Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88013
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃斯衍zh_TW
dc.contributor.advisorSsu-Yen Huangen
dc.contributor.author陳信儒zh_TW
dc.contributor.authorHsin-Ju Chenen
dc.date.accessioned2023-08-01T16:24:06Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-01-
dc.date.issued2023-
dc.date.submitted2023-07-07-
dc.identifier.citation[1] NEUMANN, J. v. The Principles of Large-Scale Computing Machines. Annals of the History of Computing 10, 243-256 (1988).
[2] Backus, J. Can Programming Be Liberated from Von Neumann Style - Functional Style and Its Algebra of Programs. Commun Acm 21, 613-641 (1978).
[3] Zhu, J. D., Zhang, T., Yang, Y. C. & Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl Phys Rev 7, 011312 (2020).
[4] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Lett 10, 1297-1301 (2010).
[5] Bi, G.-q. & Poo, M.-m. Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type. The Journal of Neuroscience 18, 10464 (1998).
[6] Xu, M. et al. Recent Advances on Neuromorphic Devices Based on Chalcogenide Phase-Change Materials. Adv Funct Mater 30, 2003419 (2020).
[7] Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587-590 (2016).
[8] Chen, X. Z. et al. Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators. Phys Rev Lett 120 (2018).
[9] Chiang, C. C., Huang, S. Y., Qu, D., Wu, P. H. & Chien, C. L. Absence of Evidence of Electrical Switching of the Antiferromagnetic Neel Vector. Phys Rev Lett 123, 227203 (2019).
[10] Zhang, Y. H., Chuang, T. C., Qu, D. R. & Huang, S. Y. Detection and manipulation of the antiferromagnetic Neel vector in Cr2O3. Phys Rev B 105 (2022).
[11] Kurenkov, A., Fukami, S. & Ohno, H. Neuromorphic computing with antiferromagnetic spintronics. J Appl Phys 128, 010902 (2020).
[12] Huang, Y. H. et al. A Spin-Orbit Torque Ratchet at Ferromagnet/Antiferromagnet Interface via Exchange Spring. Adv Funct Mater 32, 2111653 (2022).
[13] Pai, C.-F. & Tang, D. D. MAGNETIC MEMORY TECHNOLOGY: Spin-transfer-torque Mram and Beyond. (John Wiley & Sons, 2020).
[14] Coey, J. M. Magnetism and magnetic materials. (Cambridge university press, 2010).
[15] Cullity, B. D. & Graham, C. D. Introduction to magnetic materials. (John Wiley & Sons, 2011).
[16] Hirsch, J. E. Spin Hall effect. Phys Rev Lett 83, 1834-1837 (1999).
[17] Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev Mod Phys 87, 1213-1259 (2015).
[18] Hoffmann, A. Spin Hall Effects in Metals. Ieee T Magn 49, 5172-5193 (2013).
[19] Dyakonov, M. I. & Perel, V. Current-induced spin orientation of electrons in semiconductors. Physics Letters A 35, 459-460 (1971).
[20] Dyakonov, M. I. & Perel, V. I. Possibility of Orienting Electron Spins with Current. Jetp Lett-Ussr 13, 467-& (1971).
[21] Markram, H., Gerstner, W. & Sjöström, P. J. Spike-Timing-Dependent Plasticity: A Comprehensive Overview. Frontiers in Synaptic Neuroscience 4, 00002 (2012).
[22] Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat Neurosci 3, 1178-1183 (2000).
[23] Tang, D. D., Wang, P. K., Speriosu, V. S., Le, S. & Kung, K. K. Spin-Valve Ram Cell. Ieee T Magn 31, 3206-3208 (1995).
[24] Tang, D. D. & Lee, Y.-J. Magnetic memory: fundamentals and technology. (Cambridge University Press, 2010).
[25] Fukami, S., Anekawa, T., Zhang, C. & Ohno, H. A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat Nanotechnol 11, 621-+ (2016).
[26] Wang, Y. H. et al. in 2012 International Electron Devices Meeting. 29.22.21-29.22.24.
[27] Zelezny, J. et al. Relativistic Neel-Order Fields Induced by Electrical Current in Antiferromagnets. Phys Rev Lett 113 (2014).
[28] Churikova, A. et al. Non-magnetic origin of spin Hall magnetoresistance-like signals in Pt films and epitaxial NiO/Pt bilayers. Appl Phys Lett 116, 022410 (2020).
[29] Hu, S. et al. Current-Induced Planar Resistive Switching Mediated by Oxygen Migration in NiO/Pt Bilayer. Adv Electron Mater 6 (2020).
[30] Jacot, B. J. et al. Systematic study of nonmagnetic resistance changes due to electrical pulsing in single metal layers and metal/antiferromagnet bilayers. J Appl Phys 128 (2020).
[31] Matalla-Wagner, T., Schmalhorst, J. M., Reiss, G., Tamura, N. & Meinert, M. Resistive contribution in electrical-switching experiments with antiferromagnets. Phys Rev Res 2, 033077 (2020).
[32] Sheng, P., Zhao, Z. Y., Benally, O. J., Zhang, D. L. & Wang, J. P. Thermal contribution in the electrical switching experiments with heavy metal/antiferromagnet structures. J Appl Phys 132 (2022).
[33] Foner, S. High-Field Antiferromagnetic Resonance in ${\mathrm{Cr}}_{2}$${\mathrm{O}}_{3}$. Physical Review 130, 183-197 (1963).
[34] Binnig, G., Quate, C. F. & Gerber, C. Atomic Force Microscope. Phys Rev Lett 56, 930-933 (1986).
[35] Chen, H. J., Chiang, C. C., Cheng, C. Y., Qu, D. & Huang, S. Y. Neuromorphic computing devices based on the asymmetric temperature gradient. Appl Phys Lett 122 (2023).
[36] Moffat, R. J. Notes on using thermocouples. Electronics Cooling 3, 12-15 (1997).
[37] Mishra, R., Kumar, D. & Yang, H. Oxygen-Migration-Based Spintronic Device Emulating a Biological Synapse. Phys Rev Appl 11, 054065 (2019).
[38] Cheng, Y., Yu, S. S., Zhu, M. L., Hwang, J. & Yang, F. Y. Electrical Switching of Tristate Antiferromagnetic Neel Order in alpha-Fe2O3 Epitaxial Films. Phys Rev Lett 124, 027202 (2020).
[39] Li, Y. B., Wang, Z. R., Midya, R., Xia, Q. F. & Yang, J. J. Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J Phys D Appl Phys 51, 503002 (2018).
[40] Wang, H. X., Gerkin, R. C., Nauen, D. W. & Bi, G. Q. Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci 8, 187-193 (2005).
[41] Bi, G.-q. & Poo, M.-m. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu Rev Neurosci 24, 139-166 (2001).
[42] Mishra, R. K., Kim, S., Guzman, S. J. & Jonas, P. Symmetric spike timing-dependent plasticity at CA3-CA3 synapses optimizes storage and recall in autoassociative networks. Nat Commun 7, 11552 (2016).
[43] Abbott, L. F. & Regehr, W. G. Synaptic computation. Nature 431, 796-803 (2004).
[44] Wang, X. R., Ujimoto, K., Toyoki, K., Nakatani, R. & Shiratsuchi, Y. Increase of Neel temperature of magnetoelectric Cr2O3 thin film by epitaxial lattice matching. Appl Phys Lett 121, 182402 (2022).
[45] Ruegg, S. et al. Spin-Dependent X-Ray Absorption in Co/Pt Multilayers. J Appl Phys 69, 5655-5657 (1991).
[46] Schutz, G. et al. Distribution of Magnetic-Moments in Co/Pt and Co/Pt/Ir/Pt Multilayers Detected by Magnetic-X-Ray Absorption. J Appl Phys 73, 6430-6432 (1993).
[47] Suzuki, M. et al. Depth profile of spin and orbital magnetic moments in a subnanometer Pt film on Co. Phys Rev B 72 (2005).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88013-
dc.description.abstract為了解決傳統計算機架構:馮諾依曼架構(Von Neumann architecture)中的高能耗問題,基於反鐵磁(AFM)的自旋電子學被認為是有前途的候選者。與現今發展的鐵磁性自旋電子學相比,反鐵磁材料被認為會是下一主要的發展方向,其主要優點是不存在雜散場並且不會受到外部磁場所擾動。另一方面,受人腦啟發的全新架構也是未來應用的另一個重要方向。人腦神經網絡的低功耗和高效能是研究的主要動機。模擬人腦神經網絡的電子元件架構對於實現信息處理和決策的人工智能至關重要。在過去的幾十年裡,不同類型的類神經網路元件已經被開發出來,例如由離子擴散引起的憶阻器、由電壓閾值切換的結構相變元件(漸進結晶/非晶化),以及基於磁區切換自旋電子學的器件。然而,這些設備也各自面臨挑戰,包括積體電路的可擴展性以及權重變化的非線性。因此,本篇論文提出替代方法來解決上述挑戰。在本研究中,我們介紹了一種基於非對稱溫度梯度的多層多腳位類神經網路元件;我們的元件展示出廣泛的突觸功能,包括突觸權重的增強、抑制以及反對稱和對稱脈衝時序依賴可塑性(STDP)。此熱驅動之類神經網路元件為未來人工智能的硬體實現提供了一個平台。
另一方面,我們嘗試利用自旋翻轉(Spin-flop)來實現尼爾矢量(Néel vector)翻轉。利用電性量測來檢測和操縱尼爾矢量已經在塊狀單軸的反鐵磁材料Cr2O3中實現。在這篇論文中,我們嘗試在Al2O3基板上生長高品質的單晶Cr2O3薄膜,並嘗試用電性量測方法檢測自旋翻轉。這些工作使我們向下一代自旋電子學邁出了一步。
zh_TW
dc.description.abstractTo deal with the high energy consumption problem in the conventional computer architecture (Von Neumann architecture), antiferromagnetic (AFM) based spintronics is regarded as the promising candidate. The absence of a stray field and the robustness against external magnetic perturbation are the main advantages for antiferromagnetic materials compared with ferromagnetic-based spintronics. On the other hand, a brand-new architecture inspired by the human brain is another crucial platform for future application. The low power consumption and high performance the biological neural network enjoys are the primary motivations for neuromorphic computing devices. Neuromorphic computing devices, which emulate biological neural networks, are crucial in realizing artificial intelligence for information processing and decision-making. In the past decades, different types of neuromorphic computing devices with multiple resistance levels (defined as synaptic weight) have been developed, such as oxide-based memristors caused by ion diffusion, phase transition-based devices caused by threshold switching, progressive crystallization/amorphization, and spintronics-based devices caused by magnetic domain switching. However, these devices face significant challenges, including disruptions in the reading process, limited scalability in integrated circuits, and non-linearity in weight change. Therefore, alternative approaches are required to solve the above challenges. In this study, we introduce a multi-layer-multi-terminal neuromorphic computing device based on the asymmetric temperature gradient. Our device exhibits a wide range of synaptic functions, including potentiation, depression, and both anti-symmetric and symmetric spike-timing-dependent plasticity (STDP). The thermal driving strategy offers an energy-efficient platform for future neuromorphic computing devices to achieve artificial intelligence.
