Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87959Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 謝馬利歐 | zh_TW |
| dc.contributor.advisor | Mario Hofmann | en |
| dc.contributor.author | 吳文華 | zh_TW |
| dc.contributor.author | Wen-Hua Wu | en |
| dc.date.accessioned | 2023-08-01T16:05:08Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-08-01 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-30 | - |
| dc.identifier.citation | M. J. Allen, V. C. Tung, and R. B. Kaner. Honeycomb carbon: A review of graphene. Chemical Reviews, 110(1):132–145, 2010.
M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas. Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices. Phys. Rev. Lett., 61:2472–2475, Nov. 1988. N. Baig. Two-dimensional nanomaterials: A critical review of recent progress, properties, applications, and future directions. Composites Part A: Applied Science and Manufacturing, 165:107362, 2023. T. Banerjee, W. G. van der Wiel, and R. Jansen. Spin injection and perpendicular spin transport in graphite nanostructures. Phys. Rev. B, 81(21), Jun. 2010. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B, 39:4828–4830, Mar. 1989. H. Boeve, J. Das, L. Lagae, P. Peumans, C. Bruynseraede, K. Dessein, L. Melo, R. Sousa, P. Freitas, G. Borghs, and J. De Boeck. Technology assessment for mram cells with magnet/semiconductor bits. pages GA04–GA04, 1999. M. Bowen, V. Cros, F. Petroff, A. Fert, C. Martı́nez Boubeta, J. L. Costa-Krämer, J. V. Anguita, A. Cebollada, F. Briones, J. M. de Teresa, L. Morellón, M. R. Ibarra, F. Güell, F. Peiró, and A. Cornet. Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001). Applied Physics Letters, 79(11):1655– 1657, Sep. 2001. W. H. Butler. Tunneling magnetoresistance from a symmetry filtering effect*. 9(1):014106, Apr. 2008. Z. Cai, B. Liu, X. Zou, and H.-M. Cheng. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chemical Reviews, 118, Jan 2018. E. Cobas, A. L. Friedman, O. M. J. van’t Erve, J. T. Robinson, and B. T. Jonker. Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions. Nano Letters, 12(6):3000–3004, Jun. 2012. A. Dankert, M. V. Kamalakar, A. Wajid, R. S. Patel, and S. P. Dash. Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers. Nano Research, 8(4):1357–1364, Apr. 2015. S. Dash, S. Sharma, S. R. Patel, M. De Jong, and R. Jansen. Electrical creation of spin polarization in silicon at room temperature. Nature, 462:491–4, Nov. 2009. B. Dlubak, M. B. Martin, C. Deranlot, K. Bouzehouane, S. Fusil, R. Mattana, F. Petroff, A. Anane, P. Seneor, and A. Fert. Homogeneous pinhole free 1 nm al2o3 tunnel barriers on graphene. Applied Physics Letters, 101(20), Nov. 2012. G. Dresselhaus. Spin-orbit coupling effects in zinc blende structures. Phys. Rev., 100:580–586, Oct. 1955. 6 C. Elias, P. VALVIN, T. Pelini, A. Summerfield, C. Mellor, T. Cheng, L. Eaves, C. Foxon, P. Beton, S. Novikov, B. Gil, and G. CASSABOIS. Direct band-gap crossover in epitaxial monolayer boron nitride. Nature Communications, 10, Jun. 2019. R. ELLIOTT. Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Physical Review, 96(2):266–279, 1954. R. Fan, L. Sun, X. Shao, Y. Li, and M. Zhao. Two-dimensional dirac materials: Tight-binding lattice models and material candidates. ChemPhysMater, 2(1):30–42, 2023. G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B, 76:073103, Aug. 2007. K. Gopinadhan, Y. Shin, R. Jalil, T. Venkatesan, A. Geim, A. Castro Neto, and H. Yang. Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures. Nature Communications, 6:8337, Sep. 2015. W. Han and R. Kawakami. Spin relaxation in single-layer and bilayer graphene. Phys. Rev. Lett., 107:047207, Jul. 2011. A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Diény, P. Pirro, and B. Hillebrands. Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials, 509:166711, 2020. H. Jaffrès, J.-M. George, and A. Fert. Spin transport in multiterminal devices: Large spin signals in devices with confined geometry. Phys. Rev. B, 82:140408, Oct. 2010. R. Jansen, S. P. Dash, S. Sharma, and B. C. Min. Silicon spintronics with ferromagnetic tunnel devices. Semiconductor science and technology, 27(8):83001–, 2012. M. Julliere. Tunneling between ferromagnetic films. Physics Letters A, 54(3):225– 226, 1975. J. Jung, A. Dasilva, A. Macdonald, and S. Adam. Origin of band gaps in graphene on hexagonal boron nitride. arXiv:1403.0496, 20, Jan 2014. V. M. Karpan, G. Giovannetti, P. A. Khomyakov, M. Talanana, A. A. Starikov, M. Zwierzycki, J. van den Brink, G. Brocks, and P. J. Kelly. Graphite and graphene as perfect spin filters. Phys. Rev. Lett., 99:176602, Oct. 2007. A. Kawabata. Positive magnetoresistance induced by zeeman splitting in twodimensional systems. Journal of the Physical Society of Japan, 50(8):2461–2462, 1981. D. Klarstrom, P. Crook, and A. Sharif. Cobalt alloys: Alloying and thermomechanical processing. 01 2017. T. Kuczmik, M. Oltscher, A. Bayer, D. Schuh, D. Bougeard, M. Ciorga, and D. Weiss. Hanle spin precession in a two-dimensional electron system. Phys. Rev. B, 95, May. 2017. K. Liu, K. Nagodawithana, P. Searson, and C.-L. Chien. Perpendicular giant magnetoresistance of multilayered co/cu nanowires. Phys. Rev. B, Condensed matter, 51:7381–7384, Apr. 1995. Y. Liu, C. Zeng, J. Ding, J. Zhong, Y. Gao, X. Kuang, J. Yu, L. Cao, J. He, and Z. Liu. Effect of the low-resistance tunnel barriers induced inhomogeneous spin current distribution in graphene crossed configuration lateral spin valve. AIP Advances, 9:115005, Nov. 2019. X. Lou, C. Adelmann, S. Crooker, E. Garlid, J. Zhang, M. R. REDDY, S. Flexner, C. Palmstrøm, and P. Crowell. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nature Physics, 3:197, Feb. 2007. H. Luo, D. Wang, J. He, and Y. Lu. Magnetic cobalt nanowire thin films. The Journal of Physical Chemistry B, 109(5):1919–1922, 2005. D. Marchenko, A. Varykhalov, M. Scholz, J. Sánchez-Barriga, O. Rader, A. Rybkina, A. Shikin, T. Seyller, and G. Bihlmayer. Spin-resolved photoemission and ab initio theory of graphene/sic. Phys. Rev. B, 88:075422, Aug. 2013. M.-B. Martin, B. Dlubak, R. S. Weatherup, H. Yang, C. Deranlot, K. Bouzehouane, F. Petroff, A. Anane, S. Hofmann, J. Robertson, A. Fert, and P. Seneor. Subnanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes. ACS NANO, 8(8):7890–7895, Aug. 2014. J. Mathon and A. Umerski. Theory of tunneling magnetoresistance of an epitaxial fe/mgo/fe(001) junction. Phys. Rev. B, 63:220403, May. 2001. M. Matin, R. Mondal, N. Barman, A. Thamizhavel, and S. K. Dhar. Extremely large magnetoresistance induced by zeeman effect-driven electron-hole compensation and topological protection in mosi2. Phys. Rev. B, 97:205130, May. 2018. B.-C. Min, K. Motohashi, C. Lodder, and R. Jansen. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nature Materials, 5:817–22, Nov. 2006. T. M. G. Mohiuddin, E. Hill, D. Elias, A. Zhukov, K. Novoselov, and A. Geim. Graphene in multilayered cpp spin valves. IEEE Transactions on Magnetics, 44(11):2624–2627, Nov. 2008. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett., 74:3273–3276, Apr. 1995. D. Olekšáková, P. Kollár, J. Füzer, M. Kusý, S. Roth, and K. Polanski. The influence of mechanical milling on structure and soft magnetic properties of nife and nifemo alloys. Journal of Magnetism and Magnetic Materials, 316(2):e838–e841, 2007. C. Park. Magnetic tunnel junctions. Materials Today, 9:36–45, Nov. 2006. J.-H. Park and H.-J. Lee. Out-of-plane magnetoresistance in ferromagnet/graphene/ ferromagnet spin-valve junctions. Phys. Rev. B, 89(16), Apr. 2014. S. Parkin, C. Kaiser, A. Panchula, P. Rice, B. Hughes, M. Samant, and S. Yang. Giant tunnelling magnetoresistance at room temperature with mgo (100) tunnel barriers. Nature Materials, 3(12):862–867, Dec. 2004. S. Patibandla, G. M. Atkinson, S. Bandyopadhyay, and G. C. Tepper. Competing d’yakonov-perel’ and elliott-yafet spin relaxation in germanium. Physica E-low-dimensional Systems & Nanostructures, 42(5):1721–1726, Mar. 2010. M. Piquemal-Banci, R. Galceran, M.-B. Martin, F. Godel, A. Anane, F. Petroff, B. Dlubak, and P. Seneor. 2d-mtjs: introducing 2d materials in magnetic tunnel junctions. Journal of Physics D-Applied Physics, 50(20), May. 2017. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-layer mos2 transistors. Nature Nanotechnology, 6:147–50, Jan 2011. J. J. M. Ruigrok, R. Coehoorn, S. R. Cumpson, and H. W. Kesteren. Disk recording beyond 100 Gb/in.2: Hybrid recording? (invited). Journal of Applied Physics, 87(9):5398–5403, May. 2000. S. Sahu and G. Rout. Band gap opening in graphene: a short theoretical study. International Nano Letters, Mar. 2017. A. Schuhl and D. Lacour. Spin dependent transport: Gmr tmr. Comptes Rendus Physique, 6(9):945–955, 2005. P. Seneor, B. Dlubak, M.-B. Martin, A. Anane, H. Jaffrès, and A. Fert. Spintronics with graphene. MRS Bulletin, 37, Dec. 2012. G. Sharma, U. Deshpande, D. Kumar, and A. Gupta. Study of ultrathin magnetic cobalt films on mgo(001). Journal of Applied Physics, 112, Jul. 2012. L. Song, M. Song, Z. Lu, G. Yu, Z. Liang, W. Hou, Q. Liao, and Y. Song. Recent advances of preparation and application of two-dimension van der waals heterostructure. Coatings, 12(8), 2022. D. D. Tang and C.-F. Pai. MRAM Applications and Production, pages 241–276. 2021. T. Valet and A. Fert. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B, 48:7099–7113, Sep. 1993. Q. H. Wang, K. Kalantar-zadeh, A. Kis, J. Coleman, and M. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7:699–712, Nov. 2012. T. Yang, J. Balakrishnan, F. Volmer, A. Avsar, M. Jaiswal, J. Samm, S. Ali, A. Pachoud, M. Zeng, M. Popinciuc, G. Güntherodt, B. Beschoten, and B. Özyilmaz. Observation of long spin relaxation times in bilayer graphene at room temperature. Phys. Rev. Lett., 107:047206, Jul. 2011. S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, and K. Ando. Giant tunneling magnetoresistance up to 410 in fully epitaxial Co∕MgO∕Co magnetic tunnel junctions with bcc Co(001) electrodes. Applied Physics Letters, 89(4), Jul. 2006. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando. Giant roomtemperature magnetoresistance in single-crystal fe/mgo/ fe magnetic tunnel junctions. Nature Materials, 3:868–71, Jan 2005. L. Zhang, J. Zhou, H. Li, L. Shen, and Y. P. Feng. Recent progress and challenges in magnetic tunnel junctions with 2d materials for spintronic applications. Applied Physics Reviews, 8(2), Jun. 2021. S. Zhou, G.-H. Gweon, A. Fedorov, P. First, W. Heer, D.-H. Lee, F. Guinea, A. Castro Neto, and A. Lanzara. Substrate-induced bandgap opening in epitaxial graphene. Nature Materials, 6:770–5, Nov. 2007. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87959 | - |
| dc.description.abstract | 二維材料由於其銳利的界面和原子厚度,是當今自旋閥元件中,金屬或金屬氧化物材質的間隔層最有希望的替代材料。本論文通過數值模擬和實驗研究了二維材料在自旋閥元件中的應用。
我們開發了Co/Gr/Co元件的製程,期間我們使用拉曼光譜學來確認石墨烯成功轉移。在電阻隨溫度變化的測量中,我們觀察到在低於150K的溫度下,隨著溫度降低,電阻上升,這對應了在波茲曼模型中一個0.1 meV的能隙,顯示了元件中能帶結構的扭曲。 為因應這現象,我們使用了密度泛函理論模擬軟件QuantumATK來研究Co/Gr/Co元件的能帶結構,觀察到鈷和石墨烯之間存在著強烈的耦合和軌道混合。我們還將這類計算擴展到其他二維材料,如二硫化鉬和六方氮化硼。此外,我們還透過模擬觀察到,氧化的鐵磁層會大大降低磁阻比。 在磁阻測量中,我們未能觀察到在平面磁場中,元件有顯著的磁阻信號。這可能是由於轉印二維材料的過程中,元件底部電極層的氧化。相比之下,我們觀察到在我們實驗室另一位同事開發的更先進的元件(其內沒有氧化層)中,觀察到顯著的磁阻信號,這證實了氧化層的確破壞了磁阻。這個結果與我們之前的數值計算結果一致。這個先進的元件還具有其他優勢,比如更低的阻面值(阻力乘以面積)和更好的介面面質量。 最後,我們在垂直磁場中的元件中觀察到了由塞曼效應和漢勒效應引起的磁阻信號。這樣的觀察結果表明在我們的元件中具有自旋極化,並有助於未來設計具有顯著自旋信號的自旋電子元件。 | zh_TW |
| dc.description.abstract | Two-dimensional material is a promising alternative to metal or metal oxides as the spacer in nowadays spinvalve devices due to its sharp interface and atomic thickness. This thesis investigates the application of two-dimensional material to spinvalve by means of numerical simulation and experiment.
We developed the fabrication method to build up a Co/Gr/Co device, during which we used Raman spectroscopy to confirm a successful transfer of graphene. In temperature-dependent measurement of electrical resistance, we observed a rise of resistance as the temperature is lowered under 150K, corresponding to a band gap of 0.1 meV in Boltzman model, suggesting a distortion of bandstructure in the device. In response, we used QuantumATK, a DFT-simulation software, to investigate the bandstructure of Co/Gr/Co device and observed a strong coupling and orbital hybridization between cobalt and graphene. We also extended such calculation to other 2D materials such as molybdenum disulfide and hexagonal boron nitride. In addition, we also observed that oxidized FM layer can decrease the magnetoresistance ratio dramatically in the simulation. For the magnetoresistance measurement, we failed to observe significant magnetoresistance signals in the in-plane magnetic field. This may be due to the oxidized bottom electrode layer from the transfer process. In comparison, we observed significant magnetoresistance signal of a more advanced fabrication device, which is without oxidation layer and developed by another colleague in our laboratory, confirming that oxidation destroys the magnetoresistance. This result is consistent with our previous numerical calculation. The advanced device also has other advantages, such as lower resistance-area value (resistance×area) and better interface quality. Lastly, we observed magnetoresistance signals from Zeeman effect and Hanle effect in the devices in the perpendicular magnetic field. Such observation suggests that the spin polarization is retained in our device, and benefit future design of spintronic devices with strong spin signals. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:05:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-01T16:05:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要iii Abstract v Contents vii List of Figures xi List of Tables xiii Denotation xv Chapter 1 Introduction 1 Chapter 2 Theory 5 2.1 Magnetoresistance and spinvalve devices . . . . . . . . . . . . . . . 5 2.2 Two dimensional material . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 3 Methods 9 3.1 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 Configuration of the simulated devices . . . . . . . . . . . . . . . . 9 3.1.2 Setting up a DFT calculation . . . . . . . . . . . . . . . . . . . . . 10 3.1.3 Transmission spectrum analysis . . . . . . . . . . . . . . . . . . . . 15 3.1.4 Surface band structure analysis . . . . . . . . . . . . . . . . . . . . 18 3.2 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.1 Material selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 Bottom electrode deposition . . . . . . . . . . . . . . . . . . . . . 19 3.2.3 Transferring graphene . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.4 Photolithography and top electrode deposition . . . . . . . . . . . . 22 3.2.5 Oxygen plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.6 Electrical contact deposition . . . . . . . . . . . . . . . . . . . . . 24 3.3 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.1 Raman spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.2 Preparations to place samples in MR measurement machine . . . . . 27 3.3.3 Resistance versus temperature measurement . . . . . . . . . . . . . 27 3.3.4 IV measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.5 MR measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Chapter 4 Results and Discussions 29 4.1 Raman spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.1 IV measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Strong coupling between FM 2D materials . . . . . . . . . . . . . . 31 4.2.1 Temperature dependent measurement of resistance . . . . . . . . . 31 4.2.2 Numerical simulation of graphene-based SV . . . . . . . . . . . . . 33 4.2.3 Numerical simulation of MoS2-based SV . . . . . . . . . . . . . . . 36 4.2.4 Numerical simulation of h-BN-based SV . . . . . . . . . . . . . . . 46 4.2.5 Summary of numerical simulation . . . . . . . . . . . . . . . . . . 47 4.3 Influence of oxidation . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4 MR measurement in the in-plane magnetic field . . . . . . . . . . . . 51 4.5 MR measurement in the out-of-plane magnetic field . . . . . . . . . 54 4.5.1 MR measurement of advanced fabrication samples . . . . . . . . . 57 Chapter 5 Conclusion and Outlook 63 References 65 Appendix A — Typical MTJ behavior 73 | - |
| dc.language.iso | en | - |
| dc.subject | 磁隧道结 | zh_TW |
| dc.subject | 巨磁阻 | zh_TW |
| dc.subject | 磁阻 | zh_TW |
| dc.subject | 二维材料 | zh_TW |
| dc.subject | 自旋電子學 | zh_TW |
| dc.subject | 塞曼效應 | zh_TW |
| dc.subject | 隧道磁電阻 | zh_TW |
| dc.subject | 二硫化鉬 | zh_TW |
| dc.subject | 六方氮化硼 | zh_TW |
| dc.subject | 鈷 | zh_TW |
| dc.subject | 漢勒效應 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | Zeeman effect | en |
| dc.subject | Spintronics | en |
| dc.subject | Two-dimensional material | en |
| dc.subject | Magnetoresistance | en |
| dc.subject | Giant Magnetoresistance | en |
| dc.subject | Magnetic tunnel junction | en |
| dc.subject | Tunneling magnetoresistance | en |
| dc.subject | Graphene | en |
| dc.subject | Molybdenum disulfide | en |
| dc.subject | Hexagonal boron nitride | en |
| dc.subject | Cobalt | en |
| dc.subject | Hanle effect | en |
| dc.title | 二維材料於自旋電子學之應用 | zh_TW |
| dc.title | Application of 2D Materials to Spintronics | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 藍彥文;陳永芳;謝雅萍;莊家翔 | zh_TW |
| dc.contributor.oralexamcommittee | Yann-Wen Lan;Yang-Fang Chen;Ya-Ping Hsieh;Chiashain Chuang | en |
| dc.subject.keyword | 自旋電子學,二维材料,磁阻,巨磁阻,磁隧道结,隧道磁電阻,石墨烯,二硫化鉬,六方氮化硼,鈷,漢勒效應,塞曼效應, | zh_TW |
| dc.subject.keyword | Spintronics,Two-dimensional material,Magnetoresistance,Giant Magnetoresistance,Magnetic tunnel junction,Tunneling magnetoresistance,Graphene,Molybdenum disulfide,Hexagonal boron nitride,Cobalt,Hanle effect,Zeeman effect, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202301254 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-04 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| Appears in Collections: | 物理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf | 11.37 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
