請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊振義 | zh_TW |
| dc.contributor.advisor | Jehn-Yih Juang | en |
| dc.contributor.author | 俞進財 | zh_TW |
| dc.contributor.author | Chin-Chai Yee | en |
| dc.date.accessioned | 2023-07-31T16:16:39Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-31 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-16 | - |
| dc.identifier.citation | 褚侯森 (2008) 複雜地形中的通量量測—以棲蘭山臺灣扁柏森林樣區為例,國立東華大學自然資源管理研究所碩士論文。
洪敏勝 (2010) 山坡地區森林次冠層通量特徵之研究,國立臺灣大學地理環境資源研究所碩士論文。 陳正諺(2016)棲蘭霧林生態系統能量平衡年際與季節變化之研究,國立臺灣大學地理環境資源研究所碩士論文。 Benzing DH.(1998). Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Climatic Change 39: 519–540. Bosilovich MG, Robertson FR, Stackhouse PW (2020) El Niño-related tropical land surface water and energy response in MERRA-2. J Clim 33:1155–1176. https://doi.org/10.1175/JCLI-D-19-0231.1 Bruijnzeel LA, Veneklaas EJ. 1998. Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79: 3–9. Bruijnzeel LA, Scatena FN, Hamilton LS (eds). (2010). Tropical Montane Cloud Forests.Science for Conservation and Management. Cambridge University Press: Cambridge, UK. Brutsaert, W. (1998) Land-surface water vapor and sensible heat flux: Spatial variability, homogeneity, and measurement scales. Water Resource Research, 34(10): 2433-2442. Chang SC, Lai IL, Wu JT. (2002). Estimation of fog water deposition on epiphytic bryophytes in a subtropical mountain cloud forest ecosystem in northeastern Taiwan. Atmospheric Research 64: 159–167. Chang SC, Tseng KH, Hsia YJ, Wang CP, Wu JT. (2008) Soil respiration in a subtropical montane cloud forest in Taiwan. Agricultural and forest meteorology, 148: 788-798. Chu H.S., Chang S.C., Klemm O et al.(2012), “Does canopy wetness matter? Evapotranspiration from a subtropical montane cloud forest in Taiwan,” Hydrological Processes, vol. 28, no. 3, 2012. Chu PS, Zhang H, Chang HL, Chen TL, Tofte K (2018) Trends in return levels of 24-hr precipitation extremes during the typhoon season in Taiwan. Int J Climatol 38(14):5107–5124. https://doi.org/10.1002/joc.5715 Degefie, D.T., El-Madany, T.S., Hejkal, J., Held,M., Dupontb, J.C., Haeffelin, M., Klemm, O. (2015) Microphysics and energy and water fluxes of various fog types at SIRTA, France. Atmospheric Research,151: 162–175. Dohrenbusch, A. and Hager, A. (2006) Forests in the Clouds. German Reaserch, 28(1): 4-9. El-Madany T.S., Walk J.B., Deventer M.J., Degefie D.T., Chang S.C., Juang J.Y., Klemm O.(2016) Canopy atmosphere interactions under foggy condition—size-resolved fog droplet fluxes and their implications J.Geophys. Res. Biogeosci., 121 (3) (2016), pp. 796-808 Foster, P., (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55 (1–2), 73–106. Gu, Rong-Yu & Lo, Min-Hui & Liao, Chi-Ya & Jang, Yi-Shin & Juang, Jehn-Yih & Huang, Cho-ying & Chang, Shih-Chieh & Hsieh, Cheng-I & Chen, Yi-Ying & Chu, Housen & Chang, Kuang-Yu. (2021). Early Peak of Latent Heat Fluxes Regulates Diurnal Temperature Range in Montane Cloud Forests. Journal of Hydrometeorology. 10.1175/JHM-D-21-0005.1. Hamal, K., Sharma, S., Baniya, B., Khadka, N., & Zhou, X. (2020). Inter-annual variability of winter precipitation over Nepal coupled with ocean-atmospheric patterns during 1987–2015. Frontiers in Earth Science, 8, 161.doi:10.3389/feart.2020 .00161. Herrmann, H.A., Schwartz, JM. & Johnson, G.N. From empirical to theoretical models of light response curves - linking photosynthetic and metabolic acclimation. Photosynth Res 145, 5–14 (2020). https://doi.org/10.1007/s11120-019-00681-2 Ibanez, T, Keppel, G, Menkès, C.E, Gillespie, T, Lengaigne, M. Globally consistent impact of tropical cyclones on the structure of tropical and subtropical forests. Journal of Ecology, Wiley, 2019, 107 (1), pp.279-292. ⟨10.1111/1365-2745.13039⟩. Klemm, O, Chang, S.C., Hsia, Y.J. (2006) Energy fluxes at a subtropical mountain cloud forest. Forest Ecology and Management, 224: 5–10. Knutson, T.R., et al. (2010) Tropical cyclones and climate change. Nat. Geosci. 3, 157–163. https://doi.org/10.1038/NGEO779. Lai, I.L., Chang, S.C., Lin, P.H., Chou, C.H., Wu, J.T. (2006) Climatic Characteristics of the Subtropical Mountainous Cloud Forest at the Yuanyang Lake Long-Term Ecological Research Site, Taiwan. Taiwania, 51(4): 317-329 Lin, C.C.; Liou, Y.J.; Huang, S.J. (2015) Impacts of two-type ENSO on rainfall over Taiwan. Adv. Meteorol., 2015, 658347. https://doi.org/10.1155/2015/658347. Los et al., S.O. Los, F.A. Street-Perrott, N.J. Loader, C.A. Froyd, A. Cuní-Sanchez, R.A. (2019) Marchant Sensitivity of a tropical montane cloud forest to climate change, present, past and future: Mt. Marsabit, N. Kenya Quat. Sci. Rev., 218 (2019), pp. 34-48 Madhavi, G. & Kumar, P. & Chipade, Radhika & Bhate, Jyoti & Sarma, Tummalapalli. (2022). Estimation and Validation Study of Soil Moisture Using GPS-IR Technique Over a Tropical Region: Variability of SM With Rainfall and Energy Fluxes. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 15. 42-49. 10.1109/JSTARS.2021.3127469. Mildenberger , K., Beiderwieden , E., Hsia, Y.J., Klemm., O. (2009) CO2 and water vapor fluxes above a subtropical mountain cloud forest—The effect of light conditions and fog. Agricultural and Forest Meteorology, 149: 1730–1736. Oliphant, A.J., Grimmond, C.S.B., Zutter, H.N., Schmid, H.P., Su, H.-B., Scott, S.L., Offerle, B., Randolph, J.C., Ehman, J. (2004) Heat storage and energy balance fluxes for a temperate deciduous forest. Agricultural and Forest Meteorology, 126: 185–201. Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C.,Kutsch,W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., Yakir, D. (2006) Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3: 571-583. Pinker, R. T., S. A. Grodsky, B. Zhang, A. Busalacchi, and W. Chen (2017), ENSO impact on surface radiative fluxes as observed from space, J. Geophys. Res. Oceans, 122, 7880– 7896, doi:10.1002/2017JC012900. Still, C. J., Foster, P. N., Schneider, S. H. (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature, 398: 608–610. Van der Molen, M.K., Dolman, A.J., Waterloo, M.J., Bruijnzeel, L.A., (2006). Climate is affected more by maritime than by continental land use change: a multiple scale analysis. Global and Planetary Change 54 (1–2), 128–149. Ward, Helen & Evans, J. & Grimmond, Christine. (2015). Infrared and millimetre-wave scintillometry in the suburban environment - Part 2: Large-area sensible and latent heat fluxes. Atmospheric Measurement Techniques. 8. 1407-1424. 10.5194/amt-8-1407-2015. Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D. (2002) Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology,113:223-243. Wu, L., T. Kato, H. Sato, T. Hirano, and T. Yazaki, (2019): Sensitivity analysis of the typhoon disturbance effect on forest dynamics and carbon balance in the future in a cool-temperate forest in northern Japan by using SEIB-DGVM. Forest Ecology and Management, 451, 117529, https://doi.org/10.1016/j.foreco.2019.117529. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87913 | - |
| dc.description.abstract | 山地雲霧森林的特色為長時籠罩在雲霧條件,或樹冠及地面低雲層當中。這是因為雲霧的遮蔽效應使得入射輻射減少和蒸汽壓力不足造成的。雲霧森林的雲霧特色也使該系統具備獨特的水文輸入,為從雲霧中截取的水資源,是當地生態系統重要的水輸入和養分來源。近年來氣候變遷的議題引起了人們的關注,討論如何對不同地域造成影響,但雲霧森林的敏感性和反應仍然缺乏研究。因此我們 使用渦度協方差方法來量化霧、大氣和近地表之間的通量模式。年際尺度由於氣象原因造成的外在環境事件的變化而有顯著差異,並預計會改變地表-大氣之間的相互作用。
本研究以臺灣東北部宜蘭境內的棲蘭山雲霧森林帶為樣區,利用安裝在 24 米高的通量塔上的渦流協方差觀測系統,進行連續的通量和環境參數測量,當中資料的連續性在進行整理後劃分為 2008-2011 年及 2018-2021 年。討論的重點為分析兩個不同年際段的通量特色以及趨勢,並分析造成差異性和變化的機制改變 為何。此外,我們將嘗試填補樣區時序資料上的缺失數據,並以棲蘭樣區為出發 點將山區站的趨勢與平原站進行比較,分析區域地理的效應。從結果中我們觀察 到棲蘭樣區的溫度下降了 1.2。可感熱再跨年際後有所增加,反觀淨輻射,短波 輻射,潛熱和雨量都是下降的趨勢。造成以上通量變化的原因可能為樣區的雲霧 特性變遷或增強。 | zh_TW |
| dc.description.abstract | Montane cloud forest (MCF) is characterized by frequent immersion under foggy conditions and low clouds at canopy or ground tree levels. This is caused by the reduction of incident radiation and lower vapor pressure deficit. MCF is important due to the importance of the hydrological and ecological role as the main source of water input and nutrients for the ecology. As climate change raises concern, the sensitivity and response from MCF remain unclear. We used eddy covariance method to quantify flux patterns between fog, atmosphere and surface. Interannual scale represent significant differences in environmental conditions due to the meteorology and are expected to alter the surface atmosphere interactions. The study site is in northeastern Taiwan at Chi-Lan Mountain (CLM) preserve area. An eddy covariance observation system is mounted on a 24 m flux tower at 1600 m above sea level to continuously measure the flux and environmental parameters, available from 2008-2011 and 2018-2021. The focus is to quantify the shifting pattern of fluxes across different annual scales, discuss the fluxes mechanism and their relationship to climate events. In addition, we will try to fill the gap of CLM missing data and compare mountain station trend to plain stations to analyze regional geographic effect. We observed temperature at CLM region has dropped by 1.2。C accompany by decreased net radiation, mainly due to the cutting of shortwave. Sensible heat has a partial increase but latent heat (LE) increases gradually in summer. LE affects rainfall which observed significant drop in typhoon season (July-Oct). Typhoons contribute to extreme rainfall in CLM with some degree of relationship which is influenced by global ENSO. A potential reason is the changes in visibility(increased) due to fog and low cloud. Regional difference between high latitude and plain also results in opposite trend of rainfall and temperature. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-31T16:16:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-31T16:16:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iii 圖目錄 vi 表目錄 viii 第一章、緒論 1 第一節、研究動機 1 第二節、研究目的 2 第二章、文獻回顧 4 第一節、時間尺度的差異 4 第二節、雲霧森林的研究 4 第三節、過往棲蘭的通量研究 5 第四節、聖嬰現象 6 第五節、颱風的效應 7 第六節、氣候條件對臺灣的影響 8 第三章、材料與方法 10 第一節、研究樣區 10 第二節、儀器設置 13 第三節、資料篩選與處理 14 第四章、結果與討論 15 第一節、氣候概覽及區域地理趨勢 15 第二節、通量及氣候參數的年際變化 23 第三節.外在環境的影響 39 第四節.通量與霧林之間回饋 46 第五節.棲蘭通量資料問題 52 第五章、結論與建議 68 參考文獻 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 能量收支 | zh_TW |
| dc.subject | 雲霧 | zh_TW |
| dc.subject | 渦流相關法 | zh_TW |
| dc.subject | 雲霧森林 | zh_TW |
| dc.subject | 年際變化 | zh_TW |
| dc.subject | Energy Budget | en |
| dc.subject | Montane Cloud Forest | en |
| dc.subject | Interannual | en |
| dc.subject | Eddy Covariance | en |
| dc.subject | Fog | en |
| dc.title | 亞熱帶山地雲霧森林生態系統中通量模式的年際變化 | zh_TW |
| dc.title | Investigating Interannual Variations of Flux Patterns at a Subtropical Montane cloud forest Ecosystem | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃倬英;羅敏輝 | zh_TW |
| dc.contributor.oralexamcommittee | Cho-Ying Huang;Min-Hui Lo | en |
| dc.subject.keyword | 雲霧森林,能量收支,渦流相關法,雲霧,年際變化, | zh_TW |
| dc.subject.keyword | Montane Cloud Forest,Energy Budget,Interannual,Fog,Eddy Covariance, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202300494 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-06-17 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地理環境資源學系 | - |
| 顯示於系所單位: | 地理環境資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 4.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