On the other hand, we tried to employ the spin-flop transition to realize the AFM switching. The electrical detection and manipulation of the Néel vector have been realized in bulk uniaxial antiferromagnet Cr2O3. In this work, we also tried to grow high-quality epitaxial Cr2O3 thin film on Al2O3 substrate and tried to detect the spin-flop transition electrically. These works give us a step toward the next generation of electronics.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:24:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-01T16:24:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement i
中文摘要 iii
Abstract v
List of Figures ix
Chapter 1 Introduction and literature review 1
1.1 Neuromorphic computing 2
1.1.1 Memristor-based neuromorphic computing device 3
1.1.2 Spintronics based neuromorphic computing device 6
1.1.3 Phase-change mechanics based neuromorphic computing device 9
1.2 Antiferromagnetic switching 10
1.2.1 Eight-terminal device 10
1.2.2 Spin-flop transition 13
1.2.3 Antiferromagnetic based neuromorphic computing device 15
Chapter 2 Fundamental principle 17
2.1 Magnetism 17
2.1.1 Diamagnetism 18
2.1.2 Paramagnetism 21
2.1.3 Exchange Interaction 23
2.1.4 Ferromagnetism 24
2.1.5 Antiferromagnetism 27
2.1.6 Ferrimagnetism 31
2.2 Spin current 31
2.2.1 Spin Hall effect (SHE) and inverse spin Hall effect (ISHE) 32
2.3 Neural network 35
2.3.1 Biological neural network 35
2.4 AFM switching 39
2.4.1 Eight-terminal devices 39
2.4.2 Non-magnetic origin 42
2.4.3 Detection and manipulation of Néel vector in bulk Cr2O3 46
Chapter 3 Experimental Methods 50
3.1 Thin film and device fabrication 51
3.1.1 Photolithography 51
3.1.2 Magnetron sputtering system 53
3.2 Thin film characterization 56
3.2.1 Atomic force microscopy (AFM) 56
3.2.2 X-ray diffraction (XRD) 57
3.3 Electrical transport measurement 60
3.3.1 Physical property measurement system (PPMS) 60
3.3.2 Pulse current measurement 60
Chapter 4 Results and Discussion 62
4.1 Neuromorphic computing in multi-layer-multi-terminal device 62
4.1.1 Multi-layer-multi-terminal device 62
4.1.2 Potentiation and depression 65
4.1.3 Property variation 69
4.1.4 Anti-symmetric STDP 71
4.1.5 Symmetric STDP 74
4.1.6 Short-term plasticity 77
Chapter 5 AFM switching in Cr2O3 80
5.1 Cr2O3 (0001) thin film growth and structure characterization 80
5.2 Pt/Cr2O3/Pt tri-layer 84
Chapter 6 Conclusion 90
Reference 91
-
dc.language.isoen-
dc.subject多層多腳位類神經網路元件zh_TW
dc.subject電性偵測反鐵磁性zh_TW
dc.subject異常霍爾效應zh_TW
dc.subject自旋電子學zh_TW
dc.subject非對稱溫度梯度zh_TW
dc.subject脈衝時序依賴可塑性zh_TW
dc.subject突觸可塑性zh_TW
dc.subjectsynaptic plasticityen
dc.subjectmulti-layer-multi-terminal neuromorphic computing devicesen
dc.subjectelectrically detection of antiferromagnetismen
dc.subjectanomalous Hall effecten
dc.subjectasymmetric temperature gradienten
dc.subjectspintronicsen
dc.subjectspike-timing dependent plasticityen
dc.title熱驅動之類神經網路元件及在Cr2O3中電性偵測反鐵磁性zh_TW
dc.titleNeuromorphic computing devices based on the asymmetric temperature gradient and the electrical detection of antiferromagnetism in Cr2O3en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林昭吟;曲丹茹;楊朝堯zh_TW
dc.contributor.oralexamcommitteeJauyn Grace Lin;Danru Qu;Chao-Yao Yangen
dc.subject.keyword多層多腳位類神經網路元件,突觸可塑性,脈衝時序依賴可塑性,非對稱溫度梯度,自旋電子學,異常霍爾效應,電性偵測反鐵磁性,zh_TW
dc.subject.keywordmulti-layer-multi-terminal neuromorphic computing devices,synaptic plasticity,spike-timing dependent plasticity,asymmetric temperature gradient,spintronics,anomalous Hall effect,electrically detection of antiferromagnetism,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202301357-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf4.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved