.8 Immunoblotting……………………77
3.3.9 RNA folding……………………78
3.3.10 RNA extraction……………………78
3.3.11 RNA sequencing……………………78
3.3.12 Real-time RT-PCR……………………79
3.3.13 Microscopy and image processing……………………79
3.4. Results……………………80
3.4.1 Characterization of small RNA associated with MpAGO1……………………80
3.4.2 Small RNA selection strategy for MpAGO1……………………80
3.4.3 The flexible 5' nucleotide selectivity in MpAGO1……………………81
3.4.4 MpAGO1 stability maintained by miR11707 at elevated temperature……………………82
3.4.5 Disruption of miRNA biogenesis and AGO1 assembly at ambient warm temperature……………………84
3.4.6 mir11707 deficient plants presenting asymmetric growth and ectopic thalli in the early transition stage……………………86
3.4.7 MIR11707 responses at high ambient temperature……………………86
3.4.8 MiR11707 and MpAGO1 expression under the ambient temperature……………………88
3.5. Discussion……………………88
3.6. References……………………94
3.7. Figures and Legends……………………101
Figure 1. AGO1-immunoprecipitation and in vitro RISC activity assay……………………101
Figure 2. Characteristics of plant small RNAs associated with AGO1……………………102
Figure 3. Regulation of MpAGO1 by miR11707 at high ambient temperature….103
Figure 4. The alteration of miRNA biogenesis and RISC maturation in response to high temperature……………………105
Figure 5. Characterization of mir11707ge mutants……………………106
Figure 6. Mutation of MIR11707 interrupting thallus development at high temperature……………………107
Figure 7. Expression of MpAGO1 and MpC3HDZ1 in mir11707ge mutants……………………109
Figure 8. A working model for the regulation of MpAGO1 by miR11707 at different temperature……………………111
3.8. Supplementary table: DNA oligos used in Chapter 3……………………112
3.9. Supplementary figures……………………114
Supplementary figure 1. Characteristics of total small RNAs and the proportion in M. polymorpha and Arabidopsis……………………114
Supplementary figure 2. Phenotypic plasticity of mir11707ge mutant line F5 adapting to high ambient temperature……………………115
Appendix……………………116
-
dc.language.isoen-
dc.title地錢與阿拉伯芥 RNA 誘導緘默化複合體之功能性研究zh_TW
dc.titleThe functional investigation of RNA-induced silencing complex in Marchantia polymorpha and Arabidopsisen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee楊俊逸;邱子珍;陳荷明;西浜竜一;小松愛乃zh_TW
dc.contributor.oralexamcommitteeJun-Yi Yang;Tzyy-Jen Chiou;Ho-Ming Chen;Ryuichi Nishihama;Aino Komatsuen
dc.subject.keyword馬鈴薯 Y 病毒屬病毒,基因靜默抑制子,P1/HC-Pro,ARGONAUTE 1,RNA 誘導緘默化複合體,地錢,表型可塑性,zh_TW
dc.subject.keywordPotyvirus,viral suppressor of RNA silencing,P1/HC-Pro,ARGONAUTE 1,RISC cleavage,Marchantia Polymorpha,phenotype plasticity,en
dc.relation.page129-
dc.identifier.doi10.6342/NTU202300883-
dc.rights.note未授權-
dc.date.accepted2023-06-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物科技研究所-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
9.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved