請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87949完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 諶玉真 | zh_TW |
| dc.contributor.advisor | Yu-Jane Sheng | en |
| dc.contributor.author | 陳冠臨 | zh_TW |
| dc.contributor.author | Guan-Lin Chen | en |
| dc.date.accessioned | 2023-07-31T16:29:29Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-31 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-20 | - |
| dc.identifier.citation | 1.Berthier, J. Micro-Drops and Digital Microfluidics (Elsiver, 2013).
2.Berthier, J.; Brakke, K. A.; Berthier, E. Open Microfluidics (John Wiley & Sons, 2016). 3.Cheng, Y.-T.; Chang, H.-Y.; Tsao, H.-K.; Sheng, Y.-J. Imbibition dynamics and steady flows in graphene nanochannels with sparse geometric and chemical defects. Phys. Fluids 2022, 34, 112003. 4.He, G.-Y.; Tsao, H.-K.; Sheng, Y.-J. (2022) Imbibition dynamics in an open-channel capillary with holes. J. Mol. Liq. 2022, 349, 118117. 5.Berthier, J.; Brakke, K. A.; Furlani, E. P.; Karampelas, I. H.; Poher, V.; Gosselin, D.; Cubizolles, M.; Pouteau, P. Whole blood spontaneous capillary flow in narrow V-groove microchannels. Sens. Actuators B Chem. 2015, 206, 258-267. 6.Andersson, J.; Larsson, A.; Ström, A. Stick–slip motion and controlled filling speed by the geometric design of soft micro-channels. J. Colloid Interface Sci. 2018, 524, 139-147. 7.Li, C.; Singh, H.; Cai, J. Spontaneous imbibition in shale: A review of recent advances. Capillarity 2019, 2(2), 17-32. 8.Behrens, S. H. Oil-coated bubbles in particle suspensions, capillary foams, and related opportunities in colloidal multiphase systems. Curr. Opin. Colloid Interface Sci. 2020, 50, 10138. 9.Berlanda, S. F.; Breitfeld, M.; Dietsche, C. L.; Dittrich, P. S. Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Anal. Chem. 2021, 93, 311-331. 10.Berthier, E.; Dostie, A. M.; Lee, U. N.; Berthier, J.; Theberge, A. B. Open microfluidic capillary systems. Anal. Chem. 2019, 91(14), 8739-8750. 11.Oliveira, N. M.; Vilabril, S.; Oliveira, M. B.; Reis, R. L.; Mano, J. F. Recent advances on open fluidic systems for biomedical applications: A review. Mater. Sci. Eng. C 2019, 97, 851-863. 12.Prajapati, Y. K. Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink. Int. J. Heat Mass Transf. 2019, 137, 1041–1052. 13.Baret, J. C.; Decre, M. M. J.; Herminghaus, S.; Seemann, R. Transport dynamics in open microfluidic grooves. Langmuir 2007, 23(9), 5200-5204. 14.Gurumurthy, V. T.; Roisman, I. V.; Tropea, C.; Garoff, S. Spontaneous rise in open rectangular channels under gravity. J. Colloid Interface Sci. 2018, 527, 151-158. 15.Kolliopoulos, P.; Jochem, K. S.; Lade Jr., R. K.; Francis, L. F.; Kumar, S. Capillary Flow with Evaporation in Open Rectangular Microchannels. Langmuir 2019, 35, 8131−8143. 16.Kolliopoulos, P.; Jochem, K. S.; Johnson, D.; Suszynski, W. J.; Francis, L. F.; Kumar, S. Capillary-flow dynamics in open rectangular microchannels. J. Fluid Mech. 2021, 911, A32. 17.Ouali, F. F.; McHale, G.; Javed, H.; Trabi, C.; Shirtcliffe, N. J.; Newton, M. I. Wetting considerations in capillary rise and imbibition in closed square tubes and open rectangular cross-section channels. Microfluid. 2013, 15(3), 309-326. 18.Sowers, T. W.; Sarkar, R.; Prameela, S.; Izadi, E.; Rajagopalan, J. Capillary driven flow of polydimethylsiloxane in open rectangular microchannels. Soft Matter 2016, 12(26), 5818–5823. 19.Yang, D.; Krasowska, M.; Priest, C.; Popescu, M. N.; Ralston, J. Dynamics of capillary-driven flow in open microchannels. J. Phys. Chem. C 2011, 115 (38), 18761-18769. 20.Berthier, J.; Brakke, K. A.; Gosselin, D.; Huet, M.; Berthier, E. Metastable capillary filaments in rectangular cross-section open microchannels. AIMS Biophys. 2014, 1(1), 31–48. 21.Concus, P.; Finn, R. On the behavior of a capillary surface in a wedge. Proc. Natl. Acad. Sci. U.S.A. 1969, 63, 292-299. 22.Han, Z.; Duan, L.; Kang, Q. Behavior of a liquid drop in a rounded corner: Different contact angles. AIP Advances 2019, 9, 085203. 23.Kubochkin, N.; Gambaryan-Roismana, T. Edge wetting: Steady state of rivulets in wedges. Phys. Fluids 2022, 34, 042112. 24.Myra, K. B.; Marmur, A.; Trabold, T.; Dadheech, G. V. Groovy Drops: Effect of Groove Curvature on Spontaneous Capillary Flow. Langmuir 2007, 23, 8406-8410. 25.Nikolai, K.; Tatiana, G. R. Capillary-driven flow in corner geometries. Curr. Opin. Colloid Interface Sci. 2022, 59, 101575. 26.Zhou, J.; Doi, M. Universality of capillary rising in corners. J. Fluid Mech. 2020, 900, A29. 27.Zhao, J.; Qin, F.; Fischer, R.; Kang, Q.; Derome, D.; Carmeliet, J. Spontaneous imbibition in a square tube with corner films: Theoretical model and numerical simulation. Water Resour. Res. 2021, 57, e2020WR029190. 28.Zhao, J.; Qin, F.; Kang, Q.; Qin, C.; Derome, D.; Carmeliet, J. A dynamic pore network model for imbibition simulation considering corner film flow. Water Resour. Res. 2022, 58, e2022WR032332. 29.Afsaneh, H.; Mohammadi, R. Microfluidic platforms for the manipulation of cells and particles. Talanta 2022, 5, 100092. 30.Deng, B.; Wang, H.; Tan, Z.; Quan, Y. Microfluidic cell trapping for single-cell analysis. Micromachines 2019, 10, 409. 31.Deng, Y.; Guo, Y.; Xu, B. Recent Development of Microfluidic Technology for Cell Trapping in Single Cell Analysis: A Review. Processes 2020, 8, 1253. 32.Li, C.; Warrick, J. W.; Li, J.; Geller, S. H.; Trantow, V. G.; Mcclean, M. N.; Beebe, D. J. Under oil open-channel microfluidics empowered by exclusive liquid repellency. Sci. Adv. 2020, 6(16), 9919. 33.Li, Y. F.; Xia, G. D.; Ma, D. D.; Yang, J. L.; Li, W. Experimental investigation of flow boiling characteristics in microchannel with triangular cavities and rectangular fins. Int. J. Heat Mass Transf. 2020, 148, 119036. 34.Rajalingam, A.; Chakraborty, S. Estimation of the thermohydraulic performance of a microchannel heat sink with gradual and sudden variation of the flow passage. Int. J. Heat Mass Transf. 2022, 190, 122776. 35.Tang, J.; Yu, Y.; Hu, X.; Mo, X.; Zhou, W.; Dai, X.; Shan, L.; Yu, D. Study on the characteristics of the capillary wetting and flow in open rectangular microgrooves heat sink. Appl. Therm. Eng. 2018, 143, 90–99. 36.Berthier, J.; Brakke, K.; Berthier, E. A general condition for spontaneous capillary flow in uniform cross-section microchannels. Microfluid. 2014, 16, 779-785. 37.Berthier, J.; Gosselin, D.; Pham, A.; Boizot, F.; Delapierre, G.; Belgacem, N.; Chaussy, D. Spontaneous capillary flows in piecewise varying cross section microchannels. Sens. Actuators B Chem. 2016, 223, 868-877. 38.Berthier, J.; Brakke, K. A.; Gosselin, D.; Navarro, F.; Belgacem, N.; Chaussy, D.; Berthier, E. On the halt of spontaneous capillary flows in diverging open channels. Med. Eng. Phys. 2017, 48, 75-80. 39.Chen, J. M.; Chen, C. Y.; Liu, C. H. Pressure Barrier in an Axisymmetric Capillary Microchannel with Sudden Expansion. Jpn. J. Appl. Phys. 2008, 47, 1683. 40.Ferrás, L. L.; Afonso, A. M.; Alves, M. A.; Nóbrega, J. M.; Pinho, F. T. Newtonian and viscoelastic fluid flows through an abrupt 1:4 expansion with slip boundary conditions. Phys. Fluids 2020, 32, 043103. 41.Izbassarov, D.; Muradoglu, M. A computational study of two-phase viscoelastic systems in a capillary tube with a sudden contraction/expansion. Phys. Fluids 2016, 28, 012110. 42.Luo, Z. Y.; Bai, B. F. Solute release from an elastic capsule flowing through a microfluidic channel constriction. Phys. Fluids 2019, 31, 121902. 43.Pavuluri, S.; Maes, J.; Yang, J.; Regaieg, M.; Moncorge, A.; Doster, F. Towards pore network modelling of spontaneous imbibition: contact angle dependent invasion patterns and the occurrence of dynamic capillary barriers. Comput. Geosci. 2020, 24, 951-969. 44.Lee, J. J.; Berthier, J.; Brakke, K. A.; Dostie, A. M.; Theberge, A. B.; Berthier, E. Droplet Behavior in Open Biphasic Microfluidics. Langmuir 2018, 34, 5358-5366. 45.Chu, K.-C.; Tsao, H.-K.; Sheng, Y.-J. Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci. J. Colloid Interface Sci. 2019, 538, 340-348. 46.Warren, P. B. Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys. Rev. E 2003, 68, 066702. 47.Zhao, J.; Chen, S.; Zhang, K. A review of many-body dissipative particle dynamics (MDPD): Theoretical models and its applications. Phys. Fluids 2021, 33, 112002. 48.Chu, K.-C.; Tsao, H.-K.; Sheng, Y.-J. Spontaneous spreading of nanodroplets on partially wetting surfaces with continuous grooves: Synergy of imbibition and capillary condensation. J. Mol. Liq. 2021, 339, 117270. 49.He, G.-Y.; Tsao, H.-K.; Sheng, Y.-J. Wicking dynamics into two-rail open channel with periodical branches. Phys. Fluids 2022, 34, 102004. 50.Chen, Y.-F.; Xiao, S.; Chen, H.-Y.; Sheng Y.-J.; Tsao, H.-K. Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers. Nanoscale 2015, 7, 16451–16459. 51.Xu, J.; Yang, C.; Tsao, H.-K.; Sheng, Y.-J. Apparent hydrodynamic slip induced by density inhomogeneities at fluid–solid interfaces. Soft Matter 2015, 11(35), 6916-6920. 52.Wang, S.; Zhang, X.; Ma, C.; Yan, S.; Inglis, D.; Feng, S. A Review of Capillary Pressure Control Valves in Microfluidics. Biosensors 2021, 11, 405. 53.Jokinen, V.; Franssila, S. Capillarity in microfluidic channels with hydrophilic and hydrophobic walls. Microfluid. 2008, 5, 443-448. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87949 | - |
| dc.description.abstract | 本研究利用多體耗散粒子動力學模擬並探討在具有瞬間擴張且存在Concus-Finn (CF) filamet之矩形U型管道中的毛細現象。對於尾端開放之瞬間擴張管道,依據接觸角θy、與CF filamet有關之臨界角θf以及與主要流動有關之θc能分出四種流動類型。首先,在θy > θf 和 θy > θc 情況下,無邊角流動,且主要流動停止於小U形槽的末端; 其次,在θc > θy > θf 情況下,無邊角流動但主要流動存在;第三,在θf > θy > θc 情況下,邊角流動發生在大U形槽中但主要流動不存在;第四,在θy < θf 和 θy < θc 情況下,邊角流動和主要流動都出現在大U形槽中。此外,流動行為也受大U形槽長度(le)影響,對於尾端封閉之瞬間擴張管道,可以得到類似的分類結果,但是當le足夠小時,第三種情況的結果會改變,且最終可以填滿管道擴大的部分。 | zh_TW |
| dc.description.abstract | Imbibition dynamics in a rectangular U-groove that is connected to a sudden enlargement and complicated by the presence of Concus-Finn (CF) filaments is investigated using many-body dissipative particle dynamics. For open-ended sudden enlargement, four flow types are identified and depend on the contact angle θy, critical angle θf associated with CF filaments, and critical angle θc associated with the main flow. Firstly, for θy > θf and θy > θc, the corner flow is absent, and the main flow stops at the end of the small U-groove. Secondly, for θc > θy > θf, the corner flow vanishes, but the main flow occurs. Thirdly, for θf > θy > θc, the corner flow takes place in the large U-groove, but the main flow is still absent. Fourthly, for θy < θf and θy < θc, both the corner and main flows appear in the large U-groove. Additionally, the flow dynamics is greatly influenced by the length of the large U-groove (le). For closed-ended sudden enlargement, similar findings can be obtained. However, the outcome of the third case is altered for sufficiently small le, and the sudden enlargement can eventually be filled. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-31T16:29:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-31T16:29:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vi LIST OF TABLES viii Chapter 1 Introduction 1 Chapter 2 Simulation Methods 4 Chapter 3 Results and discussion 7 3.1 Validation of MDPD approach 7 3.2 Capillary flow into a sudden enlargement with an open end 10 3.2.1 The critical contact angle for imbibition 10 3.2.2 Endless-growing CF filaments 13 3.2.3 Four regimes based on θc and θf 16 3.3 Capillary flow into a sudden enlargement with a closed-end 17 Chapter 4 Conclusion 21 Chapter 5 Supporting information 22 Reference 24 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 瞬間管道擴張 | zh_TW |
| dc.subject | 毛細現象 | zh_TW |
| dc.subject | 開放式微流道 | zh_TW |
| dc.subject | 矩形U形槽 | zh_TW |
| dc.subject | Concus-Finn filament | zh_TW |
| dc.subject | Open microchannel | en |
| dc.subject | Capillary flow | en |
| dc.subject | Sudden enlargement | en |
| dc.subject | Concus-Finn filament | en |
| dc.subject | Rectangular U-groove | en |
| dc.title | 在具有瞬間擴張之U型管道中的毛細現象 | zh_TW |
| dc.title | Imbibition Dynamics in U-groove Microchannel with Sudden Enlargement | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曹恆光;陳儀帆;黃俊仁 | zh_TW |
| dc.contributor.oralexamcommittee | Heng-Kwong Tsao;Yi-Fan Chen;Chun-Jen Huang | en |
| dc.subject.keyword | 毛細現象,開放式微流道,矩形U形槽,Concus-Finn filament,瞬間管道擴張, | zh_TW |
| dc.subject.keyword | Capillary flow,Open microchannel,Rectangular U-groove,Concus-Finn filament,Sudden enlargement, | en |
| dc.relation.page | 29 | - |
| dc.identifier.doi | 10.6342/NTU202301057 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-06-21 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 5.81 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
