請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88095
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林銘郎 | zh_TW |
dc.contributor.advisor | Ming-Lang Lin | en |
dc.contributor.author | 魏廷軒 | zh_TW |
dc.contributor.author | Ting-Syuan Wei | en |
dc.date.accessioned | 2023-08-08T16:16:37Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-08 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-12 | - |
dc.identifier.citation | 中央研究院人社中心。台灣百年歷史地圖網站。https://gissrv4.sinica.edu.tw/gis/twhgis/
行政院農業委員會水土保持局台中分局(2015)。草湖溪糖廓橋下游崩塌地處理工程鑽探報告,未出版。 行政院農業委員會水土保持局台中分局(2016)。草湖溪糖廓橋下游崩塌地處理工程施工圖說,未出版。 行政院農業委員會(2023)。水土保持技術規範。台灣:行政院農業委員會。 行政院農業委員會林務局。AFASI圖台網站。https://image.afasi.gov.tw/map_searching/map.aspx 行政院農業委員會水土保持局。BigGIS巨量空間資訊系統網站。 李忠勳(2021)。弱面特性對順向坡滑動與其造成結構物災害損傷評估。國立臺灣大學土木工程學研究所碩士論文,1-274。 林德貴、陳威翔、王勝賢(2015)。擋土止滑樁穩定邊坡之力學行為三維數值分析。中華水土保持學報,46(4),205-212。 林錫宏(2022)。草湖溪崩塌地調查報告,未出版。 經濟部中央地質調查所(2013)。強化豪雨引致山崩之即時動態潛勢評估與警戒模式發展102年度成果報告。台灣: 財團法人中興工程顧問社。 黃俊豪(2002)。擋土排樁穩定邊坡 - 數值分析初探。國立臺灣大學土木工程學研究所碩士論文,1-106。 楊志成(1997)。台灣中部地區錦水頁岩、卓蘭層與頭嵙山層的沈積環境研究。國立台灣大學地質學研究所碩士論文,1-120。 經濟部中央地質調查所(2003)。環境地質基本圖霧峰圖幅。 經濟部中央地質調查所。山崩地質資訊雲端服務平臺網站。 謝佳龍(2022)。大規模崩塌之地形演育調查與災害評估-以草湖溪黃竹里崩塌為例。國立聯合大學土木與防災工程學系碩士論文,1-150。 魏廷軒、林承翰、林銘郎(2022年11月)。順向坡滑動引致舊崩積層滑移與擋土排樁設計位置檢討。「中華民國力學學會第四十六屆全國力學會議」,高雄,台灣。 魏廷軒、林承翰、林銘郎(2023年5月)。以離散元素法模擬重現大規模崩塌之地形演育。「中華民國地球物理學會與中華民國地質學會112年年會暨學術研討會」,桃園,台灣。 嚴國禎(2000)。錦水頁岩殘餘強度與草嶺邊坡穩定關係之研究。國立台灣大學土木工程學研究所碩士論文,1-106。 Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock mechanics, 6, 189-236. Burland, J. B. (1987). Nash lecture: the teaching of soil mechanics—a personal view. Groundwater Effects in Geotechnical Engineering, Vol 3. Proceedings of 9th European Conference on Soil Mechanics and Foundation Engineering, Balkema, Rotterdam/Boston, 1427-1441. Brinkgreve, R.B.J., & Bakker, H.L. (1991). Non-linear finite element analysis of safety factors. In Proc. 7th Int. Conf. on Comp. Methods and Advances in Geomechanics. Cairns, Australia, 1117–1122. Giani, G. P. (1992). Rock slop stability analysis. Rotterdam: Balkema, p. 207. Hoek E. (1994). Strength of rock and rock masses. ISRM New Journal2(2), 4-16. Hoek E., Kaiser P. K. and Bawden W. F. (1995). Support of Underground Excavations in Hard Rock, p. 215. Balkema, Rotterdam. Hoek, E., & Brown, E. T. (1997). Practical estimates of rock mass strength. International journal of rock mechanics and mining sciences, 34(8), 1165-1186. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002). Hoek-Brown Failure Criterion – 2002 Edition. 