請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88088
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅立 | zh_TW |
dc.contributor.advisor | Li Lo | en |
dc.contributor.author | 温婉彤 | zh_TW |
dc.contributor.author | Yuen Tung Kiki Wan | en |
dc.date.accessioned | 2023-08-08T16:14:38Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-08 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-13 | - |
dc.identifier.citation | Akagi, T., Yasuda, S., Asahara, Y., Emoto, M., & Takahashi, K. (2014). Diatoms spread a high epsilon;Nd-signature in the North Pacific Ocean. Geochemical Journal. https://doi.org/10.2343/geochemj.2.0292
Anderson, J. R., Warny, S., Askin, R. A., Wellner, J. S., Bohaty, S. M., Kirshner, A. E., Livsey, D. N., Simms, A. R., Smith, T. C., Ehrmann, W., Lawver, L. A., Barbeau, D. L., Wise, S. W., Kulhenek, D. K., Weaver, F. A., & Majewski, W. (2011). Progressive Cenozoic cooling and the demise of Antarctica’s last refugium. Proceedings of the National Academy of Sciences, 108(28), 11356–11360. https://doi.org/10.1073/pnas.1014885108 Anderson, R. R., Ali, S., Bradtmiller, L. I., Nielsen, S. H., Fleisher, M., Anderson, B. J., & Burckle, L. H. (2009). Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science, 323(5920), 1443–1448. https://doi.org/10.1126/science.1167441 Barker, P. B., Filippelli, G. M., Florindo, F., Martin, E. E., & Scher, H. I. (2007). Onset and role of the Antarctic Circumpolar Current. Deep-sea Research Part Ii-topical Studies in Oceanography, 54(21–22), 2388–2398. https://doi.org/10.1016/j.dsr2.2007.07.028 Barker, P., & Burrell, J. R. (1977). The opening of Drake Passage. Marine Geology, 25(1–3), 15–34. https://doi.org/10.1016/0025-3227(77)90045-7 Barker, P., & Thomas, E. (2004). Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth-Science Reviews, 66(1–2), 143–162. https://doi.org/10.1016/j.earscirev.2003.10.003 Behrens, E., & Bostock, H. (2023). The response of the Subtropical Front to changes in the Southern Hemisphere westerly winds—Evidence from models and observations. Journal of Geophysical Research: Oceans, 128, e2022JC019139. https://doi.org/10.1029/2022JC019139 Benz, V., Esper, O., Gersonde, R., Lamy, F., & Tiedemann, R. (2016). Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean. Quaternary Science Reviews, 146, 216-237. https://doi.org/10.1016/j.quascirev.2016.06.006 Bickert, T., Haug, G. H., & Tiedemann, R. (2004). Late Neogene benthic stable isotope record of Ocean Drilling Program Site 999: Implications for Caribbean paleoceanography, organic carbon burial, and the Messinian Salinity Crisis. Paleoceanography, 19(1), PA1023. https://doi.org/10.1029/2002pa000799 Bradtmiller, L. I., Anderson, R. R., Fleisher, M., & Burckle, L. H. (2007). Opal burial in the equatorial Atlantic Ocean over the last 30 ka: Implications for glacial-interglacial changes in the ocean silicon cycle. Paleoceanography, 22(4). https://doi.org/10.1029/2007pa001443 Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus B: Chemical and Physical Meteorology, 21(5), 611–619. https://doi.org/10.1111/j.2153-3490.1969.tb00466.x Cawthern, T., Johnson, J. T., Giosan, L., Flores, J., Rose, K., & Solomon, E. A. (2014). A late Miocene–Early Pliocene biogenic silica crash in the Andaman Sea and Bay of Bengal. Marine and Petroleum Geology, 58, 490–501. https://doi.org/10.1016/j.marpetgeo.2014.07.026 Cerling, T. E., Harris, J., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., & Ehleringer, J. R. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389(6647), 153–158. https://doi.org/10.1038/38229 Chaigneau, A., & Pizarro, O. (2005). Surface circulation and fronts of the South Pacific Ocean, east of 120°W. Geophysical Research Letters, 32(8). https://doi.org/10.1029/2004gl022070 Chase, Z., Anderson, R. H., Fleisher, M., & Kubik, P. W. (2003). Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years. Deep sea Research Part II: Topical Studies in Oceanography, 50(3–4), 799–832. https://doi.org/10.1016/s0967-0645(02)00595-7 Chisholm, J. D., & Gattuso, J. (1991). Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnology and Oceanography, 36(6), 1232–1239. https://doi.org/10.4319/lo.1991.36.6.1232 Clarke, A., Murphy, E. J., Meredith, M. P., King, J. R., Peck, L. S., Barnes, D., & Smith, R. F. (2006). Climate change and the marine ecosystem of the western Antarctic Peninsula. Philosophical Transactions of the Royal Society B, 362(1477), 149–166. https://doi.org/10.1098/rstb.2006.1958 Cortese, G., Gersonde, R., Hillenbrand, C., & Kuhn, G. (2004). Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth and Planetary Science Letters, 224(3–4), 509–527. https://doi.org/10.1016/j.epsl.2004.05.035 De Baar, H. J. W., De Jong, J. T. M., Bakker, D. C. E., Löscher, B. M., Veth, C., Bathmann, U., & Smetacek, V. (1995). Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature, 373(6513), 412–415. https://doi.org/10.1038/373412a0 De La Rocha, C. L., & Passow, U. (2014). The Biological Pump. In Elsevier eBooks (pp. 93–122). Elsevier BV. https://doi.org/10.1016/b978-0-08-095975-7.00604-5 DeMaster, D. J. (1981). The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta, 45(10), 1715–1732. https://doi.org/10.1016/0016-7037(81)90006-5 Diester-Haass, L., Billups, K., & Emeis, K. (2005). In search of the late Miocene-early Pliocene “biogenic bloom” in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088). Paleoceanography, 20(4), n/a. https://doi.org/10.1029/2005pa001139 Diester-Haass, L., Meyers, P. A., & Bickert, T. (2004). Carbonate crash and biogenic bloom in the late Miocene: Evidence from ODP Sites 1085, 1086, and 1087 in the Cape Basin, southeast Atlantic Ocean. Paleoceanography, 19(1), n/a. https://doi.org/10.1029/2003pa000933 Drury, A. J., Lee, G., Gray, W. A., Lyle, M. W., Westerhold, T., Shevenell, A. E., & John, C. M. (2018). Deciphering the State of the Late Miocene to Early Pliocene Equatorial Pacific. Paleoceanography and Paleoclimatology, 33(3), 246–263. https://doi.org/10.1002/2017pa003245 Drury, A. J., Liebrand, D., Westerhold, T., Beddow, H. M., Hodell, D. A., Rohlfs, N., Wilkens, R. H., Lyle, M. W., Bell, D., Kroon, D., Pälike, H., & Lourens, L. J. (2021). Climate, cryosphere and carbon cycle controls on Southeast Atlantic orbital-scale carbonate deposition since the Oligocene (30–0 Ma). Climate of the Past, 17(5), 2091–2117. https://doi.org/10.5194/cp-17-2091-2021 Du, J., Tian, J., & Ma, W. (2022). The Late Miocene Carbon Isotope Shift driven by synergetic terrestrial processes: A box-model study. Earth and Planetary Science Letters, 584, 117457. https://doi.org/10.1016/j.epsl.2022.117457 Duggen, S., Croot, P., Schacht, U., & Hoffmann, L. (2007). Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data. Geophysical Research Letters, 34(1). https://doi.org/10.1029/2006gl027522 Eagles, G. (2006). Deviations from an ideal thermal subsidence surface in the southern Pacific Ocean. Terra Antartica Reports, 12, 109–118. Edmond, J. M. (1974). On the dissolution of carbonate and silicate in the deep ocean. Deep Sea Research and Oceanographic Abstracts, 21(6), 455–480. https://doi.org/10.1016/0011-7471(74)90094-1 Encinas, A., Finger, K. L., Nielsen, S. N., Lavenu, A., Buatois, L. A., Peterson, D. T., & Roux, J. P. L. (2008). Rapid and major coastal subsidence during the late Miocene in south-central Chile. Journal of South American Earth Sciences, 25(2), 157–175. https://doi.org/10.1016/j.jsames.2007.07.001 Fierro-Arcos, D., Corney, S., Meyer, A., Hayashida, H., Kiss, A. E., & Heil, P. (2023). Analysis of ecologically relevant sea ice and ocean variables for the Southern Ocean using a high-resolution model to inform ecosystem studies. Progress in Oceanography, 215, 103049. https://doi.org/10.1016/j.pocean.2023.103049 Frankignoulle, M., Pichon, M., & Gattuso, J. (1995). Aquatic Calcification as a Source of Carbon Dioxide. In Carbon Sequestration in the Biosphere. https://doi.org/10.1007/978-3-642-79943-3_18 Gasson, E., DeConto, R. M., Pollard, D., & Levy, R. H. (2016). Dynamic Antarctic ice sheet during the early to mid-Miocene. Proceedings of the National Academy of Sciences of the United States of America, 113(13), 3459–3464. https://doi.org/10.1073/pnas.1516130113 Hanson, H. C. (1962). Dictionary of Ecology. Philosophical Library. Hassold, N. J. C., Rea, D. K., Van Der Pluijm, B. A., & Parés, J. M. (2009). A physical record of the Antarctic Circumpolar Current: Late Miocene to recent slowing of abyssal circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 275(1–4), 28–36. https://doi.org/10.1016/j.palaeo.2009.01.011 Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C., Caballero-Gill, R. P., & Kelly, C. B. (2016). Late Miocene global cooling and the rise of modern ecosystems. Nature Geoscience, 9(11), 843–847. https://doi.org/10.1038/ngeo2813 Holbourn, A., Kuhnt, W., Clemens, S. C., Kochhann, K. G. D., Jöhnck, J., Lübbers, J., & Andersen, N. (2018). Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03950-1 Howard, W. R., & Prell, W. L. (1994). Late Quaternary CaCO3 production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling. Paleoceanography, 9(3), 453–482. https://doi.org/10.1029/93pa03524 Hutchins, D. A., & Fu, F. (2017). Microorganisms and ocean global change. Nature Microbiology, 2(6). https://doi.org/10.1038/nmicrobiol.2017.58 Iglesias-Rodriguez, M. D., Brown, C., Doney, S. C., Kleypas, J. A., Kolber, D. D., Kolber, Z., Hayes, P. D., & Falkowski, P. G. (2002). Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochemical Cycles, 16(4), 47–20. https://doi.org/10.1029/2001gb001454 Jaccard, S. L., Hayes, C. J., Martínez-García, A., Hodell, D. A., Anderson, R. H., Sigman, D. M., & Haug, G. H. (2013). Two Modes of Change in Southern Ocean Productivity Over the Past Million Years. Science, 339(6126), 1419–1423. https://doi.org/10.1126/science.1227545 Kalokora, O. J., Buriyo, A., Asplund, M., Gullström, M., Mtolera, M. S. P., & Björk, M. (2020). An experimental assessment of algal calcification as a potential source of atmospheric CO2. PLOS ONE, 15(4), e0231971. https://doi.org/10.1371/journal.pone.0231971 Keigwin, L. D. (1979). Late Cenozoic stable isotope stratigraphy and paleoceanography of DSDP sites from the east equatorial and central north Pacific Ocean. Earth and Planetary Science Letters, 45(2), 361–382. https://doi.org/10.1016/0012-821x(79)90137-7 Kohfeld, K. E., Quéré, C. L., Harrison, S. P., & Anderson, R. H. (2005). Role of Marine Biology in Glacial-Interglacial CO2 Cycles. Science, 308(5718), 74–78. https://doi.org/10.1126/science.1105375 Kuczyńska, P., Jemioła-Rzemińska, M., & Strzałka, K. (2015). Photosynthetic Pigments in Diatoms. Marine Drugs, 13(9), 5847–5881. https://doi.org/10.3390/md13095847 Kump, L. R., Brantley, S. L., & Arthur, M. A. (2000). Chemical Weathering, Atmospheric CO2, and Climate. Annual Review of Earth and Planetary Sciences, 28(1), 611–667. https://doi.org/10.1146/annurev.earth.28.1.611 Lamy, F., Winckler, G., & Alvarez-Zarikian, C. A. (2021). Volume 383: Dynamics of the Pacific Antarctic Circumpolar Current (DYNAPACC). Proceedings of the International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.383.2021 Leutert, T. J., Auderset, A., Martínez-García, A., Modestou, S., & Meckler, A. N. (2020). Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene. Nature Geoscience, 13(9), 634–639. https://doi.org/10.1038/s41561-020-0623-0 Li, G., Cheng, L., Zhu, J., Trenberth, K. E., Mann, M. E., & Abraham, J. (2020). Increasing ocean stratification over the past half-century. Nature Climate Change, 10(12), 1116–1123. https://doi.org/10.1038/s41558-020-00918-2 Li, J., Fang, X., Song, C., Pan, B., Ma, Y., & Yan, M. (2014). Late Miocene–Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes. Quaternary Research, 81(3), 400–423. https://doi.org/10.1016/j.yqres.2014.01.002 Lyle, M. W. (2003). Neogene carbonate burial in the Pacific Ocean. Paleoceanography, 18(3). https://doi.org/10.1029/2002pa000777 Lyle, M. W., Drury, A. J., Tian, J., Wilkens, R. H., & Westerhold, T. (2019). Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity. Climate of the Past, 15(5), 1715–1739. https://doi.org/10.5194/cp-15-1715-2019 Lyle, M. W., Murray, D. W., Finney, B. P., Dymond, J., Robbins, J. M., & Brooksforce, K. (1988). The record of Late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean. Paleoceanography, 3(1), 39–59. https://doi.org/10.1029/pa003i001p00039 Martin, J., Gordon, R. D., Fitzwater, S. E., & Broenkow, W. W. (1989). Vertex: phytoplankton/iron studies in the Gulf of Alaska. Deep sea Research Part A: Oceanographic Research Papers, 36(5), 649–680. https://doi.org/10.1016/0198-0149(89)90144-1 Martínez-García, A., Rosell-Melé, A., Jaccard, S. L., Geibert, W., Sigman, D. M., & Haug, G. H. (2011). Southern Ocean dust–climate coupling over the past four million years. Nature, 476(7360), 312–315. https://doi.org/10.1038/nature10310 Mortlock, R. A., & Froelich, P. N. (1989). A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-sea Research, 36(9), 1415–1426. https://doi.org/10.1016/0198-0149(89)90092-7 Murray, R. M., Leinen, M., & Knowlton, C. B. (2012). Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean. Nature Geoscience, 5(4), 270–274. https://doi.org/10.1038/ngeo1422 Paytan, A. (2009). Ocean Paleoproductivity. In Encyclopedia of earth sciences (pp. 644–651). Springer Nature (Netherlands). https://doi.org/10.1007/978-1-4020-4411-3_158 Peterson, L. E., & Backman, J. (1990). Late Cenozoic Carbonate Accumulation and the History of the Carbonate Compensation Depth in the Western Equatorial Indian Ocean. In Proceedings of the Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.115.163.1990 Pfiffner, O. A., & Gonzalez, L. M. (2013). Mesozoic–Cenozoic Evolution of the Western Margin of South America: Case Study of the Peruvian Andes. Geosciences, 3(2), 262–310. https://doi.org/10.3390/geosciences3020262 Pillot, Q., Suchéras-Marx, B., Sarr, A., Bolton, C. T., & Donnadieu, Y. (2023). A Global Reassessment of the Spatial and Temporal Expression of the Late Miocene Biogenic Bloom. Paleoceanography and Paleoclimatology, 38(3). https://doi.org/10.1029/2022pa004564 Plank, T., & Manning, C. E. (2019). Subducting carbon. Nature, 574(7778), 343–352. https://doi.org/10.1038/s41586-019-1643-z Quade, J., Cerling, T. E., & Bowman, J. L. (1989). Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342(6246), 163–166. https://doi.org/10.1038/342163a0 Ramaswamy, V., & Gaye, B. (2006). Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean. Deep sea Research Part I: Oceanographic Research Papers, 53(2), 271–293. https://doi.org/10.1016/j.dsr.2005.11.003 Schoepfer, S. D., Shen, J., Wei, H., Tyson, R. V., Ingall, E. D., & Algeo, T. J. (2015). Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth-Science Reviews, 149, 23–52. https://doi.org/10.1016/j.earscirev.2014.08.017 Scotese, C. R. (2016). Some thoughts on Global Climate Change: The Transition from Icehouse to Hothouse. Earth History: The Evolution of the Earth System. Sigman, D. M., & Hain, M. P. (2012a). The biological productivity of the ocean: Section 2. Nature Education Knowledge, 3(10), 20. Sigman, D. M., & Hain, M. P. (2012b). The biological productivity of the ocean. Nature Education Knowledge, 3(10), 21. Sigman, D. M., Hain, M. P., & Haug, G. H. (2010). The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature, 466(7302), 47–55. https://doi.org/10.1038/nature09149 Singh, H. A., & Polvani, L. M. (2020). Low Antarctic continental climate sensitivity due to high ice sheet orography. npj Climate and Atmospheric Science, 3(1). https://doi.org/10.1038/s41612-020-00143-w Steinthorsdottir, M., Coxall, H. K., De Boer, A. M., Huber, M., Barbolini, N., Bradshaw, C. D., Burls, N. J., Feakins, S. J., Gasson, E., Henderiks, J., Holbourn, A. E., Kiel, S., Kohn, M. J., Knorr, G., Kürschner, W. M., Lear, C. H., Liebrand, D., Lunt, D. J., Mörs, T., Pearson, P.N., Pound, M.J., Stoll, H., Strömberg, C. A. E. (2021). The Miocene: The Future of the Past. Paleoceanography and Paleoclimatolog, 36(4). https://doi.org/10.1029/2020pa004037 Toggweiler, J. R., & Russell, J. L. (2008). Ocean circulation in a warming climate. Nature, 451(7176), 286–288. https://doi.org/10.1038/nature06590 Toyos, M. H., Lamy, F., Lange, C. B., Lembke-Jene, L., Saavedra-Pellitero, M., Esper, O., & Arz, H. W. (2020). Antarctic Circumpolar Current Dynamics at the Pacific Entrance to the Drake Passage Over the Past 1.3 Million Years. Paleoceanography and Paleoclimatology, 35(7). https://doi.org/10.1029/2019pa003773 Tréguer, P. (2014). The Southern Ocean silica cycle. Comptes Rendus Geoscience, 346(11–12), 279–286. https://doi.org/10.1016/j.crte.2014.07.003 Van Cappellen, P., Dixit, S., & Van Beusekom, J. (2002). Biogenic silica dissolution in the oceans: Reconciling experimental and field-based dissolution rates. Global Biogeochemical Cycles, 16(4), 23–10. https://doi.org/10.1029/2001gb001431 Vergara-Jara, M. J., Hopwood, M. J., Browning, T. J., Rapp, I., Torres, R., Reid, B. J., Achterberg, E. P., & Iriarte, J. (2021). A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015. Ocean Science, 17(2), 561–578. https://doi.org/10.5194/os-17-561-2021 Volk, T., & Hoffert, M. I. (1985). Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes. In American Geophysical Union eBooks (pp. 99–110). American Geophysical Union. https://doi.org/10.1029/gm032p0099 Wang, N., Wen, L., Li, M., Dai, X., Xu, Y. G., Ming, Y., & Liu, J. (2021). The origin of abnormally 13C-depleted organic carbon isotope signatures in the early Cambrian Yangtze Platform. Marine and Petroleum Geology, 128, 105051. https://doi.org/10.1016/j.marpetgeo.2021.105051 Ware, J. E., Smith, S. M., & Reaka-Kudla, M. L. (1992). Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs, 11(3), 127–130. https://doi.org/10.1007/bf00255465 Webb, P. (2021). Introduction to Oceanography. Roger Williams University. Wei, Y., Zhao, Y., Gui, J., & Sun, J. (2021). Phosphorus enrichment masked the negative effects of ocean acidification on picophytoplankton and photosynthetic performance in the oligotrophic Indian Ocean. Ecological Indicators, 125, 107459. https://doi.org/10.1016/j.ecolind.2021.107459 Well, R., & Roether, W. (2003). Neon distribution in South Atlantic and South Pacific waters. Deep-sea Research Part I: Oceanographic Research Papers, 50(6), 721-735. https://doi.org/10.1016/s0967-0637(03)00058-x Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E. N., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M. W., Pälike, H., Röhl, U., Tian, J., Wilkens, R.H., Wilson, P.A., Zachos, J. C. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369(6509), 1383–1387. https://doi.org/10.1126/science.aba6853 Yao, Z., Liu, Y., Shi, X., Gong, X., Gorbarenko, S. A., Bosin, A., Gao, J., Bai, Y., Zhang, H., & Wang, A. (2022). Paleoproductivity variations and implications in the subarctic northwestern Pacific since MIS 7: Geochemical evidence. Global and Planetary Change, 209, 103730. https://doi.org/10.1016/j.gloplacha.2021.103730 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88088 | - |
dc.description.abstract | 海洋沉積物中的碳酸鈣及生物性蛋白石的質量累積速率(mass accumulation rate, MAR),可以反映受氣候及洋流影響而變化的鈣質和矽質生物的生產力,以及海洋的保存能力。以往的研究發現,於晚中新世期間發生了強烈的氣候及環境變化。例如,於7.6-6.7 Ma的晚中新世碳同位素變化 (Late Miocene Carbon Isotope Shift, LMCIS)中,全球的底棲及浮游有孔蟲碳同位素有-1‰的變化。大約在同一時期,發生了晚中新世冷卻事件(Late Miocene Cooling, LMC)。大約於7至5.4 Ma,全球各地的海表面溫度都下降至接近現今的值。在晚中新世期間,陸地大小的冰帽只存在於南極洲,因此南極冰蓋強迫可能是造成於晚中新世的全球氣候劇烈變化的原因。南極環流(Antarctic Circumpolar Current, ACC)主導了南大洋的海表至深水,並對大氣環流作出響應,在全球的氣候和碳循環中有重要作用。然而,只有少數研究中探討ACC的太平洋區域,限制了我們對這個世界上最大的洋流系統的碳酸鹽和生物源蛋白石埋藏歷史的了解。我們的研究利用南大洋的太平洋區域中部和東部的碳酸鈣及生物性蛋白石埋藏,重建晚中新世的生產力。研究的樣本是來自綜合大洋鑽探計劃 383航次於南大洋太平洋區域的U1541及U1543站點的岩芯。
結果顯示,在8.3至6.0 Ma期間,U1541站點採集的碳酸鈣及生物性蛋白石量幾乎呈相反趨勢。整體而言,U1541於LMCIS開始後,碳酸鈣減少,蛋白石增加。於6.0至5.5 Ma期間,兩者都處於相對低值;而U1543站點則由蛋白石主導,碳酸鈣的埋藏量顯著地低。比較兩個站點的數據,U1541碳酸鈣MAR比U1543顯著地高。 我們推測南大洋的太平洋區域由生產力主導。另外,兩個地點的生產力變化趨勢,可能受到LMC時海表面溫度冷卻所影響,指示ACC的擴張,並影響湧升流的強度。ACC的擴張最後導致了ACC流速的減慢,以及6.0百萬年之後U1541的低生產量。兩個站點的表水營養受到不同的湧升流強度和地理條件所影響,導致兩個站點的生產力的差異。最後,ACC的太平洋區域的生產力與大西洋區域的趨勢相似,可能表示南大洋的生產力是由ACC控制。這些數據也表明結合晚中新世的陸地過程,全球高海洋生產力可能最終導致LMCIS。 | zh_TW |
dc.description.abstract | Mass accumulation rate (MAR) of calcium carbonate (CaCO3) and biogenic opal in marine sediment reflect the variations in calcareous and siliceous productivity, and preservation of the ocean, influenced by climate and ocean circulations. During the late Miocene, Late Miocene carbon isotope shift (LMCIS), a long-term negative 1‰ shift globally, occurred between 7.6 and 6.7 million years ago (Ma). About the same period, late Miocene cooling (LMC) happened around 7 to 5.4 Ma, which culminated with ocean temperatures dipping to near-modern values. The Antarctic ice sheet forcing might be responsible for drastic changes globally during the late Miocene, as continental-sized ice sheets only exist in Antarctica during this period of time. The Southern Ocean, where the Antarctic Circumpolar Current (ACC) dominates the surface-deep water, and responds to atmospheric circulations, plays an important role in the global climate and carbon cycle. However, only a few investigations look into the Pacific sector of the ACC, limiting our understanding of the productivity histories of this world’s largest zonal current system. Our study reconstructs the biogenic productivity using the sedimentary carbonate and biogenic opal content in the central and eastern Pacific sector of Southern Ocean. Major samples are from sites U1541 and U1543 obtained during the International Ocean Discovery Program (IODP) Expedition 383.
Our results show that at site U1541 (central Pacific sector of the ACC), CaCO3 and opal fluxes sustain a negative relationship between 8.3 to 6.0 Ma. Overall, the CaCO3 flux decreases while the opal increases during the onset of LMCIS. Both CaCO3 and opal fluxes remain low during 6.0 to 5.5 Ma. At site U1543 (east Pacific sector of the ACC), opal burial dominates, while CaCO3 flux is significantly low throughout the period. Comparing the data in the two sites, site U1541 has a significantly higher CaCO3 flux and relatively lower opal flux than U1543. We speculate that the Pacific sector of Southern Ocean is productivity-dominated. Overall, the increasing opal in both sites might be the consequence of sea surface temperature cooling during the LMC, and indicate the ACC expansion, which affects the strength of upwelling. This eventually leads to the slowing of ACC and the low burial fluxes at site U1541 after 6.0 Ma. The regional productivity differences between the two sites may be due to the different nutrient availability caused by upwelling strength and spatial differences. On the other hand, the productivity changes in the Pacific sector of the ACC coincides with the Atlantic sector, which may indicate that the Southern Ocean productivity is mainly controlled by the ACC. This also indicates that LMCIS may be related to the high global primary productivity, with the influence of the terrestrial processes. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:14:38Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-08T16:14:38Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Master’s Thesis Acceptance Certificate I
Acknowledgements (In Chinese) II Abstract (In Chinese) IV Abstract VI Contents VIII List of Figures X List of Tables XII 1 Introduction 1 1.1 Ocean Productivity 1 1.2 Productivity Proxies 3 2 Background 7 2.1 Late Miocene 7 2.2 Southern Ocean 10 2.3 The Aim of This Study 12 3 Material and Methods 14 3.1 IODP U1541 & U1543 14 3.1.1 Site U1541 14 3.1.2 Site U1543 15 3.2 Age Model17 3.3 Methods 18 3.3.1 Calcium Carbonate and Total Organic Carbon Analysis 18 3.3.1.1 Preparation and Analysis 18 3.3.1.2 Quantification 19 3.3.1.3 Calculation 20 3.3.2 Biogenic opal determination 22 3.3.2.1 Preparation 22 3.3.2.2 Extraction 22 3.3.2.3 Analysis 23 3.3.2.4 Calculation 23 4 Results 26 4.1 Site U1541 26 4.2 Site U1543 28 4.3 Comparison of Site U1541 and U1543 29 5 Discussion 33 5.1 Testing for the methods 33 5.1.1 CaCO3 and TOC Analysis 33 5.1.2 Opal Extraction 37 5.2 MAR versus Weight Percent 39 5.3 Burial Fluxes Variation Control 40 5.4 ACC Expansion and the LMC 44 5.5 Nutrient Variations at Site U1543 50 5.6 Link Between Primary Productivity and LMCIS 57 5.7 Global Productivity Comparison 61 6 Conclusions 66 References 68 Appendix 89 | - |
dc.language.iso | en | - |
dc.title | 南大洋太平洋區域於晚中新世的古生產力變化 | zh_TW |
dc.title | Paleo-productivity variations during the late Miocene in the Pacific sector of Southern Ocean | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 林卉婷 | zh_TW |
dc.contributor.coadvisor | Huei-Ting Lin | en |
dc.contributor.oralexamcommittee | 張詠斌 | zh_TW |
dc.contributor.oralexamcommittee | Yuan-Pin Chang | en |
dc.subject.keyword | 晚中新世,南大洋,生產力,碳酸鈣,生物性蛋白石, | zh_TW |
dc.subject.keyword | late Miocene,Southern Ocean,productivity,carbonate,biogenic opal, | en |
dc.relation.page | 128 | - |
dc.identifier.doi | 10.6342/NTU202301546 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-07-14 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 8.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。