Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88000
標題: 應用深度學習降噪暨影像三維重建分析
Application of Deep Learning for Denoising and Three-Dimensional Image Reconstruction Analysis in X-ray Luminescence Computed Tomography System
作者: 吳天予
Tien-Yu Wu
指導教授: 曾雪峰
Snow H. Tseng
關鍵字: 深度學習,影像處理,三維重建,降噪,
deep learning,image processing,3D reconstruction,noise reduction,
出版年 : 2023
學位: 碩士
摘要: X光激發光學與電腦斷層影像系統結合了X光激發光學和電腦斷層成像技術,為醫學和工業領域提供了一種非常有用的影像診斷工具,提供重要的影像診斷和分析資訊。其利用 X 光對物體進行成像,並同時檢測物體中的激發光信號,具有非侵入性的優點。然而受限於康普敦散射背景雜訊及感測器之熱雜訊,影像重建之分辨率受到限制。隨著深度學習演算法的成熟及電腦硬體的快速發展,近年來圖像降噪技術的性能得到了顯著進展。本研究建立一套 X 光激發光學與電腦斷層影像系統,撰寫反濾波投影及迭代重建演算法來對樣品進行影像三維重建,引入二值池化降噪減少感測器之熱雜訊,並透過深度學習 CCE-3D 模型來改善感測器因熱能、光量子的漲落、暗電流而產生的散粒雜訊,以及因康普敦散射而產生的背景雜訊,最後透過設計樣品及實驗來量化分析影像重建的品質,以Dice 相似性系数(DSC)、結構相似性係數(SSIM)、峰值信噪比(PSNR)等影像分析指標來探討影像三維重建的空間解析度,結果顯示我們成功提升影像重建品質,並將空間解析度提升至0.5 mm。
The X-ray luminescence computed tomography (XLCT) system combines X-ray excitation optics with computerized tomography imaging technology, presenting a highly valuable image diagnostic tool for the medical and industrial domains. The integration facilitates the acquisition of vital image diagnosis and analysis information. By utilizing X-rays for object imaging while concurrently detecting excitation luminescence signals within the object, the XLCT system offers the advantage of non-invasiveness. However, limitations in image reconstruction resolution arise due to background noise from Compton scattering and thermal noise from the sensor. With the advancement of deep learning algorithms and the rapid progress of computer hardware, image-denoising technology has achieved significant development in recent years. This study establishes an X-ray excitation optics and CT imaging system, implementing a filter back projection(FBP) algorithm and simultaneous algebraic reconstruction technique (SART) for three -dimensional prosthesis image reconstruction. To mitigate sensor thermal noise, binary pooling noise reduction techniques are employed. Additionally, the deep learning CCE 3D model is utilized to suppress shot noise, dark current noise, and background noise resulting from Compton scattering. Furthermore, the design of prostheses and corresponding experiments enables quantitative analysis of image reconstruction quality, employing evaluation indexes such as the Dice similarity coefficient, structural similarity coefficient, and peak signal-to-noise ratio to assess the spatial resolution of three- dimensional image reconstruction. The results demonstrate the successful improvement of image reconstruction quality, with the achieved spatial resolution reaching 0.5 mm.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88000
DOI: 10.6342/NTU202301184
全文授權: 同意授權(限校園內公開)
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.42 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved