Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87910
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 蘇黎 | zh_TW |
dc.contributor.advisor | Li Su | en |
dc.contributor.author | 林維揚 | zh_TW |
dc.contributor.author | Wei-Yang Lin | en |
dc.date.accessioned | 2023-07-31T16:15:41Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-07-31 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-06-27 | - |
dc.identifier.citation | A. M. Barbancho, A. Klapuri, L. J. Tardón, and I. Barbancho. Automatic transcription of guitar chords and fingering from audio. IEEE Transactions on Audio, Speech, and Language Processing, 20(3):915–921, 2011.
P. Barbieri and S. Mangsen. Violin intonation: a historical survey. Early music, 19(1):69–88, 1991. T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3):307–327, 1986. A.-M. Burns and M. M. Wanderley. Visual methods for the retrieval of guitarist fingering. In Proceedings of the 2006 conference on New Interfaces for Musical Expression, pages 196–199, 2006. V. K. Cheung, T.-P. Chen, and L. Su. An interactive automatic violin fingering recommendation interface. In 2021 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), pages 306–312. IEEE, 2021. V. K. Cheung, H.-K. Kao, and L. Su. Semi-supervised violin fingering generation using variational autoencoders. In ISMIR, pages 113–120, 2021. A. Défossez. Hybrid spectrogram and waveform source separation. In Proceedings of the ISMIR 2021 Workshop on Music Source Separation, 2021. A. Défossez, N. Usunier, L. Bottou, and F. Bach. Demucs: Deep extractor for music sources with extra unlabeled data remixed. arXiv preprint arXiv:1909.01174, 2019. A. Défossez, N. Usunier, L. Bottou, and F. Bach. Music source separation in the waveform domain. arXiv preprint arXiv:1911.13254, 2019. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. A. E. Gelfand. Gibbs sampling. Journal of the American statistical Association, 95(452):1300–1304, 2000. M. Hart, R. Bosch, and E. Tsai. Finding optimal piano fingerings. The UMAP Journal, 21(2):167–177, 2000. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997. G. Hori and S. Sagayama. Minimax viterbi algorithm for hmm-based guitar fingering decision. In ISMIR, pages 448–453, 2016. D. Huron and C. Trevor. Are stopped strings preferred in sad music? Empirical Musicology Review, 11(2):261–269, 2016. Y.-H. Jen, T.-P. Chen, S.-W. Sun, and L. Su. Positioning left-hand movement in violin performance: A system and user study of fingering pattern generation. In 26th International Conference on Intelligent User Interfaces, pages 208–212, 2021. D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013. A. Maezawa, K. Itoyama, K. Komatani, T. Ogata, and H. G. Okuno. Automated violin fingering transcription through analysis of an audio recording. Computer Music Journal, 36(3):57–72, 2012. A. Maezawa, K. Itoyama, T. Takahashi, K. Komatani, T. Ogata, and H. G. Okuno. Violin fingering estimation based on violin pedagogical fingering model constrained by bowed sequence estimation from audio input. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pages 249–259. Springer, 2010. B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and O. Nieto. librosa: Audio and music signal analysis in python. In Proceedings of the 14th python in science conference, volume 8, pages 18–25, 2015. W. Nagata, S. Sako, and T. Kitamura. Violin fingering estimation according to skill level based on hidden markov model. In ICMC, 2014. E. Nakamura, N. Ono, and S. Sagayama. Merged-output hmm for piano fingering of both hands. In ISMIR, pages 531–536, 2014. E. Nakamura, Y. Saito, and K. Yoshii. Statistical learning and estimation of piano fingering. Information Sciences, 517:68–85, 2020. A. Oka and M. Hashimoto. Marker-less piano fingering recognition using sequential depth images. In The 19th Korea-Japan joint workshop on frontiers of Computer vision, pages 1–4. IEEE, 2013. A. Perez-Carrillo, J.-L. Arcos, and M. Wanderley. Estimation of guitar fingering and plucking controls based on multimodal analysis of motion, audio and musical score. In Music, Mind, and Embodiment: 11th International Symposium, CMMR 2015, Plymouth, UK, June 16-19, 2015, Revised Selected Papers 11, pages 71–87. Springer, 2016. D. Radicioni and V. Lombardo. Guitar fingering for music performance. In ICMC, 2005. A. Radisavljevic and P. F. Driessen. Path difference learning for guitar fingering problem. In ICMC, volume 28, 2004. S. Rouard, F. Massa, and A. Défossez. Hybrid transformers for music source sepa ration. In ICASSP 23, 2023. S. Sako, W. Nagata, and T. Kitamura. Violin fingering estimation according to the performer's skill level based on conditional random field. In Human-Computer Interaction: Interaction Technologies: 17th International Conference, HCI International 2015, Los Angeles, CA, USA, August 2-7, 2015, Proceedings, Part II 17, pages 485–494. Springer, 2015. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. Generalizing from a few examples: A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020. Y. Yonebayashi, H. Kameoka, and S. Sagayama. Automatic decision of piano fingering based on a hidden markov models. In IJCAI, volume 7, pages 2915–2921, 2007. B. Zhang, J. Zhu, Y. Wang, and W. K. Leow. Visual analysis of fingering for pedagogical violin transcription. In Proceedings of the 15th ACM international conference on Multimedia, pages 521–524, 2007. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87910 | - |
dc.description.abstract | 指法的選擇對於小提琴演奏的流暢度和音樂性具有重要影響。為了協助小提琴初學者,現有方法主要依賴樂譜資訊,透過深度學習模型自動生成小提琴指法。然而,這些模型在生成指法時存在著限制,通常只能生成單一或特定種類的指法,無法滿足客製化需求。因此,我們提出了一種新的模型,結合小提琴演奏的音訊和樂譜資訊,使模型能夠根據不同演奏的錄音生成多樣化的指法。使用者可以通過上傳他們喜愛的演奏家錄音來學習該演奏家的指法。除了現有的資料集外,我們還在 YouTube 上收集了三十首含有其他樂器伴奏的小提琴演奏片段,以測試我們模型的表現。此外,我們嘗試使用自迴歸模型生成更加流暢的指法序列。該模型同時允許使用者手動調整特定音符的指法,並自動微調相鄰音符的指法,以提升整個序列的合理性。綜合以上所述,本研究通過引入小提琴演奏的音訊和使用自迴歸模型,旨在生成客製化的小提琴指法並提升模型的準確性。 | zh_TW |
dc.description.abstract | The selection of fingering is crucial for achieving a fluid and expressive violin performance. To help novice violin learners, deep learning models have been developed to generate recommended fingerings from symbolic data. However, these models are not able to customize specific violin players’ fingering choices. To address this limitation, we propose a novel model that integrates both audio and symbolic data to generate fingerings based on a specific violin performance. Users can upload audio recordings of their favorite violinists to learn their fingering techniques. We also collected a new dataset from YouTube to evaluate the model’s performance under noisy conditions. Moreover, we introduce an autoregressive model that generates fingering based on context. Users can specify some fingerings, and the model will predict the fingerings for the remaining notes. Our proposed approach provides a promising solution to generate customized violin fingering and improve the overall model performance. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-31T16:15:41Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-07-31T16:15:41Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Contents iv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Problem Definition 3 1.3 Integrating Audio and Symbolic Data 3 1.4 Collecting New Dataset 4 1.5 Autoregressive Model 5 1.6 Novel Evaluation Metrics 5 1.7 Contributions 6 1.8 Chapter Overview 7 Chapter 2 Related Work 8 2.1 Fingering Generation across Different Instruments 8 2.2 Deep Learning-Based Violin Fingering Generation 9 2.3 Violin Fingering Generation with Audio Recordings 10 Chapter 3 Methodology 11 3.1 Datasets 11 3.2 Integrating Audio and Symbolic Data 12 3.2.1 Separation and Alignment 12 3.2.2 Model Architecture 13 3.3 Autoregressive Model 15 3.4 Evaluation 16 3.5 Implementation Details 19 3.5.1 Alignment 19 3.5.2 Representation for Symbolic Data and Violin Fingerings 19 3.5.3 Hyperparameters 20 Chapter 4 Experiments and Results 21 4.1 Experiment 1: Impact of Integrating Audio and Symbolic Data on Clean Violin Audios 22 4.2 Experiment 2: Evaluate the Audio-Symbolic Integrated Model on Audios with Accompaniment 23 4.2.1 Experiment Results 23 4.2.2 Analysis through DTW Distance 24 4.3 Specific Metrics for Violin Fingering Generation 25 4.3.1 Evaluation of Smoothness 25 4.3.2 Evaluation of Expressiveness 26 4.4 Example and Comparative Analysis 29 4.5 Experiment 3: Customize Specific Player’s Fingering 30 4.6 Experiment 4: Generate Smooth Fingerings with the Autoregressive Model 31 4.7 Experiment 5: Modified Fingerings with Filling Model 32 4.8 Other Ablation Study 35 Chapter 5 Conclusion 37 References 39 Appendix A — More Examples 44 | - |
dc.language.iso | en | - |
dc.title | 客製化小提琴指法生成系統 | zh_TW |
dc.title | Customized Violin Fingering Generation System | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 王鈺強 | zh_TW |
dc.contributor.coadvisor | Yu-Chiang Frank Wang | en |
dc.contributor.oralexamcommittee | 楊奕軒;劉奕汶 | zh_TW |
dc.contributor.oralexamcommittee | Yi-Hsuan Yang;Yi-Wen Liu | en |
dc.subject.keyword | 小提琴指法自動生成,深度學習,客製化,資料集,自迴歸, | zh_TW |
dc.subject.keyword | Violin fingering generation,Deep learning,Customization,Dataset,Autoregressive, | en |
dc.relation.page | 46 | - |
dc.identifier.doi | 10.6342/NTU202301006 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-06-29 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 資料科學學位學程 | - |
Appears in Collections: | 資料科學學位學程 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-111-2.pdf Restricted Access | 2.49 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.