請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88037完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁啟德 | zh_TW |
| dc.contributor.advisor | Chi-Te Liang | en |
| dc.contributor.author | 胡逸凡 | zh_TW |
| dc.contributor.author | I-Fan Hu | en |
| dc.date.accessioned | 2023-08-01T16:32:27Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-01 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-10 | - |
| dc.identifier.citation | chapter 1.
[1] R. J. C. Brown, Measurement 168, 108408 (2021). [2] P. Howarth, F. Redgrave, P. Germany, S. Madsen, and S. Grafisk, EURAMET project 1011 (2008). [3] D. B. Newell, Physics Today 67, 35 (2014). [4] E. Mechtly, The international system of units: physical constants and conversion factors (Scientific and Technical Information Division, National Aeronautics and …, 1964), Vol. 7012. [5] G. Girard, Metrologia 31, 317 (1994). [6] D. B. Newell, F. Cabiati, J. Fischer, K. Fujii, S. G. Karshenboim, H. S. Margolis, E. de Mirandés, P. J. Mohr, F. Nez, K. Pachucki, T. J. Quinn, B. N. Taylor, M. Wang, B. M. Wood, and Z. Zhang, Metrologia 55, L13 (2018). [7] W. D. Phillips, Nature Physics 15, 518 (2019). [8] N. Kuramoto, Nature Physics 18, 720 (2022). [9] H. Bettin and S. Schlamminger, Metrologia 53, A1 (2016). [10] A. Tzalenchuk, N. Spethmann, T. Prior, J. H. Hendricks, Y. Pan, V. Bubanja, G. P. Temporão, D.-H. Yu, D. Ilić, and B. L. Goldstein, Nature Physics 18, 724 (2022). [11] J. R. Pratt, NCSLI Measure 9, 26 (2014). [12] P. Giacomo, Metrologia 20, 25 (1984). [13] R. Davis, Nature Physics 14, 868 (2018). [14] D. D. McCarthy and P. K. Seidelmann, Time: from Earth rotation to atomic physics (Cambridge University Press, 2018). [15] J. Terrien, Metrologia 4, 41 (1968). [16] M. Stock, P. Barat, P. Pinot, F. Beaudoux, P. Espel, F. Piquemal, M. Thomas, D. Ziane, P. Abbott, D. Haddad, Z. Kubarych, J. R. Pratt, S. Schlamminger, K. Fujii, K. Fujita, N. Kuramoto, S. Mizushima, L. Zhang, S. Davidson, R. G. Green, J. Liard, C. Sanchez, B. Wood, H. Bettin, M. Borys, I. Busch, M. Hämpke, M. Krumrey, and A. Nicolaus, Metrologia 55, T1 (2018). [17] I. A. Robinson and S. Schlamminger, Metrologia 53, A46 (2016). [18] D. Haddad, F. Seifert, L. S. Chao, S. Li, D. B. Newell, J. R. Pratt, C. Williams, and S. Schlamminger, Review of Scientific Instruments 87, 061301 (2016). [19] N. Kuramoto, S. Mizushima, L. Zhang, K. Fujita, S. Okubo, H. Inaba, Y. Azuma, A. Kurokawa, Y. Ota, and K. Fujii, IEEE Transactions on Instrumentation and Measurement 70, 1 (2021). [20] V. Lopac and D. Hrupec, The Physics Teacher 58, 58 (2019). [21] S. P Giblin, E. Mykkänen, A. Kemppinen, P. Immonen, A. Manninen, M. Jenei, M. Möttönen, G. Yamahata, A. Fujiwara, and M. Kataoka, Metrologia 57, 025013 (2020). [22] C. A. Hamilton, C. J. Burroughs, and S. P. Benz, IEEE Transactions on Applied Superconductivity 7, 3756 (1997). [23] F. C. Seifert, A. R. Panna, I. F. Hu, L. H. Keck, L. S. Chao, S. U. Payagala, D. G. Jarrett, C.-I. Liu, D. Saha, R. E. Elmquist, S. Schlamminger, A. F. Rigosi, D. B. Newell, and D. Haddad, Communications Physics 5, 321 (2022). [24] K. Cedergren, Nature Physics 18, 1130 (2022). [25] R. E. Elmquist, M. E. Cage, Y.-h. Tang, A.-M. Jeffery, J. R. Kinard Jr, R. F. Dziuba, N. M. Oldham, and E. R. Williams, Journal of research of the National Institute of Standards Technology 106, 65 (2001). [26] K. von Klitzing, G. Dorda, and M. Pepper, Physical Review Letters 45, 494 (1980). [27] K. von Klitzing, Annual Review of Condensed Matter Physics 8, 13 (2017). [28] I. F. Hu, A. R. Panna, A. F. Rigosi, M. Kruskopf, D. K. Patel, C.-I. Liu, D. Saha, S. U. Payagala, D. B. Newell, D. G. Jarrett, C.-T. Liang, and R. E. Elmquist, Physical Review B 104, 085418 (2021). [29] K. von Klitzing, Nature Physics 13, 198 (2017). [30] G. W. F. Drake and E. Tiesinga, Nature Physics 16, 1242 (2020). [31] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Physical Review Letters 48, 1559 (1982). [32] K. von Klitzing, T. Chakraborty, P. Kim, V. Madhavan, X. Dai, J. McIver, Y. Tokura, L. Savary, D. Smirnova, A. M. Rey, C. Felser, J. Gooth, and X. Qi, Nature Reviews Physics 2, 397 (2020). [33] E. Tiesinga and P. Mohr, Nature Physics 18, 474 (2022). [34] S. Novikov, N. Lebedeva, J. Hämäläinen, I. Iisakka, P. Immonen, A. J. Manninen, and A. Satrapinski, Journal of Applied Physics 119, 174504 (2016). [35] A. Lartsev, S. Lara-Avila, A. Danilov, S. Kubatkin, A. Tzalenchuk, and R. Yakimova, Journal of Applied Physics 118, 044506 (2015). [36] T. Oe, N. Kaneko, C. Urano, T. Itatani, H. Ishii, and S. Kiryu, in 2008 Conference on Precision Electromagnetic Measurements Digest2008), pp. 20. [37] J. Park, W.-S. Kim, and D.-H. Chae, Applied Physics Letters 116, 093102 (2020). [38] V. Tsemekhman, K. Tsemekhman, C. Wexler, J. H. Han, and D. J. Thouless, Physical Review B 55, R10201 (1997). [39] S. Komiyama, T. Takamasu, S. Hiyamizu, and S. Sasa, Solid State Communications 54, 479 (1985). [40] N. Q. Balaban, U. Meirav, H. Shtrikman, and Y. Levinson, Physical Review Letters 71, 1443 (1993). [41] M. E. Cage, K. Klitzing, A. Chang, F. Duncan, M. Haldane, R. B. Laughlin, A. Pruisken, and D. Thouless, The quantum Hall effect (Springer Science & Business Media, 2012). [42] A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007). [43] R. Ribeiro-Palau, F. Lafont, J. Brun-Picard, D. Kazazis, A. Michon, F. Cheynis, O. Couturaud, C. Consejo, B. Jouault, W. Poirier, and F. Schopfer, Nature Nanotechnology 10, 965 (2015). [44] A. F. Rigosi and R. E. Elmquist, Semiconductor Science and Technology 34, 093004 (2019). [45] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005). [46] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005). [47] A. R. Panna, I. F. Hu, M. Kruskopf, D. K. Patel, D. G. Jarrett, C.-I. Liu, S. U. Payagala, D. Saha, A. F. Rigosi, D. B. Newell, C.-T. Liang, and R. E. Elmquist, Physical Review B 103, 075408 (2021). [48] F. Delahaye, Journal of Applied Physics 73, 7914 (1993). [49] M. Kruskopf, A. F. Rigosi, A. R. Panna, D. K. Patel, H. Jin, M. Marzano, M. Berilla, D. B. Newell, and R. E. Elmquist, IEEE Transactions on Electron Devices 66, 3973 (2019). [50] M. Kruskopf, A. F. Rigosi, A. R. Panna, M. Marzano, D. Patel, H. Jin, D. B. Newell, and R. E. Elmquist, Metrologia 56, 065002 (2019). [51] B. D. Josephson, Physics Letters 1, 251 (1962). Chapter 2 [1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Physical Review 108, 1175 (1957). [2] F. London, H. London, and F. A. Lindemann, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 149, 71 (1997). [3] W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933). [4] M. Tinkham, Introduction to superconductivity (Courier Corporation, 2004). [5] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Physical Review 106, 162 (1957). [6] L. N. Cooper, Physical Review 104, 1189 (1956). [7] P. Monthoux, A. V. Balatsky, and D. Pines, Physical Review B 46, 14803 (1992). [8] V. L. Ginzburg and L. D. Landau, On the theory of superconductivity (Springer, 2009). [9] B. D. Josephson, Physics Letters 1, 251 (1962). [10] S. Shapiro, Physical Review Letters 11, 80 (1963). [11] R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau, Physical Review Letters 12, 159 (1964). [12] C. A. Hamilton, C. J. Burroughs, and S. P. Benz, IEEE Transactions on Applied Superconductivity 7, 3756 (1997). [13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). [14] F. A. Carey and R. J. Sundberg, Advanced organic chemistry: part A: structure and mechanisms (Springer Science & Business Media, 2007). [15] H. Liu, Y. Liu, and D. Zhu, Journal of Materials Chemistry 21, 3335 (2011). [16] W. H. Brown, B. L. Iverson, E. Anslyn, and C. S. Foote, Organic chemistry (Cengage Learning, 2022). [17] E. D. Glendening, R. Faust, A. Streitwieser, K. P. C. Vollhardt, and F. Weinhold, Journal of the American Chemical Society 115, 10952 (1993). [18] D. W. Rogers and F. J. McLafferty, The Journal of Organic Chemistry 66, 1157 (2001). [19] J. A. Joule, Heterocyclic chemistry (CRC Press, 2020). [20] W. Xu, T.-S. Lim, H.-K. Seo, S.-Y. Min, H. Cho, M.-H. Park, Y.-H. Kim, and T.-W. Lee, Small 10, 1999 (2014). [21] I. A. Popov, K. V. Bozhenko, and A. I. Boldyrev, Nano Research 5, 117 (2012). [22] I. A. Ovid’Ko, Rev. Adv. Mater. Sci 34, 1 (2013). [23] Y. Liu, B. Xie, Z. Zhang, Q. Zheng, and Z. Xu, Journal of the Mechanics and Physics of Solids 60, 591 (2012). [24] D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, Progress in Materials Science 90, 75 (2017). [25] A. C. Ferrari and D. M. Basko, Nature Nanotechnology 8, 235 (2013). [26] D. L. Nika and A. A. Balandin, Journal of Physics: Condensed Matter 24, 233203 (2012). [27] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejón, Physical Review Letters 92, 075501 (2004). [28] E. Mariani and F. von Oppen, Physical Review Letters 100, 076801 (2008). [29] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Physics Reports 473, 51 (2009). [30] P. T. Araujo, M. Terrones, and M. S. Dresselhaus, Materials Today 15, 98 (2012). [31] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Physical Review Letters 97, 187401 (2006). [32] K.-i. Sasaki, Y. Tokura, and T. Sogawa, in Crystals2013), pp. 120. [33] Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, ACS Nano 2, 2301 (2008). [34] C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, Nature Communications 6, 8429 (2015). [35] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Reviews of Modern Physics 81, 109 (2009). [36] F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, P. M. Ajayan, and N. Koratkar, Small 6, 2535 (2010). [37] L. Kong, A. Enders, T. S. Rahman, and P. A. Dowben, Journal of Physics: Condensed Matter 26, 443001 (2014). [38] K. T. Chan, J. B. Neaton, and M. L. Cohen, Physical Review B 77, 235430 (2008). [39] D. Song, V. Paltoglou, S. Liu, Y. Zhu, D. Gallardo, L. Tang, J. Xu, M. Ablowitz, N. K. Efremidis, and Z. Chen, Nature Communications 6, 6272 (2015). [40] P. R. Wallace, Physical Review 71, 622 (1947). [41] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Communications 146, 351 (2008). [42] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature Physics 2, 620 (2006). [43] K. Nagashio and A. Toriumi, Japanese Journal of Applied Physics 50, 070108 (2011). [44] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Materials 6, 652 (2007). [45] S. Fratini and F. Guinea, Physical Review B 77, 195415 (2008). [46] Y.-J. Kang, J. Kang, and K. J. Chang, Physical Review B 78, 115404 (2008). [47] L. Moriconi and D. Niemeyer, Physical Review B 84, 193401 (2011). [48] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, Nature Physics 4, 144 (2008). [49] A. F. Rigosi, C.-I. Liu, N. R. Glavin, Y. Yang, H. M. Hill, J. Hu, A. R. Hight Walker, C. A. Richter, R. E. Elmquist, and D. B. Newell, ACS Omega 2, 2326 (2017). [50] A. F. Rigosi, N. R. Glavin, C.-I. Liu, Y. Yang, J. Obrzut, H. M. Hill, J. Hu, H.-Y. Lee, A. R. Hight Walker, C. A. Richter, R. E. Elmquist, and D. B. Newell, Small 13, 1700452 (2017). [51] W. Gao and R. Huang, Journal of Physics D: Applied Physics 44, 452001 (2011). [52] S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, Nature Nanotechnology 6, 543 (2011). [53] J. H. Lee, A. Avsar, J. Jung, J. Y. Tan, K. Watanabe, T. Taniguchi, S. Natarajan, G. Eda, S. Adam, A. H. Castro Neto, and B. Özyilmaz, Nano Letters 15, 319 (2015). [54] T. Kujime, Y. Taniguchi, D. Akiyama, Y. Kawamura, Y. Kanai, K. Matsumoto, Y. Ohno, and M. Nagase, physica status solidi (b) 257, 1900357 (2020). [55] M. Her, R. Beams, and L. Novotny, Physics Letters A 377, 1455 (2013). [56] W. Deng, T. Kang, H. Liu, J. Zhang, N. Wang, N. Lu, Y. Ma, A. Umar, and Z. Guo, Science of Advanced Materials 10, 937 (2018). [57] W. Xie, L.-T. Weng, K. M. Ng, C. K. Chan, and C.-M. Chan, Carbon 94, 740 (2015). [58] Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, Nano Letters 12, 414 (2012). [59] J. W. Suk, W. H. Lee, J. Lee, H. Chou, R. D. Piner, Y. Hao, D. Akinwande, and R. S. Ruoff, Nano Letters 13, 1462 (2013). [60] L. Liao, H. Peng, and Z. Liu, Journal of the American Chemical Society 136, 12194 (2014). [61] T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Progress in Materials Science 57, 1061 (2012). [62] D. W. Boukhvalov and M. I. Katsnelson, Journal of Physics: Condensed Matter 21, 344205 (2009). [63] A. F. Rigosi, M. Kruskopf, H. M. Hill, H. Jin, B.-Y. Wu, P. E. Johnson, S. Zhang, M. Berilla, A. R. Hight Walker, C. A. Hacker, D. B. Newell, and R. E. Elmquist, Carbon 142, 468 (2019). [64] S.-H. Chen, M. Hofmann, Z.-L. Yen, and Y.-P. Hsieh, Advanced Functional Materials 30, 2004370 (2020). [65] O. J. Guy and K.-A. D. Walker, in Silicon Carbide Biotechnology (Second Edition), edited by S. E. Saddow (Elsevier, 2016), pp. 85. [66] L. Dai, Accounts of Chemical Research 46, 31 (2013). [67] X. Lu, L. Li, B. Song, K.-s. Moon, N. Hu, G. Liao, T. Shi, and C. Wong, Nano Energy 17, 160 (2015). [68] W. Li, X.-Z. Tang, H.-B. Zhang, Z.-G. Jiang, Z.-Z. Yu, X.-S. Du, and Y.-W. Mai, Carbon 49, 4724 (2011). [69] Q. Jing, W. Liu, Y. Pan, V. V. Silberschmidt, L. Li, and Z. Dong, Materials & Design 85, 808 (2015). [70] W. Wei and X. Qu, Small 8, 2138 (2012). [71] M. Fang, K. Wang, H. Lu, Y. Yang, and S. Nutt, Journal of Materials Chemistry 19, 7098 (2009). [72] E. H. Hall, American Journal of Mathematics 2, 287 (1879). [73] L. Landau, Zeitschrift für Physik 64, 629 (1930). [74] H. Funk, A. Knorr, F. Wendler, and E. Malic, Physical Review B 92, 205428 (2015). [75] A. L. C. Pereira, C. H. Lewenkopf, and E. R. Mucciolo, Physical Review B 84, 165406 (2011). [76] C. H. Yang, F. M. Peeters, and W. Xu, Physical Review B 82, 075401 (2010). [77] T. Maniv and I. D. Vagner, Physical Review B 38, 6301 (1988). [78] T. Ando and Y. Murayama, Journal of the Physical Society of Japan 54, 1519 (1985). [79] M. E. Cage, K. Klitzing, A. M. Chang, F. Duncan, M. Haldane, R. B. Laughlin, A. M. M. Pruisken, and D. J. Thouless, The quantum Hall effect (Springer Science & Business Media, 2012). [80] A. C. M. de Oca and D. Martinez-Pedrera, Physical Review B 67, 245310 (2003). [81] M. Büttiker, Physical Review B 38, 9375 (1988). [82] K. v. Klitzing, G. Dorda, and M. Pepper, Physical Review Letters 45, 494 (1980). [83] J. Weis and K. von Klitzing, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 3954 (2011). [84] B. Jeckelmann and B. Jeanneret, Reports on Progress in Physics 64, 1603 (2001). [85] A. R. Panna, I. F. Hu, M. Kruskopf, D. K. Patel, D. G. Jarrett, C.-I. Liu, S. U. Payagala, D. Saha, A. F. Rigosi, D. B. Newell, C.-T. Liang, and R. E. Elmquist, Physical Review B 103, 075408 (2021). [86] A. F. Rigosi and R. E. Elmquist, Semiconductor Science and Technology 34, 093004 (2019). [87] A. F. Rigosi, M. Kruskopf, A. R. Panna, S. U. Payagala, D. G. Jarrett, R. E. Elmquist, and D. B. Newell, in Handbook of Metrology and Applications (Springer, 2022), pp. 1. [88] M. Kruskopf and R. E. Elmquist, Metrologia 55, R27 (2018). [89] F. C. Seifert, A. R. Panna, I. F. Hu, L. H. Keck, L. S. Chao, S. U. Payagala, D. G. Jarrett, C.-I. Liu, D. Saha, R. E. Elmquist, S. Schlamminger, A. F. Rigosi, D. B. Newell, and D. Haddad, Communications Physics 5, 321 (2022). [90] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007). [91] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005). [92] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Physical Review B 77, 195430 (2008). [93] V. P. Gusynin and S. G. Sharapov, Physical Review Letters 95, 146801 (2005). [94] J. W. McClure, Physical Review 104, 666 (1956). [95] Y. Barlas, K. Yang, and A. H. MacDonald, Nanotechnology 23, 052001 (2012). [96] R. Ribeiro-Palau, F. Lafont, J. Brun-Picard, D. Kazazis, A. Michon, F. Cheynis, O. Couturaud, C. Consejo, B. Jouault, W. Poirier, and F. Schopfer, Nature Nanotechnology 10, 965 (2015). [97] S. Kopylov, A. Tzalenchuk, S. Kubatkin, and V. I. Fal’ko, Applied Physics Letters 97, 112109 (2010). [98] J. A. Alexander-Webber, J. Huang, D. K. Maude, T. Janssen, A. Tzalenchuk, V. Antonov, T. Yager, S. Lara-Avila, S. Kubatkin, and R. Yakimova, Scientific Reports 6, 1 (2016). [99] M. Yang, O. Couturaud, W. Desrat, C. Consejo, D. Kazazis, R. Yakimova, M. Syväjärvi, M. Goiran, J. Béard, P. Frings, M. Pierre, A. Cresti, W. Escoffier, and B. Jouault, Physical Review Letters 117, 237702 (2016). [100] W. Poirier, A. Bounouh, F. Piquemal, and J. P. André, Metrologia 41, 285 (2004). [101] M. Kruskopf, A. F. Rigosi, A. R. Panna, M. Marzano, D. Patel, H. Jin, D. B. Newell, and R. E. Elmquist, Metrologia 56, 065002 (2019). [102] M. Ortolano, M. Abrate, and L. Callegaro, Metrologia 52, 31 (2015). [103] J. A. Alexander-Webber, A. M. R. Baker, T. J. B. M. Janssen, A. Tzalenchuk, S. Lara-Avila, S. Kubatkin, R. Yakimova, B. A. Piot, D. K. Maude, and R. J. Nicholas, Physical Review Letters 111, 096601 (2013). [104] A. J. Matthews, K. V. Kavokin, A. Usher, M. E. Portnoi, M. Zhu, J. D. Gething, M. Elliott, W. G. Herrenden-Harker, K. Phillips, D. A. Ritchie, M. Y. Simmons, C. B. Sorensen, O. P. Hansen, O. A. Mironov, M. Myronov, D. R. Leadley, and M. Henini, Physical Review B 70, 075317 (2004). [105] L. W. Wong, H. W. Jiang, N. Trivedi, and E. Palm, Physical Review B 51, 18033 (1995). [106] G. Nachtwei, Physica E: Low-dimensional Systems and Nanostructures 4, 79 (1999). [107] E. J. Fox, I. T. Rosen, Y. Yang, G. R. Jones, R. E. Elmquist, X. Kou, L. Pan, K. L. Wang, and D. Goldhaber-Gordon, Physical Review B 98, 075145 (2018). [108] O. Heinonen, P. L. Taylor, and S. M. Girvin, Physical Review B 30, 3016 (1984). [109] S. Komiyama, T. Takamasu, S. Hiyamizu, and S. Sasa, Solid State Communications 54, 479 (1985). [110] K. Shizuya, Physical Review B 60, 8218 (1999). [111] Y. Kawaguchi, S. Komiyama, T. Osada, and Y. Shiraki, Physica B: Condensed Matter 227, 183 (1996). [112] P. C. van Son, G. H. Kruithof, and T. M. Klapwijk, Physical Review B 42, 11267 (1990). [113] M. E. Cage, Journal of research of the National Institute of Standards and Technology 98, 361 (1993). Chapter 3. [1] J. Kang, D. Shin, S. Bae, and B. H. Hong, Nanoscale 4, 5527 (2012). [2] M. Chen, R. C. Haddon, R. Yan, and E. Bekyarova, Materials Horizons 4, 1054 (2017). [3] X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L.-m. Peng, and C. A. Richter, ACS Nano 5, 9144 (2011). [4] Y.-C. Lin, C. Jin, J.-C. Lee, S.-F. Jen, K. Suenaga, and P.-W. Chiu, ACS Nano 5, 2362 (2011). [5] J. Zhang, L. Lin, L. Sun, Y. Huang, A. L. Koh, W. Dang, J. Yin, M. Wang, C. Tan, T. Li, Z. Tan, Z. Liu, and H. Peng, Advanced Materials 29, 1700639 (2017). [6] D.-Y. Wang, I. S. Huang, P.-H. Ho, S.-S. Li, Y.-C. Yeh, D.-W. Wang, W.-L. Chen, Y.-Y. Lee, Y.-M. Chang, C.-C. Chen, C.-T. Liang, and C.-W. Chen, Advanced Materials 25, 4521 (2013). [7] J. Kwak, J. H. Chu, J.-K. Choi, S.-D. Park, H. Go, S. Y. Kim, K. Park, S.-D. Kim, Y.-W. Kim, E. Yoon, S. Kodambaka, and S.-Y. Kwon, Nature Communications 3, 645 (2012). [8] H. Wang and G. Yu, Advanced Materials 28, 4956 (2016). [9] M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, and J. Park, Nano Letters 9, 4479 (2009). [10] H. J. Song, M. Son, C. Park, H. Lim, M. P. Levendorf, A. W. Tsen, J. Park, and H. C. Choi, Nanoscale 4, 3050 (2012). [11] W. Norimatsu and M. Kusunoki, Physical Chemistry Chemical Physics 16, 3501 (2014). [12] K. V. Emtsev, F. Speck, T. Seyller, L. Ley, and J. D. Riley, Physical Review B 77, 155303 (2008). [13] T. Seyller, A. Bostwick, K. V. Emtsev, K. Horn, L. Ley, J. L. McChesney, T. Ohta, J. D. Riley, E. Rotenberg, and F. Speck, physica status solidi (b) 245, 1436 (2008). [14] N. Zebardastan, J. Bradford, J. Lipton-Duffin, J. MacLeod, K. K. Ostrikov, M. Tomellini, and N. Motta, Nanotechnology 34, 105601 (2022). [15] A. Ouerghi, M. G. Silly, M. Marangolo, C. Mathieu, M. Eddrief, M. Picher, F. Sirotti, S. El Moussaoui, and R. Belkhou, ACS Nano 6, 6075 (2012). [16] M. Kruskopf, D. M. Pakdehi, K. Pierz, S. Wundrack, R. Stosch, T. Dziomba, M. Götz, J. Baringhaus, J. Aprojanz, C. Tegenkamp, J. Lidzba, T. Seyller, F. Hohls, F. J. Ahlers, and H. W. Schumacher, 2D Materials 3, 041002 (2016). [17] Y. Yang, G. Cheng, P. Mende, I. G. Calizo, R. M. Feenstra, C. Chuang, C.-W. Liu, C.-I. Liu, G. R. Jones, A. R. Hight Walker, and R. E. Elmquist, Carbon 115, 229 (2017). [18] H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi, and H. Yamaguchi, Physical Review B 77, 075413 (2008). [19] T. Ohta, F. El Gabaly, A. Bostwick, J. L. McChesney, K. V. Emtsev, A. K. Schmid, T. Seyller, K. Horn, and E. Rotenberg, New Journal of Physics 10, 023034 (2008). [20] J. Hass, R. Feng, T. Li, X. Li, Z. Zong, W. A. De Heer, P. N. First, E. H. Conrad, C. A. Jeffrey, and C. Berger, Applied Physics Letters 89, 143106 (2006). [21] C. Chua, M. Connolly, A. Lartsev, T. Yager, S. Lara-Avila, S. Kubatkin, S. Kopylov, V. Fal’ko, R. Yakimova, R. Pearce, T. J. B. M. Janssen, A. Tzalenchuk, and C. G. Smith, Nano Letters 14, 3369 (2014). [22] T. Löfwander, P. San-Jose, and E. Prada, Physical Review B 87, 205429 (2013). [23] A. Iagallo, S. Tanabe, S. Roddaro, M. Takamura, Y. Sekine, H. Hibino, V. Miseikis, C. Coletti, V. Piazza, F. Beltram, and S. Heun, Semiconductor Science and Technology 30, 055007 (2015). [24] C. Virojanadara, M. Syväjarvi, R. Yakimova, L. I. Johansson, A. A. Zakharov, and T. Balasubramanian, Physical Review B 78, 245403 (2008). [25] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nature Materials 8, 203 (2009). [26] M. Kusunoki, T. Suzuki, T. Hirayama, N. Shibata, and K. Kaneko, Applied Physics Letters 77, 531 (2000). [27] T. Seyller, K. V. Emtsev, K. Gao, F. Speck, L. Ley, A. Tadich, L. Broekman, J. D. Riley, R. C. G. Leckey, O. Rader, A. Varykhalov, and A. M. Shikin, Surface Science 600, 3906 (2006). [28] J. Penuelas, A. Ouerghi, D. Lucot, C. David, J. Gierak, H. Estrade-Szwarckopf, and C. Andreazza-Vignolle, Physical Review B 79, 033408 (2009). [29] S. Tanaka, K. Morita, and H. Hibino, Physical Review B 81, 041406 (2010). [30] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Physical Review Letters 97, 187401 (2006). [31] A. C. Ferrari and D. M. Basko, Nature Nanotechnology 8, 235 (2013). [32] M. Kruskopf, A. F. Rigosi, A. R. Panna, M. Marzano, D. Patel, H. Jin, D. B. Newell, and R. E. Elmquist, Metrologia 56, 065002 (2019). [33] T. M. Hazard, A. Gyenis, A. Di Paolo, A. T. Asfaw, S. A. Lyon, A. Blais, and A. A. Houck, Physical Review Letters 122, 010504 (2019). [34] D. J. van Woerkom, A. Geresdi, and L. P. Kouwenhoven, Nature Physics 11, 547 (2015). [35] X. Wu, J. L. Long, H. S. Ku, R. E. Lake, M. Bal, and D. P. Pappas, Applied Physics Letters 111, 032602 (2017). [36] R. Di Leo, A. Nigro, G. Nobile, and R. Vaglio, Journal of Low Temperature Physics 78, 41 (1990). [37] C. M. Yen, L. E. Toth, Y. M. Shy, D. E. Anderson, and L. G. Rosner, Journal of Applied Physics 38, 2268 (1967). [38] M. Sidorova, A. D. Semenov, H. W. Hübers, S. Gyger, and S. Steinhauer, Superconductor Science and Technology 35, 105005 (2022). [39] D. Hazra, N. Tsavdaris, A. Mukhtarova, M. Jacquemin, F. Blanchet, R. Albert, S. Jebari, A. Grimm, A. Konar, E. Blanquet, F. Mercier, C. Chapelier, and M. Hofheinz, Physical Review B 97, 144518 (2018). [40] M. Müller, T. Luschmann, A. Faltermeier, S. Weichselbaumer, L. Koch, G. B. P. Huber, H. W. Schumacher, N. Ubbelohde, D. Reifert, T. Scheller, F. Deppe, A. Marx, S. Filipp, M. Althammer, R. Gross, and H. Huebl, Materials for Quantum Technology 2, 015002 (2022). [41] Y. Lei, R. K. Singh, L. Hongxue, S. Y. Wu, R. Hu, D. Durand, J. Bulman, J. M. Rowell, and N. Newman, IEEE Transactions on Applied Superconductivity 15, 44 (2005). [42] Y. Lei, N. Newman, and J. M. Rowell, IEEE Transactions on Applied Superconductivity 12, 1795 (2002). [43] M. Parizh, Y. Lvovsky, and M. Sumption, Superconductor Science and Technology 30, 014007 (2016). [44] M. N. Wilson, Cryogenics 48, 381 (2008). [45] H. Hirabayashi, IEEE Transactions on Nuclear Science 30, 3304 (1983). [46] K. Makise, H. Terai, M. Takeda, Y. Uzawa, and Z. Wang, IEEE Transactions on Applied Superconductivity 21, 139 (2011). [47] T. Shiino, S. Shiba, N. Sakai, T. Yamakura, L. Jiang, Y. Uzawa, H. Maezawa, and S. Yamamoto, Superconductor Science and Technology 23, 045004 (2010). [48] L. Zhang, L. You, L. Ying, W. Peng, and Z. Wang, Physica C: Superconductivity and its Applications 545, 1 (2018). [49] B. Dlubak, P. Seneor, A. Anane, C. Barraud, C. Deranlot, D. Deneuve, B. Servet, R. Mattana, F. Petroff, and A. Fert, Applied Physics Letters 97, 092502 (2010). [50] Z. Jin, Y. Su, J. Chen, X. Liu, and D. Wu, Applied Physics Letters 95, 233110 (2009). [51] M. H. Maneshian, F.-L. Kuo, K. Mahdak, J. Hwang, R. Banerjee, and N. D. Shepherd, Nanotechnology 22, 205703 (2011). [52] S. Kopylov, A. Tzalenchuk, S. Kubatkin, and V. I. Fal’ko, Applied Physics Letters 97, 112109 (2010). [53] F. Varchon, R. Feng, J. Hass, X. Li, B. N. Nguyen, C. Naud, P. Mallet, J. Y. Veuillen, C. Berger, E. H. Conrad, and L. Magaud, Physical Review Letters 99, 126805 (2007). [54] J. A. Alexander-Webber, J. Huang, D. K. Maude, T. Janssen, A. Tzalenchuk, V. Antonov, T. Yager, S. Lara-Avila, S. Kubatkin, and R. Yakimova, Scientific Reports 6, 1 (2016). [55] A. F. Rigosi, M. Kruskopf, H. M. Hill, H. Jin, B.-Y. Wu, P. E. Johnson, S. Zhang, M. Berilla, A. R. Hight Walker, C. A. Hacker, D. B. Newell, and R. E. Elmquist, Carbon 142, 468 (2019). [56] C. Chuang, Y. Yang, S. Pookpanratana, C. A. Hacker, C.-T. Liang, and R. E. Elmquist, Nanoscale 9, 11537 (2017). [57] A. R. Panna, I. F. Hu, M. Kruskopf, D. K. Patel, D. G. Jarrett, C.-I. Liu, S. U. Payagala, D. Saha, A. F. Rigosi, D. B. Newell, C.-T. Liang, and R. E. Elmquist, Physical Review B 103, 075408 (2021). [58] S. Tumanski, Principles of electrical measurement (CRC press, 2006). [59] K. Von Klitzing, in The Quantum Hall Effect: Poincaré Seminar 2004 (Springer, 2005), pp. 1. [60] F. Delahaye and B. Jeckelmann, Metrologia 40, 217 (2003). [61] F. Schopfer and W. Poirier, Journal of Applied Physics 114, 064508 (2013). [62] M. Büttiker, Physical Review B 38, 9375 (1988). [63] B. Jeckelmann and B. Jeanneret, Measurement Science and Technology 14, 1229 (2003). [64] F. Delahaye, Journal of applied physics 73, 7914 (1993). [65] W. J. M. Moore and P. N. Miljanic, The current comparator (IET, 1988). [66] M. P. MacMartin and N. L. Kusters, IEEE Transactions on Instrumentation and Measurement 15, 212 (1966). [67] J. M. Williams, IET science, measurement & technology 5, 211 (2011). Chapter 4. [1] G. S. May and S. M. Sze, Fundamental of semiconductor fabrication (Wiley, 2003). [2] H. Lee, K. Paeng, and I. S. Kim, Synthetic Metals 244, 36 (2018). [3] R. C. Haddon, Accounts of Chemical Research 21, 243 (1988). [4] T. S. Sreeprasad and V. Berry, Small 9, 341 (2013). [5] F. Wang, M. E. Itkis, E. B. Bekyarova, X. Tian, S. Sarkar, A. Pekker, I. Kalinina, M. L. Moser, and R. C. Haddon, Applied Physics Letters 100, 223111 (2012). [6] C. Chuang, Y. Yang, S. Pookpanratana, C. A. Hacker, C.-T. Liang, and R. E. Elmquist, Nanoscale 9, 11537 (2017). [7] C. T. Rettner, D. J. Auerbach, J. C. Tully, and A. W. Kleyn, The Journal of Physical Chemistry 100, 13021 (1996). [8] K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface science: an introduction (Springer Science & Business Media, 2013). [9] F. Varchon, R. Feng, J. Hass, X. Li, B. N. Nguyen, C. Naud, P. Mallet, J. Y. Veuillen, C. Berger, E. H. Conrad, and L. Magaud, Physical Review Letters 99, 126805 (2007). [10] A. Nilsson, L. G. M. Pettersson, and J. Norskov, Chemical bonding at surfaces and interfaces (Elsevier, 2011). [11] T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, Nano Letters 8, 173 (2008). [12] A. F. Rigosi, C.-I. Liu, B. Y. Wu, H.-Y. Lee, M. Kruskopf, Y. Yang, H. M. Hill, J. Hu, E. G. Bittle, J. Obrzut, A. R. Hight Walker, R. E. Elmquist, and D. B. Newell, Microelectronic Engineering 194, 51 (2018). [13] Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, Journal of Raman Spectroscopy 41, 479 (2010). [14] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Materials 6, 652 (2007). [15] A. F. Rigosi, M. Kruskopf, H. M. Hill, H. Jin, B.-Y. Wu, P. E. Johnson, S. Zhang, M. Berilla, A. R. Hight Walker, C. A. Hacker, D. B. Newell, and R. E. Elmquist, Carbon 142, 468 (2019). [16] P. Atkins, Shriver and Atkins' inorganic chemistry (Oxford University Press, USA, 2010). [17] B. Rees and P. Coppens, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 29, 2516 (1973). [18] F. A. Adedeji, D. Lalage, S. Brown, J. A. Connor, M. L. Leung, I. M. Paz-Andrade, and H. A. Skinner, Journal of Organometallic Chemistry 97, 221 (1975). [19] R. U. Kirss and P. M. Treichel, Journal of the American Chemical Society 108, 853 (1986). [20] S. Che, K. Jasuja, S. K. Behura, P. Nguyen, T. S. Sreeprasad, and V. Berry, Nano Letters 17, 4381 (2017). [21] I. P. Gloriozov, R. Marchal, J.-Y. Saillard, and Y. F. Oprunenko, European Journal of Inorganic Chemistry 2015, 250 (2015). [22] P. Plachinda, D. R. Evans, and R. Solanki, The Journal of chemical physics 135, 044103 (2011). [23] E. Bekyarova, S. Sarkar, F. Wang, M. E. Itkis, I. Kalinina, X. Tian, and R. C. Haddon, Accounts of Chemical Research 46, 65 (2013). [24] E. B. Bekyarova, S. Niyogi, S. Sarkar, X. Tian, M. Chen, M. L. Moser, K. Ayub, R. H. Mitchell, and R. C. Haddon, Synthetic Metals 210, 80 (2015). [25] S. Liu, Y. Lei, Y. Li, T. Zhang, H. Wang, and Y. Lan, RSC Advances 4, 28640 (2014). [26] T. Low, V. Perebeinos, J. Tersoff, and P. Avouris, Physical Review Letters 108, 096601 (2012). [27] J.-K. Lee, S. Yamazaki, H. Yun, J. Park, G. P. Kennedy, G.-T. Kim, O. Pietzsch, R. Wiesendanger, S. Lee, S. Hong, U. Dettlaff-Weglikowska, and S. Roth, Nano Letters 13, 3494 (2013). [28] N. N. Klimov, S. Jung, S. Zhu, T. Li, C. A. Wright, S. D. Solares, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, Science 336, 1557 (2012). [29] A. F. Rigosi, C.-I. Liu, N. R. Glavin, Y. Yang, H. M. Hill, J. Hu, A. R. Hight Walker, C. A. Richter, R. E. Elmquist, and D. B. Newell, ACS Omega 2, 2326 (2017). [30] E. Bekyarova, S. Sarkar, S. Niyogi, M. E. Itkis, and R. C. Haddon, Journal of Physics D: Applied Physics 45, 154009 (2012). [31] S. Sarkar, H. Zhang, J.-W. Huang, F. Wang, E. Bekyarova, C. N. Lau, and R. C. Haddon, Advanced Materials 25, 1131 (2013). [32] S. Sarkar, S. Niyogi, E. Bekyarova, and R. C. Haddon, Chemical Science 2, 1326 (2011). [33] I. Kalinina, E. Bekyarova, S. Sarkar, F. Wang, M. E. Itkis, X. Tian, S. Niyogi, N. Jha, and R. C. Haddon, Macromolecular Chemistry and Physics 213, 1001 (2012). [34] S. Sarkar, M. L. Moser, X. Tian, X. Zhang, Y. F. Al-Hadeethi, and R. C. Haddon, Chemistry of Materials 26, 184 (2014). [35] G. E. Fenoy, W. A. Marmisollé, O. Azzaroni, and W. Knoll, Biosensors and Bioelectronics 148, 111796 (2020). [36] X. Zhang, A. Hsu, H. Wang, Y. Song, J. Kong, M. S. Dresselhaus, and T. Palacios, ACS Nano 7, 7262 (2013). [37] J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow, Nano Letters 10, 3001 (2010). [38] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C. Tsang, and P. Avouris, Nano Letters 9, 388 (2009). [39] Z. Wang, J. Liu, X. Hao, Y. Wang, Y. Chen, P. Li, and M. Dong, New Journal of Chemistry 43, 15275 (2019). [40] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007). [41] S. Danz, M. Titov, and B. N. Narozhny, Physical Review B 102, 081114 (2020). [42] L. Levitov and G. Falkovich, Nature Physics 12, 672 (2016). [43] A. Nachawaty, M. Yang, S. Nanot, D. Kazazis, R. Yakimova, W. Escoffier, and B. Jouault, Physical Review B 98, 045403 (2018). [44] C.-W. Liu, C. Chuang, Y. Yang, R. E. Elmquist, Y.-J. Ho, H.-Y. Lee, and C.-T. Liang, 2D Materials 4, 025007 (2017). [45] M. Kruskopf and R. E. Elmquist, Metrologia 55, R27 (2018). [46] F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Physical Review Letters 100, 056802 (2008). [47] E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Physical Review Letters 97, 146805 (2006). [48] S. Kopylov, A. Tzalenchuk, S. Kubatkin, and V. I. Fal’ko, Applied Physics Letters 97, 112109 (2010). [49] J. A. Alexander-Webber, J. Huang, D. K. Maude, T. Janssen, A. Tzalenchuk, V. Antonov, T. Yager, S. Lara-Avila, S. Kubatkin, and R. Yakimova, Scientific Reports 6, 1 (2016). [50] H. Funk, A. Knorr, F. Wendler, and E. Malic, Physical Review B 92, 205428 (2015). [51] J. Moser, A. Barreiro, and A. Bachtold, Applied Physics Letters 91, 163513 (2007). [52] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Physical Review Letters 101, 096802 (2008). [53] F.-H. Liu, C.-S. Hsu, C. Chuang, T.-P. Woo, L.-I. Huang, S.-T. Lo, Y. Fukuyama, Y. Yang, R. E. Elmquist, and C.-T. Liang, Nanoscale Research Letters 8, 360 (2013). [54] H. P. Wei, L. W. Engel, and D. C. Tsui, Physical Review B 50, 14609 (1994). [55] A. J. Matthews, K. V. Kavokin, A. Usher, M. E. Portnoi, M. Zhu, J. D. Gething, M. Elliott, W. G. Herrenden-Harker, K. Phillips, D. A. Ritchie, M. Y. Simmons, C. B. Sorensen, O. P. Hansen, O. A. Mironov, M. Myronov, D. R. Leadley, and M. Henini, Physical Review B 70, 075317 (2004). [56] A. K. M. Wennberg, S. N. Ytterboe, C. M. Gould, H. M. Bozler, J. Klem, and H. Morkoç, Physical Review B 34, 4409 (1986). [57] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, Physical Review Letters 97, 016801 (2006). [58] I. F. Hu, A. R. Panna, A. F. Rigosi, M. Kruskopf, D. K. Patel, C.-I. Liu, D. Saha, S. U. Payagala, D. B. Newell, D. G. Jarrett, C.-T. Liang, and R. E. Elmquist, Physical Review B 104, 085418 (2021). [59] P. T. Coleridge, R. Stoner, and R. Fletcher, Physical Review B 39, 1120 (1989). [60] E. H. Hwang and S. Das Sarma, Physical Review B 77, 195412 (2008). [61] Y. Yang, G. Cheng, P. Mende, I. G. Calizo, R. M. Feenstra, C. Chuang, C.-W. Liu, C.-I. Liu, G. R. Jones, A. R. Hight Walker, and R. E. Elmquist, Carbon 115, 229 (2017). [62] R. Ribeiro-Palau, F. Lafont, J. Brun-Picard, D. Kazazis, A. Michon, F. Cheynis, O. Couturaud, C. Consejo, B. Jouault, W. Poirier, and F. Schopfer, Nature Nanotechnology 10, 965 (2015). [63] B. Jeckelmann, B. Jeanneret, and D. Inglis, Physical Review B 55, 13124 (1997). Chapter 5. [1] F. Delahaye and B. Jeckelmann, Metrologia 40, 217 (2003). [2] B. Jeckelmann and B. Jeanneret, Reports on Progress in Physics 64, 1603 (2001). [3] A. R. Panna, I. F. Hu, M. Kruskopf, D. K. Patel, D. G. Jarrett, C.-I. Liu, S. U. Payagala, D. Saha, A. F. Rigosi, D. B. Newell, C.-T. Liang, and R. E. Elmquist, Physical Review B 103, 075408 (2021). [4] R. F. Dziuba and R. E. Elmquist, IEEE Transactions on Instrumentation and Measurement 42, 126 (1993). [5] B. V. Hamon, Journal of Scientific Instruments 31, 450 (1954). [6] J. Williams, IET science, measurement & technology 5, 211 (2011). [7] M. Kruskopf, A. F. Rigosi, A. R. Panna, M. Marzano, D. Patel, H. Jin, D. B. Newell, and R. E. Elmquist, Metrologia 56, 065002 (2019). [8] M. Kruskopf, A. F. Rigosi, A. R. Panna, D. K. Patel, H. Jin, M. Marzano, M. Berilla, D. B. Newell, and R. E. Elmquist, IEEE Transactions on Electron Devices 66, 3973 (2019). [9] F. C. Seifert, A. R. Panna, I. F. Hu, L. H. Keck, L. S. Chao, S. U. Payagala, D. G. Jarrett, C.-I. Liu, D. Saha, R. E. Elmquist, S. Schlamminger, A. F. Rigosi, D. B. Newell, and D. Haddad, Communications Physics 5, 321 (2022). [10] F. Delahaye, Journal of Applied Physics 73, 7914 (1993). [11] V. Tsemekhman, K. Tsemekhman, C. Wexler, J. H. Han, and D. J. Thouless, Physical Review B 55, R10201 (1997). [12] N. Q. Balaban, U. Meirav, H. Shtrikman, and Y. Levinson, Physical Review Letters 71, 1443 (1993). [13] F. F. Fang and P. J. Stiles, Physical Review B 29, 3749 (1984). [14] G. L. J. A. Rikken, J. A. M. M. van Haaren, W. van der Wel, A. P. van Gelder, H. van Kempen, P. Wyder, J. P. André, K. Ploog, and G. Weimann, Physical Review B 37, 6181 (1988). [15] I. F. Hu, A. R. Panna, A. F. Rigosi, M. Kruskopf, D. K. Patel, C.-I. Liu, D. Saha, S. U. Payagala, D. B. Newell, D. G. Jarrett, C.-T. Liang, and R. E. Elmquist, Physical Review B 104, 085418 (2021). [16] K. von Klitzing and G. Landwehr, Solid State Communications 9, 2201 (1971). [17] H. Çelik, M. Cankurtaran, A. Bayrakli, E. Tiras, and N. Balkan, Semiconductor Science and Technology 12, 389 (1997). [18] W. Qin, H. Q. Xu, P. Omling, C. Yang, and K. G. Malmqvist, Semiconductor Science and Technology 15, 529 (2000). [19] E. Peraticos, S. Kumar, M. Pepper, A. Siddiki, I. Farrer, D. Ritchie, G. Jones, and J. Griffiths, Physical Review B 102, 115306 (2020). [20] C. A. Richter, R. G. Wheeler, and R. N. Sacks, Surface Science 263, 270 (1992). [21] J. Sailer, A. Wild, V. Lang, A. Siddiki, and D. Bougeard, New Journal of Physics 12, 113033 (2010). [22] E. M. Kendirlik, S. Sirt, S. B. Kalkan, W. Dietsche, W. Wegscheider, S. Ludwig, and A. Siddiki, Scientific Reports 3, 3133 (2013). [23] I. Shlimak, V. Ginodman, A. B. Gerber, A. Milner, K. J. Friedland, and D. J. Paul, Europhysics Letters 69, 997 (2005). [24] P. Rickhaus, M. Weiss, L. Marot, and C. Schönenberger, Nano Letters 12, 1942 (2012). [25] C. W. J. Beenakker, Reviews of Modern Physics 80, 1337 (2008). [26] C. W. J. Beenakker, Physical Review Letters 97, 067007 (2006). [27] G.-H. Lee, K.-F. Huang, D. K. Efetov, D. S. Wei, S. Hart, T. Taniguchi, K. Watanabe, A. Yacoby, and P. Kim, Nature Physics 13, 693 (2017). [28] M. Kruskopf, S. Bauer, Y. Pimsut, A. Chatterjee, D. K. Patel, A. F. Rigosi, R. E. Elmquist, K. Pierz, E. Pesel, M. Götz, and J. Schurr, IEEE Transactions on Electron Devices 68, 3672 (2021). [29] E. Watanabe, A. Conwill, D. Tsuya, and Y. Koide, Diamond and Related Materials 24, 171 (2012). [30] C. A. Joiner, T. Roy, Z. R. Hesabi, B. Chakrabarti, and E. M. Vogel, Applied Physics Letters 104, 223109 (2014). [31] F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Physical Review Letters 100, 056802 (2008). [32] N. M. R. Peres, Reviews of Modern Physics 82, 2673 (2010). [33] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, Solid State Communications 143, 92 (2007). [34] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005). [35] Z. Tan, C. Tan, L. Ma, G. T. Liu, L. Lu, and C. L. Yang, Physical Review B 84, 115429 (2011). [36] H. B. G. Casimir, Reviews of Modern Physics 17, 343 (1945). [37] M. Büttiker, Physical Review Letters 57, 1761 (1986). [38] H. H. Sample, W. J. Bruno, S. B. Sample, and E. K. Sichel, Journal of Applied Physics 61, 1079 (1987). [39] F.-H. Liu, C.-S. Hsu, C. Chuang, T.-P. Woo, L.-I. Huang, S.-T. Lo, Y. Fukuyama, Y. Yang, R. E. Elmquist, and C.-T. Liang, Nanoscale Research Letters 8, 360 (2013). [40] M. E. Cage, K. Klitzing, A. M. Chang, F. Duncan, M. Haldane, R. B. Laughlin, A. M. M. Pruisken, and D. J. Thouless, The quantum Hall effect (Springer Science & Business Media, 2012). [41] Y. Jia, X. Gong, P. Peng, Z. Wang, Z. Tian, L. Ren, Y. Fu, and H. Zhang, Nano-Micro Letters 8, 336 (2016). [42] J. Cha, J. Son, and J. Hong, Advanced Materials Interfaces 9, 2102207 (2022). [43] Y. J. Shin, Y. Wang, H. Huang, G. Kalon, A. T. S. Wee, Z. Shen, C. S. Bhatia, and H. Yang, Langmuir 26, 3798 (2010). [44] K. Nagashio and A. Toriumi, Japanese Journal of Applied Physics 50, 070108 (2011). [45] S. Russo, M. F. Craciun, M. Yamamoto, A. F. Morpurgo, and S. Tarucha, Physica E: Low-dimensional Systems and Nanostructures 42, 677 (2010). [46] K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, in 2009 IEEE International Electron Devices Meeting (IEDM)2009), pp. 1. [47] K. Ikushima, H. Sakuma, S. Komiyama, and K. Hirakawa, Physical Review B 76, 165323 (2007). [48] G. Nachtwei, Physica E: Low-dimensional Systems and Nanostructures 4, 79 (1999). [49] S. Roshko, W. Dietsche, and L. J. Challis, Physical Review Letters 80, 3835 (1998). [50] U. Klaß, W. Dietsche, K. von Klitzing, and K. Ploog, Zeitschrift für Physik B Condensed Matter 82, 351 (1991). [51] S. Komiyama, H. Sakuma, K. Ikushima, and K. Hirakawa, Physical Review B 73, 045333 (2006). [52] W. Poirier and F. Schopfer, The European Physical Journal Special Topics 172, 207 (2009). [53] M. Kruskopf, D. M. Pakdehi, K. Pierz, S. Wundrack, R. Stosch, T. Dziomba, M. Götz, J. Baringhaus, J. Aprojanz, C. Tegenkamp, J. Lidzba, T. Seyller, F. Hohls, F. J. Ahlers, and H. W. Schumacher, 2D Materials 3, 041002 (2016). [54] C. Chua, M. Connolly, A. Lartsev, T. Yager, S. Lara-Avila, S. Kubatkin, S. Kopylov, V. Fal’ko, R. Yakimova, R. Pearce, T. J. B. M. Janssen, A. Tzalenchuk, and C. G. Smith, Nano Letters 14, 3369 (2014). [55] M. Büttiker, Physical Review B 38, 9375 (1988). [56] C. A. Hamilton, C. J. Burroughs, and S. P. Benz, IEEE Transactions on Applied Superconductivity 7, 3756 (1997). [57] S. P. Benz and C. A. Hamilton, Proceedings of the IEEE 92, 1617 (2004). [58] A. Rüfenacht, N. E. Flowers-Jacobs, and S. P. Benz, Metrologia 55, S152 (2018). [59] W. Poirier, A. Bounouh, F. Piquemal, and J. P. André, Metrologia 41, 285 (2004). [60] H. He, K. Cedergren, N. Shetty, S. Lara-Avila, S. Kubatkin, T. Bergsten, and G. Eklund, Nature Communications 13, 6933 (2022). [61] C.-W. Liu, C. Chuang, Y. Yang, R. E. Elmquist, Y.-J. Ho, H.-Y. Lee, and C.-T. Liang, 2D Materials 4, 025007 (2017). [62] K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface science: an introduction (Springer Science & Business Media, 2013). [63] D. P. Woodruff, Modern techniques of surface science (Cambridge university press, 2016). [64] L. Onsager, Physical Review 37, 405 (1931). [65] L. Onsager, Physical Review 38, 2265 (1931). [66] M. O. Goerbig, Reviews of Modern Physics 83, 1193 (2011). [67] C. H. Yang, F. M. Peeters, and W. Xu, Physical Review B 82, 075401 (2010). [68] H. Funk, A. Knorr, F. Wendler, and E. Malic, Physical Review B 92, 205428 (2015). [69] M. Orlita, C. Faugeras, R. Grill, A. Wysmolek, W. Strupinski, C. Berger, W. A. de Heer, G. Martinez, and M. Potemski, Physical Review Letters 107, 216603 (2011). [70] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Physical Review Letters 48, 1559 (1982). [71] Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim, Physical Review Letters 96, 136806 (2006). [72] C. Tőke, P. E. Lammert, V. H. Crespi, and J. K. Jain, Physical Review B 74, 235417 (2006). [73] S. Kopylov, A. Tzalenchuk, S. Kubatkin, and V. I. Fal’ko, Applied Physics Letters 97, 112109 (2010). [74] T. J. B. M. Janssen, A. Tzalenchuk, R. Yakimova, S. Kubatkin, S. Lara-Avila, S. Kopylov, and V. I. Fal’ko, Physical Review B 83, 233402 (2011). [75] J. A. Alexander-Webber, J. Huang, D. K. Maude, T. J. B. M. Janssen, A. Tzalenchuk, V. Antonov, T. Yager, S. Lara-Avila, S. Kubatkin, R. Yakimova, and R. J. Nicholas, Scientific Reports 6, 30296 (2016). [76] Y. Yang, L.-I. Huang, Y. Fukuyama, F.-H. Liu, M. A. Real, P. Barbara, C.-T. Liang, D. B. Newell, and R. E. Elmquist, Small 11, 90 (2015). Chapter 6. [1] E. A. Mechtly, The international system of units: physical constants and conversion factors (Scientific and Technical Information Division, National Aeronautics and …, 1964), Vol. 7012. [2] R. E. Elmquist, M. E. Cage, Y.-h. Tang, A.-M. Jeffery, J. R. Kinard Jr, R. F. Dziuba, N. M. Oldham, and E. R. Williams, Journal of research of the National Institute of Standards and Technology 106, 65 (2001). [3] D. B. Newell, Physics Today 67, 35 (2014). [4] W. Nawrocki, Quantum standards and instrumentation. Springer, Heidelberg (2015). [5] K. von Klitzing, Nature Physics 13, 198 (2017). [6] B. D. Josephson, Physics Letters 1, 251 (1962). [7] K. von Klitzing, G. Dorda, and M. Pepper, Physical Review Letters 45, 494 (1980). [8] D. B. Newell, F. Cabiati, J. Fischer, K. Fujii, S. G. Karshenboim, H. S. Margolis, E. de Mirandés, P. J. Mohr, F. Nez, K. Pachucki, T. J. Quinn, B. N. Taylor, M. Wang, B. M. Wood, and Z. Zhang, Metrologia 55, L13 (2018). [9] S. Schlamminger, Redefining the kilogram and other SI units (IOP Publishing, 2018). [10] I. A. Robinson and S. Schlamminger, Metrologia 53, A46 (2016). [11] B. P. Kibble, in Atomic Masses and Fundamental Constants 5, edited by J. H. Sanders, and A. H. Wapstra (Springer US, Boston, MA, 1976), pp. 545. [12] D. Haddad, F. Seifert, L. S. Chao, A. Possolo, D. B. Newell, J. R. Pratt, C. J. Williams, and S. Schlamminger, Metrologia 54, 633 (2017). [13] D. Haddad, B. Waltrip, and R. L. Steiner, in 2012 Conference on Precision electromagnetic Measurements2012), pp. 336. [14] A. R. Panna, I. F. Hu, M. Kruskopf, D. K. Patel, D. G. Jarrett, C.-I. Liu, S. U. Payagala, D. Saha, A. F. Rigosi, D. B. Newell, C.-T. Liang, and R. E. Elmquist, Physical Review B 103, 075408 (2021). [15] I. F. Hu, A. R. Panna, A. F. Rigosi, M. Kruskopf, D. K. Patel, C.-I. Liu, D. Saha, S. U. Payagala, D. B. Newell, D. G. Jarrett, C.-T. Liang, and R. E. Elmquist, Physical Review B 104, 085418 (2021). [16] W. J. M. Moore and P. N. Miljanic, The current comparator (IET, 1988). [17] C. A. Hamilton, C. J. Burroughs, and R. L. Kautz, IEEE Transactions on Instrumentation and Measurement 44, 223 (1995). [18] S. P. Benz and C. A. Hamilton, Proceedings of the IEEE 92, 1617 (2004). [19] C. Yonuk, C. J. Burroughs, P. D. Dresselhaus, N. Hadacek, H. Yamamori, and S. P. Benz, IEEE Transactions on Instrumentation and Measurement 54, 616 (2005). [20] C. A. Hamilton, C. J. Burroughs, and S. P. Benz, IEEE Transactions on Applied Superconductivity 7, 3756 (1997). [21] A. Rüfenacht, N. E. Flowers-Jacobs, and S. P. Benz, Metrologia 55, S152 (2018). [22] F. C. Seifert, A. R. Panna, I. F. Hu, L. H. Keck, L. S. Chao, S. U. Payagala, D. G. Jarrett, C.-I. Liu, D. Saha, R. E. Elmquist, S. Schlamminger, A. F. Rigosi, D. B. Newell, and D. Haddad, Communications Physics 5, 321 (2022). [23] D. Haddad, F. Seifert, L. S. Chao, S. Li, D. B. Newell, J. R. Pratt, C. Williams, and S. Schlamminger, Review of Scientific Instruments 87, 061301 (2016). [24] G. Girard, Metrologia 31, 317 (1994). [25] N. Kuramoto, Nature Physics 18, 720 (2022). [26] F. Seifert, A. Panna, S. Li, B. Han, L. Chao, A. Cao, D. Haddad, H. Choi, L. Haley, and S. Schlamminger, IEEE Transactions on Instrumentation and Measurement 63, 3027 (2014). [27] D. Haddad, F. Seifert, S. Schlamminger, L. S. Chao, D. B. Newell, and J. R. Pratt, in 29th Conference on Precision Electromagnetic Measurements (CPEM 2014)2014), pp. 142. [28] G. L. Ingold and Y. V. Nazarov, in NATO ASI (Plenum Press New York, 1992). [29] S. P. Giblin, M. Kataoka, J. D. Fletcher, P. See, T. J. B. M. Janssen, J. P. Griffiths, G. A. C. Jones, I. Farrer, and D. A. Ritchie, Nature Communications 3, 930 (2012). [30] L. Fricke, M. Wulf, B. Kaestner, F. Hohls, P. Mirovsky, B. Mackrodt, R. Dolata, T. Weimann, K. Pierz, U. Siegner, and H. W. Schumacher, Physical Review Letters 112, 226803 (2014). [31] P. J. Koppinen, M. D. Stewart, and N. M. Zimmerman, IEEE Transactions on Electron Devices 60, 78 (2013). [32] J. P. Pekola, O.-P. Saira, V. F. Maisi, A. Kemppinen, M. Möttönen, Y. A. Pashkin, and D. V. Averin, Reviews of Modern Physics 85, 1421 (2013). [33] M.-H. Bae, D.-H. Chae, M.-S. Kim, B.-K. Kim, S.-I. Park, J. Song, T. Oe, N.-H. Kaneko, N. Kim, and W.-S. Kim, Metrologia 57, 065025 (2020). [34] N.-H. Kaneko, S. Nakamura, and Y. Okazaki, Measurement Science and Technology 27, 032001 (2016). [35] J. Brun-Picard, S. Djordjevic, D. Leprat, F. Schopfer, and W. Poirier, Physical Review X 6, 041051 (2016). [36] M. W. Keller, Metrologia 45, 102 (2008). [37] H. Scherer and B. Camarota, Measurement Science and Technology 23, 124010 (2012). [38] H. Scherer and H. W. Schumacher, Annalen der Physik 531, 1800371 (2019). [39] S. Davidson and M. Stock, Metrologia 58, 033002 (2021). [40] M. Stock, P. Barat, R. S. Davis, A. Picard, and M. J. T. Milton, Metrologia 52, 310 (2015). [41] M. Stock, P. Barat, P. Pinot, F. Beaudoux, P. Espel, F. Piquemal, M. Thomas, D. Ziane, P. Abbott, D. Haddad, Z. Kubarych, J. R. Pratt, S. Schlamminger, K. Fujii, K. Fujita, N. Kuramoto, S. Mizushima, L. Zhang, S. Davidson, R. G. Green, J. Liard, C. Sanchez, B. Wood, H. Bettin, M. Borys, I. Busch, M. Hämpke, M. Krumrey, and A. Nicolaus, Metrologia 55, T1 (2018). [42] M. Stock, P. Conceição, H. Fang, F. Bielsa, A. Kiss, L. Nielsen, D. Kim, M. Kim, K. C. Lee, S. Lee, M. Seo, B. C. Woo, Z. Li, J. Wang, Y. Bai, J. Xu, D. Wu, Y. Lu, Z. Zhang, Q. He, D. Haddad, S. Schlamminger, D. Newell, E. Mulhern, P. Abbott, Z. Kubarych, N. Kuramoto, S. Mizushima, L. Zhang, K. Fujita, S. Davidson, R. G. Green, J. O. Liard, N. F. Murnaghan, C. A. Sanchez, B. M. Wood, H. Bettin, M. Borys, M. Mecke, A. Nicolaus, A. Peter, M. Müller, F. Scholz, and A. Schofeld, Metrologia 57, 07030 (2020). [43] K. Fujii, H. Bettin, P. Becker, E. Massa, O. Rienitz, A. Pramann, A. Nicolaus, N. Kuramoto, I. Busch, and M. Borys, Metrologia 53, A19 (2016). Chapter 7. [1] M. Kruskopf, D. M. Pakdehi, K. Pierz, S. Wundrack, R. Stosch, T. Dziomba, M. Götz, J. Baringhaus, J. Aprojanz, C. Tegenkamp, J. Lidzba, T. Seyller, F. Hohls, F. J. Ahlers, and H. W. Schumacher, 2D Materials 3, 041002 (2016). [2] I. F. Hu, A. R. Panna, A. F. Rigosi, M. Kruskopf, D. K. Patel, C.-I. Liu, D. Saha, S. U. Payagala, D. B. Newell, D. G. Jarrett, C.-T. Liang, and R. E. Elmquist, Physical Review B 104, 085418 (2021). [3] L. Onsager, Physical Review 37, 405 (1931). [4] L. Onsager, Physical Review 38, 2265 (1931). [5] H. B. G. Casimir, Reviews of Modern Physics 17, 343 (1945). [6] G. Lebon, D. Jou, and J. Casas-Vázquez, Understanding non-equilibrium thermodynamics (Springer, 2008), Vol. 295. [7] H. B. Callen, Physical Review 73, 1349 (1948). [8] P. Jacquod, R. S. Whitney, J. Meair, and M. Büttiker, Physical Review B 86, 155118 (2012). [9] D. G. Miller, Chemical Reviews 60, 15 (1960). [10] G. L. Eyink and K. R. Sreenivasan, Reviews of Modern Physics 78, 87 (2006). [11] D. G. Levitt, Biochimica et Biophysica Acta (BBA) - Biomembranes 373, 115 (1974). [12] R. Landauer, A. R. Bishop, D. K. Campbell, P. Kumar, and S. E. Trullinger, (Springer Berlin, 1987). [13] R. A. Webb, S. Washburn, and C. P. Umbach, Physical Review B 37, 8455 (1988). [14] P. G. N. de Vegvar, G. Timp, P. M. Mankiewich, J. E. Cunningham, R. Behringer, and R. E. Howard, Physical Review B 38, 4326 (1988). [15] D. Sánchez and M. Büttiker, Physical Review Letters 93, 106802 (2004). [16] H. Linke, W. Sheng, A. Löfgren, X. Hongqi, P. Omling, and P. E. Lindelof, Europhysics Letters 44, 341 (1998). [17] M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Science 367, 900 (2020). [18] A. R. Panna, I. F. Hu, M. Kruskopf, D. K. Patel, D. G. Jarrett, C.-I. Liu, S. U. Payagala, D. Saha, A. F. Rigosi, D. B. Newell, C.-T. Liang, and R. E. Elmquist, Physical Review B 103, 075408 (2021). [19] M. Kruskopf, A. F. Rigosi, A. R. Panna, D. K. Patel, H. Jin, M. Marzano, M. Berilla, D. B. Newell, and R. E. Elmquist, IEEE Transactions on Electron Devices 66, 3973 (2019). [20] A. F. Rigosi, M. Kruskopf, H. M. Hill, H. Jin, B.-Y. Wu, P. E. Johnson, S. Zhang, M. Berilla, A. R. Hight Walker, C. A. Hacker, D. B. Newell, and R. E. Elmquist, Carbon 142, 468 (2019). [21] E. F. Northrup, Methods of measuring electrical resistance (McGraw-Hill book company, 1912). [22] M. Buttiker and Y. Imry, Journal of Physics C: Solid State Physics 18, L467 (1985). [23] L. L. Soethout, H. v. Kempen, J. T. P. W. v. Maarseveen, P. A. Schroeder, and P. Wyder, Journal of Physics F: Metal Physics 17, L129 (1987). [24] M. Büttiker, Physical Review Letters 57, 1761 (1986). [25] H. H. Sample, W. J. Bruno, S. B. Sample, and E. K. Sichel, Journal of Applied Physics 61, 1079 (1987). [26] C. A. Marlow, R. P. Taylor, M. Fairbanks, I. Shorubalko, and H. Linke, Physical Review Letters 96, 116801 (2006). [27] F. F. Fang and P. J. Stiles, Physical Review B 29, 3749 (1984). [28] F. Delahaye, Journal of Applied Physics 73, 7914 (1993). [29] M. E. Cage, J Res Natl Inst Stand Technol 102, 677 (1997). [30] T. Kramer, C. Kreisbeck, V. Krueckl, E. J. Heller, R. E. Parrott, and C.-T. Liang, Physical Review B 81, 081410 (2010). [31] M. Büttiker, Physical Review B 38, 9375 (1988). [32] B. I. Halperin, Physical Review B 25, 2185 (1982). [33] J. Weis and K. von Klitzing, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 3954 (2011). [34] U. Klaß, W. Dietsche, K. von Klitzing, and K. Ploog, Zeitschrift für Physik B Condensed Matter 82, 351 (1991). [35] K. Ikushima, H. Sakuma, S. Komiyama, and K. Hirakawa, Physical Review B 76, 165323 (2007). [36] C.-C. Yeh, S.-C. Wang, S.-T. Lo, G.-H. Kim, D. A. Ritchie, G. Strasser, and C.-T. Liang, Chinese Journal of Physics 82, 149 (2023). [37] W. Li, G. A. Csáthy, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Physical Review Letters 94, 206807 (2005). [38] B. Huckestein, Reviews of Modern Physics 67, 357 (1995). [39] C. Chuang, C.-W. Liu, Y. Yang, W.-R. Syong, C.-T. Liang, and R. E. Elmquist, Materials 12, 2696 (2019). [40] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nature Nanotechnology 3, 206 (2008). [41] S. Tanabe, Y. Sekine, H. Kageshima, M. Nagase, and H. Hibino, Physical Review B 84, 115458 (2011). [42] W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, Physical Review B 80, 235402 (2009). [43] E. H. Hwang, S. Adam, and S. D. Sarma, Physical Review Letters 98, 186806 (2007). [44] C.-W. Liu, C. Chuang, Y. Yang, R. E. Elmquist, Y.-J. Ho, H.-Y. Lee, and C.-T. Liang, 2D Materials 4, 025007 (2017). [45] S. Kičin, A. Pioda, T. Ihn, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Physical Review B 70, 205302 (2004). [46] S. Komiyama, H. Hirai, M. Ohsawa, Y. Matsuda, S. Sasa, and T. Fujii, Physical Review B 45, 11085 (1992). [47] T. Schumann, K. J. Friedland, M. H. Oliveira, A. Tahraoui, J. M. J. Lopes, and H. Riechert, Physical Review B 85, 235402 (2012). [48] S. Washburn, A. B. Fowler, H. Schmid, and D. Kern, Physical Review Letters 61, 2801 (1988). [49] S. Komiyama, H. Hirai, S. Sasa, and S. Hiyamizu, Physical Review B 40, 12566 (1989). [50] D. Hartmann, L. Worschech, and A. Forchel, Physical Review B 78, 113306 (2008). [51] A. Sinterhauf, G. A. Traeger, D. Momeni Pakdehi, P. Schädlich, P. Willke, F. Speck, T. Seyller, C. Tegenkamp, K. Pierz, H. W. Schumacher, and M. Wenderoth, Nature Communications 11, 555 (2020). [52] D. Momeni Pakdehi, P. Schädlich, T. T. N. Nguyen, A. A. Zakharov, S. Wundrack, E. Najafidehaghani, F. Speck, K. Pierz, T. Seyller, C. Tegenkamp, and H. W. Schumacher, Advanced Functional Materials 30, 2004695 (2020). [53] D. Momeni Pakdehi, J. Aprojanz, A. Sinterhauf, K. Pierz, M. Kruskopf, P. Willke, J. Baringhaus, J. P. Stöckmann, G. A. Traeger, F. Hohls, C. Tegenkamp, M. Wenderoth, F. J. Ahlers, and H. W. Schumacher, ACS Applied Materials & Interfaces 10, 6039 (2018). [54] J. D. Caldwell, T. J. Anderson, J. C. Culbertson, G. G. Jernigan, K. D. Hobart, F. J. Kub, M. J. Tadjer, J. L. Tedesco, J. K. Hite, M. A. Mastro, R. L. Myers-Ward, C. R. Eddy, Jr., P. M. Campbell, and D. K. Gaskill, ACS Nano 4, 1108 (2010). [55] D. S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J. H. Smet, Nano Letters 8, 4320 (2008). [56] S.-H. Bae, X. Zhou, S. Kim, Y. S. Lee, S. S. Cruz, Y. Kim, J. B. Hannon, Y. Yang, D. K. Sadana, F. M. Ross, H. Park, and J. Kim, Proceedings of the National Academy of Sciences 114, 4082 (2017). [57] A. Endo, F. Komori, K. Morita, T. Kajiwara, and S. Tanaka, Journal of Low-Temperature Physics 179, 237 (2015). [58] M. L. Leadbeater, L. C. Foden, T. M. Burke, J. H. Burroughes, M. P. Grimshaw, D. A. Ritchie, L. L. Wang, and M. Pepper, Journal of Physics: Condensed Matter 7, L307 (1995). [59] M. L. Leadbeater, C. L. Foden, J. H. Burroughes, M. Pepper, T. M. Burke, L. L. Wang, M. P. Grimshaw, and D. A. Ritchie, Physical Review B 52, R8629 (1995). [60] T. Low, V. Perebeinos, J. Tersoff, and P. Avouris, Physical Review Letters 108, 096601 (2012). [61] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Reviews of Modern Physics 83, 407 (2011). [62] Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, Nature Physics 5, 722 (2009). [63] D. A. Syphers and P. J. Stiles, Physical Review B 32, 6620 (1985). [64] A. F. Rigosi, D. Patel, M. Marzano, M. Kruskopf, H. M. Hill, H. Jin, J. Hu, A. R. Hight Walker, M. Ortolano, L. Callegaro, C.-T. Liang, and D. B. Newell, Carbon 154, 230 (2019). [65] D. Patel, M. Marzano, C.-I. Liu, H. M. Hill, M. Kruskopf, H. Jin, J. Hu, D. B. Newell, C.-T. Liang, R. Elmquist, and A. F. Rigosi, AIP Advances 10, 025112 (2020). [66] J. R. Williams, L. DiCarlo, and C. M. Marcus, Science 317, 638 (2007). [67] F. Delahaye and B. Jeckelmann, Metrologia 40, 217 (2003). [68] Y. Yang, G. Cheng, P. Mende, I. G. Calizo, R. M. Feenstra, C. Chuang, C.-W. Liu, C.-I. Liu, G. R. Jones, A. R. Hight Walker, and R. E. Elmquist, Carbon 115, 229 (2017). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88037 | - |
| dc.description.abstract | 2019 年國際單位制之重新定義為科學測量史上之重要里程碑。此次重新定義旨在建立依更為精確及普遍的基礎物理量單位,以確保其永久穩定性與可用性。其中最為重要之改變為質量基本單位的重新定義,此重新定義消除了過往國際單位對於人造標準器之依賴。
於 2019 年以前,質量基本單位的定義是通過一名為國際千克標準器之人造元件來達成標準統一。此國際千克標準元件為一圓柱型鉑銥合金,長期存放於法國國家標準局內。然而,考量其固有限制,諸如不可預期之汙染以及時變性耗損,重新定義質量單位之可能性探索一直為科學計量學中最為重要的議題。經過科學家及計量學家多年來的研究與探索,質量標準之定義由人造標準器的規範轉換為一精確定義之普朗克常數 (h)。 普朗克常數為一物理學中之基本自然常數,其描述一光子之能量與頻率之相依性。經由精確設計之實驗可建立質量與普朗克常數之聯繫,並藉此以達成一更具穩定性與普世性之質量基本單位之計量。 質量單位的重新定義帶來幾個重要的好處,涵蓋了標準計量實驗之穩定性與可重複性、標準質量單位之普世性以及質量標準因果鍊之可傳播性。此外,此重新定義進一步拓展了多領域之科學進展的可能性,特別在需要精確及可追溯的質量量測領域,諸如製造業、製藥業以及基礎科學研究。 為了實現此重新定義, 科學家與計量學家開發了一系列專業的實驗技術,如 X-射線晶體密度計量法(XRCD method)及基布爾天秤(Kibble balance)。基布爾天秤為一複雜之電機儀器,其通過平衡一待測物之重量與電磁力來達成建構質量與普朗克常數之關聯,並藉此計量待測物之質量。此實驗技法通過電磁技術及機械測量之整合建立了質量與普朗克常數兩者之直接關聯。目前以基布爾天秤為核心進行的質量計量實驗仍無法實現新質量標準之穩定性及普世性,肇因於人造標準電阻器之使用。在此論文中,我們提出了一種解決人造電阻標準器所造成的新質量標準實現之阻礙。我們證明通過集成多種宏觀量子現象,可實現一無人造電阻標準器之基布爾天秤質量計量技法。此技法通過量子力學實現巨觀的質量計量, 解決了人造標準電阻器對於質量標準實驗之限制。此實驗結果展示了一種通過集成宏觀量子現象以實現基於國際單位新制之計量實驗之方法論。 | zh_TW |
| dc.description.abstract | The year 2019 marked a significant milestone in the history of scientific measurement with the redefinition of the International System of Units (SI). The redefinition aimed to establish a more precise and universal basis for fundamental units, ensuring their long-term stability and accessibility. One of the most notable changes was the redefinition of the kilogram since it eliminates the use of a physical artifact standard in the SI definition.
Prior to 2019, the kilogram was defined by a physical artifact known as the International Prototype of the Kilogram (IPK), a platinum-iridium cylinder housed at the International Bureau of Weights and Measures (BIPM) in France. However, concerns about the IPK's inherent limitations, such as susceptibility to contamination and physical deterioration, necessitated a new approach to redefine the kilogram. The redefinition of the kilogram was realized through a shift from a physical prototype to a fundamental constant of nature, the Planck constant (h). The Planck constant, a fundamental constant of quantum physics, relates the energy of a photon to its frequency. By linking the kilogram to the Planck constant, the redefinition provided a more stable and accessible basis for the unit, independent of any physical object. The redefinition of the kilogram brought several significant benefits. Firstly, it enhanced the stability and reproducibility of the unit, ensuring consistent measurements across different locations and times. Secondly, it facilitated the dissemination of the unit by enabling the realization of the kilogram in various laboratory settings worldwide. Moreover, this redefinition opened up possibilities for further scientific advancements, particularly in areas requiring precise and traceable mass measurements, such as manufacturing, pharmaceuticals, and fundamental research. To achieve this redefinition, advanced experimental techniques, such as the Kibble balance, were employed. The Kibble balance, a sophisticated electromechanical instrument, balances the weight of an object against an electromagnetic force, which is directly related to the Planck constant. This approach enables the determination of mass based on electrical and mechanical measurements, thereby establishing a direct connection between mass and the fundamental constant. The current challenge for the Kibble balance experiment is the usage of a non-stable artifact resistance standard which limits its precision and the standard dissemination. In this thesis, a novel approach to resolving this issue is presented. The thesis demonstrates that by integrating multiple macroscopic quantum phenomena, an artifact-standard-free Kibble balance experiment can be achieved, allowing for the realization of macroscopic mass from quantum mechanics. This achievement showcases a methodology for realizing new SI units through a quantum-system integrating approach. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:32:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-01T16:32:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 IV ABSTRACT V CONTENTS VII LIST OF FIGURES XII LIST OF TABLES XXV Author list and previous publications XXVI Chapter 1 Introduction 1 1.1 Scientific metrology and SI units 1 1.2 Kilogram redefinition 4 1.2.1 Scientific background 4 1.2.2 Kibble balance 7 1.3 Quantum Hall resistance standard 11 1.4 Integration of Microscopic Quantum Phenomena 17 1.5 Thesis overview 19 Chapter 2 Theoretical Background 23 2.1 Superconductivity 101 23 2.1.1 Electrodynamic of superconductor 24 2.1.2 BCS theory [5] 28 2.1.3 Ginzburg-Landau theory [8] 30 2.1.4 Josephson effect 34 2.2 Graphene 101 43 2.2.1 Atomic structure of graphene 43 2.2.2 Phonon dispersion of graphene 53 2.2.3 The electrical property of graphene 60 2.2.4 Chemical properties of graphene and graphene functionalization 68 2.3 Quantum Hall effect 72 2.3.1 Classical Hall effect 73 2.3.2 Landau quantization 74 2.3.3 Quantum Hall effect 79 Chapter 3 Experimental Techniques 95 3.1 Material preparation 96 3.1.1 Substrate preparation 96 3.1.2 Mask preparation 101 3.2 Graphene synthesis 102 3.2.1 Polymer-assisted sublimation growth 104 3.2.2 Key factors affecting the graphene growth 106 3.2.3 Procedure for the graphene synthesis 108 3.2.4 Results 111 3.3 Superconductor preparation 114 3.3.1 Results 117 3.4 The main procedure of device fabrication 119 3.5 Electrical measurements 129 3.5.1 Low-resolution measurements 129 3.5.2 High-resolution measurements 134 Chapter 4 Realization of the quantum Hall resistance standard with Cr(CO)3 functionalized graphene 144 4.1 Introduction 144 4.2 Carrier density tuning of graphene 145 4.2.1 Heat-induced carrier density drifting 146 4.2.2 Cr(CO)3 functionalization 150 4.3 Initial characterizations 152 4.3.1 Optical characterizations 154 4.3.2 Carrier transport study of functionalized CVD graphene 157 4.4 Quantum Hall characterization of functionalized EG 167 4.4.1 Landau level spectrum 167 4.4.2 Precise carrier density controlling 171 4.4.3 Magnetoresistance characterization and its implication in metrology 175 4.5 QHRS realization 187 4.5.1 Low-resolution measurements 187 4.5.2 High-resolution measurements 188 4.6 Conclusion 192 Chapter 5 Graphene quantum Hall effect parallel resistance array 197 5.1 Introduction 197 5.2 Experimental background 198 5.3 Experimental method 204 5.3.1 Design layout 205 5.3.2 Device fabrication 207 5.3.3 Carrier density tuning 209 5.3.4 Uniformity test 212 5.4 Experimental results 214 5.5 Discussion 224 5.5.1 Metrological requirements of QHARS 224 5.5.2 Landau-level broadening 246 5.6 Conclusion 248 Chapter 6 A macroscopic mass from quantum mechanics in an integrated approach 254 6.1 Introduction 254 6.2 Experimental background 256 6.2.1 QHARS 256 6.2.2 Programmable Josephson voltage standard (PJVS) 257 6.2.3 Kibble balance 259 6.3 Experimental results 266 6.3.1 QHARS quantization 266 6.3.2 Mass measurements 268 6.4 Discussion 271 6.5 Conclusion 275 Chapter 7 Onsager Casimir frustration from resistance anisotropy in graphene quantum Hall devices 280 7.1 Introduction 280 7.2 Onsager-Casimir relation 280 7.3 Experimental methods 282 7.3.1 Devices used for testing the breakdown of OCR 282 7.3.2 Observing the breakdown of OCR 283 7.3.3 Quantum Hall transport 285 7.4 Experimental results 288 7.4.1 Observing the breakdown of OCR 289 7.4.2 Detailed investigation of the breakdown behavior 294 7.5 Discussion 325 7.6 Conclusion 330 Chapter 8 Conclusion and outlook 334 8.1 Conclusion 334 8.2 Outlook 335 List of abbreviations 337 | - |
| dc.language.iso | en | - |
| dc.subject | 質量標準 | zh_TW |
| dc.subject | 電阻標準 | zh_TW |
| dc.subject | 科學計量學 | zh_TW |
| dc.subject | 量子霍爾效應 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 超導效應 | zh_TW |
| dc.subject | Quantum Hall Effect | en |
| dc.subject | Scientific Metrology | en |
| dc.subject | Graphene | en |
| dc.subject | Superconductivity | en |
| dc.subject | Mass Standard | en |
| dc.subject | Resistance Standard | en |
| dc.title | 宏觀量子現象之實現與整合於科學計量學上之應用 | zh_TW |
| dc.title | Realization and Integration of Macroscopic Quantum Phenomena for Application in Scientific Metrology | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 莊家翔;謝雅萍;蔡宗惠;謝馬利歐 | zh_TW |
| dc.contributor.oralexamcommittee | Chiashain Chuang;Ya-Ping Hsieh;Tsung-Hui Tsai;Mario Hofmann | en |
| dc.subject.keyword | 石墨烯,量子霍爾效應,超導效應,科學計量學,電阻標準,質量標準, | zh_TW |
| dc.subject.keyword | Graphene,Quantum Hall Effect,Superconductivity,Scientific Metrology,Resistance Standard,Mass Standard, | en |
| dc.relation.page | 337 | - |
| dc.identifier.doi | 10.6342/NTU202301440 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 26.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