5th North American Rock Mechanics Symposium and 17th Tunneling Association of Canada Conference: NARMS-TAC, 2002, 267-271. Hoek, E., & Diederichs, M. S. (2006). Empirical estimation of rock mass modulus. International journal of rock mechanics and mining sciences, 43(2), 203-215. Hoek, E. (2007). Practical rock engineering. p. 342. http://www.rocscience.com. Hoek, E., Carter, T. G., & Diederichs, M. S. (2013). Quantification of the geological strength index chart. In 47th US rock mechanics/geomechanics symposium. American Rock Mechanics Association. Itasca Consulting Group Inc. (2004). PFC – Particle Flow Code, Ver. 3.1. Minneapolis, MN: Itasca. Itasca Consulting Group, Inc. (2017). PFC – Particle Flow Code, Ver. 6.0. Minneapolis, MN: Itasca. Jia, M., Yang, Y., Liu, B., & Wu, S. (2018). PFC/FLAC coupled simulation of dynamic compaction in granular soils. Granular Matter, 20(4), 1-15. Keaton J.R. (2013) Engineering geology: fundamental input or random variable? In: Withiam J.L., Phoon K.K., Hussein M.H. (eds) Foundation Engineering in the Face of Uncertainty. ASCE, Reston, 232–253. Kourkoulis, R., Gelagoti, F., Anastasopoulos, I., & Gazetas, G. (2011). Slope Stabilizing Piles and Pile-Groups: Parametric Study and Design Insights. Journal of geotechnical and geoenvironmental engineering, 137(7), 663-677. doi: 10.1061/(asce)gt.1943-5606.0000479. Mauldon, M., Dershowitz, W. (2000). A Multi-Dimentional System of Fracture Abundance Measures. Geological society of America Annual Meeting, Reno, Nevada. NGI. (2022). Using the Q-system. Norway: NGI. Poulos, H. G. (1999). Design of slope stabilizing piles. Balkema, Rotterdam, Netherlands. Wei, T.S., Lin, C.H., Lin, M.L. (2022). The effectiveness of retaining pile for lansliding in colluvium slopes induced by rockslide: a pilot study in Taiwan. Pater presented at The 33rd KKHTCNN Symposium on Civil Engineering, Singapore. Wei, T.S., Lin, C.H., Lin, M.L. (2023). Numerical investigation on the performance of the colluvium slope with retaining piles impacted by rockslides from source area. Pater presented at The EGU General Assembly 2023, Vienna, Austria. William, S.D., Hans, H.H. (1992). Rock Mechanics, Tillerson & Wawersik (eds). Balkema, Rotterdam. 757-767. Yang, C. M., Kang, K. H., Yang, S. H., Li, K. W., Wang, H. J., Lee, Y. T., … Liao, J. J. (2020). Large paleo-rockslide induced by buckling failure at Jiasian in Southern Taiwan. Landslide, 17, 1319-1335. doi:10.1007/s10346-020-01360-3. Zienkiewicz, O.C. (1977). The Finite Element Method. McGraw-Hill, London. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88095 | - |
dc.description.abstract | 台中草湖溪崩塌地於歷史上曾經發生多次崩塌事件,因此於2017年興建擋土排樁工程,直徑1.2m、間距2m、總長12m與入岩深度4m的擋土排樁於2018年完工。然而於2019年6月的大雨事件中崩塌再次發生,大部分排樁受崩積層掩埋,少部分排樁出露於地表且已產生彎曲破壞(bending failure)。本研究將透過方法學建立草湖溪崩塌地的地質模型、地盤模型,並利用先進數值軟體建立地工模型,探討草湖溪崩塌地的演育以及擋土排樁性能。透過研究結果精進排樁設計考量,以避免工程破壞再次發生。
地質模型結果顯示崩塌地發生過至少五次崩塌事件,且崩塌邊界逐漸向源頭後退,2019災害事件破壞主因為源頭區塊體受地下水弱化以及蝕溝侵蝕使滑動面見光產生順向坡滑動,撞擊下邊坡舊崩積層土體,進而使崩積層前方的擋土排樁損毀。地盤模型結果推估岩體的單壓強度與變形模數,並透過全尺度單壓試驗數值模擬獲得後續軟體使用微觀參數。為了研究源頭區塊體的撞擊行為與排樁受推擠變位的情況,本研究利用離散元素法(Discrete Element Method)軟體PFC3D與有限差分法(Finite Difference Method)軟體FLAC3D建立崩塌地之地工模型。擬合結果指出,歷次崩塌事件的數值模擬與實際災後地形面誤差皆小於3%,崩積層範圍與厚度亦符合實際鑽探資料,且2019災後排樁受掩埋情況與變形行為也與實際災後排樁表現大致相符,校核了模型的可行性。根據分析結果,如果不是由於源頭區的新生崩塌下滑岩體的撞擊作用,原排樁設計於平衡階段變形與受力行為皆符合實際情況且能確實穩固崩積層而不會產生滑動;然而當源頭區塊體下滑時,所產生的撞擊力明顯超過排樁所能負荷,進而造成破壞發生,此顯示了於排樁設計時勢必得考慮源頭區潛在塊體下滑對排樁性能的影響,本研究對此提出了設計考量建議。最後針對模擬進行敏感度分析,考慮了源頭區滑動量體、岩體強度與摩擦係數,以及排樁勁度、深度對於排樁性能的影響,並提出對於排樁設計參數的建議。 | zh_TW |
dc.description.abstract | The landslide in Tsaohu River (Taichung) has experienced multiple events throughout history. Therefore, in 2017, the construction of retaining pile project was intiated. The construction was completed in 2018. However, during heavy rainfall in 2019, another collapse occurred. Most of the piles were buried under the colluvium, while a few piles were exposed on the ground surface and had already been bending failure. This study aims to establish geologic and ground models of the collapse of Tsaohu River and utilize advanced numerical software to create geotechnical model to investigate the evolution of the collapse and the performance of the retaining pile. The research results will be used to improve the pile design process to prevent further recurrence of pile failure.
The geologic model results indicate that there have been at least five collapse events in the area, and the boundaries of the collapses have gradually retreated towards the source. The main cause of the 2019 disaster was the source blocks dip sliding, and impacting the old colluvium. This resulted in damage to the retaining pile in front of the colluvium. The ground model results provide information on the compressive strength and deformation modulus of the rock mass, and microscopic parameters obtained from full-scale compression tests by numerical simulation. In order to study the impact behavior of the source block and the performance of the piles, the Discrete Element Method (DEM) software PFC3D and the Finite Difference Method (FDM) software FLAC3D were used to create geotechnical model of the collapsed area. The fitting results indicate that the numerical simulations of previous collapse events and the actual post-disaster topography have an error of less than 3%. The range and thickness of the colluvium also match the actual drilling data, and the burial conditions and displacement of the piles after the 2019 disaster are similar with the actual post-disaster performance, which verifying the feasibility of the model. According to the analysis results, the deformation and stress behavior of the piles during the equilibrium phase are in line with the actual situation, which can effectively stabilize the colluvium. However, when the source block slides down, the impact force generated is significantly greater than what the piles can bear, resulting in pile damage. This indicates that the potential sliding of the source block must be considered in pile design to ensure pile safety. Finally, sensitivity analysis of the simulations was conducted, considering the sliding volume, rock strength and friction coefficient of the source area, as well as the stiffness and depth of the piles, to determine their effects on the performance of the piles and provide recommendations for pile design parameters. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:16:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-08T16:16:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 ix 表目錄 xvii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究內容與限制 2 1.4 研究流程與架構 3 第二章 文獻回顧 5 2.1 草湖溪崩塌地 5 2.1.1 草湖溪崩塌地施工設計報告 5 2.1.2 草湖溪地層柱 8 2.1.3 草湖溪崩塌演育研究 9 2.2 地質模式建立 12 2.3 二維擋土排樁分析 15 2.4 三維擋土排樁穩定邊坡力學行為 18 2.5 三維離散元素法應用 21 第三章 研究方法 23 3.1 地質模型建立 23 3.1.1 航照與多期影像判釋 24 3.1.2 地形分析 24 3.1.3 地表地質調查 25 3.1.4 岩心判釋 26 3.2 地盤模型建立 27 3.2.1 岩體評分 27 3.2.2 岩體參數轉換 31 3.2.3 露頭與河床底下岩層強度差異 34 3.3 數值模擬 35 3.3.1 Particle flow code 3D 6.00 35 3.3.2 Fast Lagrangian Analysis of Continua 3D 6.00 39 3.3.3 PFC3D/FLAC3D耦合模式 40 3.3.4 數值單壓實驗 41 3.3.5 滑動面與崩塌邊界平滑節理模式參數 42 3.3.6 三維繪圖軟體SketchUp pro 2020 43 第四章 草湖溪糖廓橋下游崩塌地演育歷史 44 4.1 航照判釋與歷史崩塌事件 44 4.1.1第一次崩塌事件(1948年) 48 4.1.2第二次崩塌事件(1973年) 49 4.1.3第三次崩塌事件(2004年) 49 4.1.4第四次崩塌事件(2013年) 51 4.1.5第五次崩塌事件(2019年) 52 4.1.6崩塌事件彙整 55 4.2 地形分析結果 56 4.3 地表地質調查 61 4.3.1 環境地質基本圖 61 4.3.2 厚層砂岩出露位置 62 4.3.3 崩塌地調查 63 4.3.4 弱面位態 70 4.3.5 史密特槌測得岩石強度 74 4.4 鑽探資料 75 4.5 地質模型 78 4.6 地盤模型 84 4.6.1 砂岩評分 84 4.6.2 砂頁岩互層評分 89 4.6.3 河床底下岩層評分 90 4.6.4 岩體參數轉換結果 92 4.6.5 岩體單壓實驗 92 4.7 崩塌地演育歷史小結 95 第五章 以離散元素法重現草湖溪崩塌地演育歷史 96 5.1 模型配置 96 5.2 促崩設置 99 5.3 模擬結果 101 5.4 草湖溪演育模擬小結 108 第六章 擋土排樁有效性探討 109 6.1 排樁模型設置 110 6.2 排樁模擬結果 115 6.3 情境模擬 121 6.3.1 滑動量體影響 121 6.3.2 滑動岩體強度影響 122 6.3.3 滑動面摩擦係數影響 124 6.3.4 排樁勁度影響 125 6.3.5 排樁深度影響 127 6.4 排樁模擬小結 129 第七章 討論 131 7.1 排樁帽樑 131 7.2 二維極限平衡法反饋 134 7.3 類似案例 137 第八章 結論與建議 139 8.1 結論 139 8.2 建議 140 第九章 參考文獻 142 附錄一 岩心照片 146 附錄二 2019災害事件排樁樁頂與樁底災前後位置 157 附錄三 碩士學位考試口試委員提問及答覆表 162 附錄四 PFC3D 6.0 主程式運行指令 166 | - |
dc.language.iso | zh_TW | - |
dc.title | 以FDM/DEM模擬草湖溪糖廓橋崩塌地演育及擋土排樁工法性能探討 | zh_TW |
dc.title | Coupled FDM/DEM analysis for large landslide evolution and retaining pile performance: A study at Tsaohu River, Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 翁孟嘉;邱雅筑;林錫宏 | zh_TW |
dc.contributor.oralexamcommittee | Meng-Chia Weng;Ya-Chu Chiu;Hsi-Hung Lin | en |
dc.subject.keyword | 草湖溪崩塌地,離散元素法,有限差分法,順向坡,擋土排樁, | zh_TW |
dc.subject.keyword | the collapse of Tsaohu River,discrete element method,finite difference method,dip sliding,retaining pile, | en |
dc.relation.page | 174 | - |
dc.identifier.doi | 10.6342/NTU202301454 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-07-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 30.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。