Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8802
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮凱(Jung-kai Chen)
dc.contributor.authorHou-Yi Chenen
dc.contributor.author陳厚伊zh_TW
dc.date.accessioned2021-05-20T20:01:37Z-
dc.date.available2009-12-29
dc.date.available2021-05-20T20:01:37Z-
dc.date.copyright2009-12-29
dc.date.issued2009
dc.date.submitted2009-11-04
dc.identifier.citation1. A. D'Agnolo and P. Polesello, Deformation quantization of
complex involutive submanifolds, in: Noncommutative geom-
etry and physics, World Sci. Publ., Hackensack, NJ p. 127-
137 (2005).
2. P. Berthelot and L. Illusie, Grothendieck, A. Th eorie des in-tersections et th eor eme de Riemann-Roch. Lect. Notes Math 225. Springer, Berlin Heidelberg New York (1971).
3. R. Bezrukavnikov and D. Kaledin, Fedosov quantization in
algebraic context, Mosc. Math. J. 4 p. 559-592, (2004).
4. L. Breen, On the Classi cation of 2-gerbes and 2-stacks,
Ast erisque-Soc. Math. France 225 (1994).
5. A. Caldararu, Derived categories of twisted sheaves on
Calabi-Yau manifolds, Ph.D thesis, Cornell University
(2000).
6. Hou-Yi Chen, GAGA for DQ-algebroids, To appear in Rendiconti del Seminario Matematico dell'Universita' di Padova.
7. J. Giraud, Cohomologie non ab elienne, Grundlehren der
Math. Wiss 179 Springer-Verlag (1971).
8. A. Grothendieck, SGA 1 Rev^etements etales et Groupe Fon-damental, Lecture Notes in Math. 224, Springer-Verlag, Heidelberg (1971).
9. D. Huybrechts, Fourier-Mukai transforms in algebraic vari-ety, Oxford mathematical Monographs, Oxford, (2006).
10. R. Hotta, Kiyoshi. Takeuchi, Toshiyuki Tanisaki, D-
modules, Perverse sheaves, and Representation theory,
Progress in Mathematics, Vol. 236, Birkhauser Boston,
Cambridge, MA, 2008.
11. M. Kashiwara, D-modules and Microlocal Calculus,
Iwanami series in Modern Mathematics, Iwanami Shorten,
Tokyo, 2000 (in Japanese); Translations of Mathematical
Monographs, Vol. 217, American Mathematical Society,
Providence, RI, 2003 (in English; translated by Mutsumi
Saito.)
12. ____, Quantization of contact manifolds, Publ. RIMS, Kyoto Univ. 32 p. 1-5 (1996).
13. M. Kashiwara and P. Schapira, Deformation quantization
modules, To appear.
14. ____, Categories and sheaves, Grundlehren der Math. Wiss. 332, Springer-Verlag (2006).
15. M. Kontsevich, Deformation quantization of algebraic varieties, Euro-Conf erence Mosh e Flato, Part III (Dijon, 2000) Lett. Math. Phys. 56 (3) p. 271-294 (2001).
16. G. Laumon, Sur la cat egorie d eriv ee des D-modules ltr es, Algebraic geometry (M. Raumaid amd T. Shioda eds) Lecture Notes in Math. Springer-Verlag 1016 pp. 151-237
(1983).
17. P. Polesello and P. Schapira, Stacks of quantization-
deformation modules over complex symplectic manifolds, Int.
Math. Res. Notices 49 p. 2637-2664 (2004).
18. P. Schapira, From D-modules to deformation quantization
modules, course note given at Buenos Aires, July 2008.
http://www.math.jussieu.fr/ schapira/.
19. J-P. Serre, G eom etrie alg ebrique et g eom etrie analytique, Ann. Inst. Fourier 6 (1956), 1-42.
20. A. Yekutieli, Deformation quantization in algebraic geometry, Adv. Math. 198 pp. 383-432 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8802-
dc.description.abstractThe theory of deformation quantization modules have a great
improvement recently. In this thesis, we prove two basic theorems about this theory.
The first theorem is a generalization of Riemann-Roch theorem for D-modules. We generalize the (algebraic) Riemann-Roch theorem for D-modules of [16] to (analytic)
W -modules.
The second theorem is a generalization of Serre's GAGA theorem [see 6]. Let X be a smooth complex projective variety with associated compact complex manifold X_{an}. If A_{X} is a DQ-algebroid on X, then there is an induced DQ-algebroid on X_{an}. We show that the natural functor from the derived category of bounded complexes of A_{X}-modules with coherent cohomologies to the derived category of bounded complexes of A_{X_{an}}-modules with coherent cohomologies is an equivalence.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:01:37Z (GMT). No. of bitstreams: 1
ntu-98-D93221002-1.pdf: 2613750 bytes, checksum: 1d9e4fab832b70560bcc3a27de448421 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsIntroduction......1
1. Preliminary......4
2. Review on the GAGA theorem.....12
3. Review on the results of Laumon......17
4. The rst main theorem......21
5. Applications to D-modules......30
6. Review on DQ-modules (after K-S)......33
7. Analytization of a DQ-algebroid......42
8. The second main theorem......44
Reference......53
dc.language.isoen
dc.title量子形變模上的兩個定理zh_TW
dc.titleTwo theorems for deformation quantization modulesen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee王金龍(Chin-Lung Wang),林惠雯(Hui-Wen Lin),程舜仁(Cheng, Shun-Jen),江謝宏任(Hung-Jen Chiang-Hsieh)
dc.subject.keyword量子形變模,zh_TW
dc.subject.keyworddeformation quantization modules,en
dc.relation.page55
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-11-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf2.55 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved