請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87860
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建彰 | zh_TW |
dc.contributor.advisor | Jian-Zhang Chen | en |
dc.contributor.author | 王英齊 | zh_TW |
dc.contributor.author | YING-CHYI WANG | en |
dc.date.accessioned | 2023-07-24T16:08:47Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-07-24 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-06-14 | - |
dc.identifier.citation | 參考文獻
1. Perera, F., et al., Towards a fuller assessment of benefits to children's health of reducing air pollution and mitigating climate change due to fossil fuel combustion. Environmental research, 2019. 172: p. 55-72. 2. Sathiyan, S.P., et al., Comprehensive assessment of electric vehicle development, deployment, and policy initiatives to reduce GHG emissions: opportunities and challenges. IEEE Access, 2022. 3. Ahmed, Z., et al., How do green energy technology investments, technological innovation, and trade globalization enhance green energy supply and stimulate environmental sustainability in the G7 countries? Gondwana Research, 2022. 112: p. 105-115. 4. Khalili, S. and C. Breyer, Review on 100% Renewable Energy System Analyses—A Bibliometric Perspective. IEEE Access, 2022. 10: p. 125792-125834. 5. Chaparro, A., et al., Data results and operational experience with a solar hydrogen system. Journal of power sources, 2005. 144(1): p. 165-169. 6. Gazey, R., S. Salman, and D. Aklil-D’Halluin, A field application experience of integrating hydrogen technology with wind power in a remote island location. Journal of Power Sources, 2006. 157(2): p. 841-847. 7. Mikovits, C., et al., Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden. Applied Energy, 2021. 282: p. 116082. 8. Gopinath, M. and R. Marimuthu, A review on solar energy-based indirect water-splitting methods for hydrogen generation. International Journal of Hydrogen Energy, 2022. 9. Zaik, K. and S. Werle, Solar and wind energy in Poland as power sources for electrolysis process-A review of studies and experimental methodology. International Journal of Hydrogen Energy, 2023. 48(31): p. 11628-11639. 10. Zou, W.-J. and Y.-B. Kim, Temperature control for a 5 kW water-cooled PEM fuel cell system for a household application. IEEE Access, 2019. 7: p. 144826-144835. 11. Noh, C., M. Shin, and Y. Kwon, A strategy for lowering cross-contamination of aqueous redox flow batteries using metal-ligand complexes as redox couple. Journal of Power Sources, 2022. 520: p. 230810. 12. Taherian, R., A.N. Golikand, and M.J. Hadianfard, Preparation and properties of a phenolic/graphite nanocomposite bipolar plate for proton exchange membrane fuel cell. ECS Journal of Solid State Science and Technology, 2012. 1(6): p. M39. 13. Ishaq, H., I. Dincer, and C. Crawford, A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy, 2022. 47(62): p. 26238-26264. 14. Chapman, A., et al., Societal penetration of hydrogen into the future energy system: Impacts of policy, technology and carbon targets. International Journal of Hydrogen Energy, 2020. 45(7): p. 3883-3898. 15. Pareek, A., et al., Insights into renewable hydrogen energy: Recent advances and prospects. Materials Science for Energy Technologies, 2020. 3: p. 319-327. 16. Tarhan, C. and M.A. Çil, A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage, 2021. 40: p. 102676. 17. Li, Y., et al., Active pressure and flow rate control of alkaline water electrolyzer based on wind power prediction and 100% energy utilization in off-grid wind-hydrogen coupling system. Applied Energy, 2022. 328: p. 120172. 18. Arthur, T., et al., Renewable hydrogen production using non-potable water: Thermal integration of membrane distillation and water electrolysis stack. Applied Energy, 2023. 333: p. 120581. 19. Xiang, R., L. Peng, and Z. Wei, Tuning interfacial structures for better catalysis of water electrolysis. Chemistry–A European Journal, 2019. 25(42): p. 9799-9815. 20. Hu, K., et al., Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling. Applied Energy, 2022. 312: p. 118788. 21. Liu, W., et al., One–step electrodeposition of Ni–Ce–Pr–Ho/NF as an efficient electrocatalyst for hydrogen evolution reaction in alkaline medium. Energy, 2022. 250: p. 123831. 22. Zeng, Z., D. Jing, and L. Guo, Efficient hydrogen production in a spotlight reactor with plate photocatalyst of TiO2/NiO heterojunction supported on nickel foam. Energy, 2021. 228: p. 120578. 23. Zhao, Z., H. Wu, and C. Li, Engineering iron phosphide-on-plasmonic Ag/Au-nanoshells as an efficient cathode catalyst in water splitting for hydrogen production. Energy, 2021. 218: p. 119520. 24. Levene, J.I., et al., An analysis of hydrogen production from renewable electricity sources. Solar energy, 2007. 81(6): p. 773-780. 25. Aulakh, D.J.S., K.G. Boulama, and J.G. Pharoah, On the reduction of electric energy consumption in electrolysis: A thermodynamic study. International Journal of Hydrogen Energy, 2021. 46(33): p. 17084-17096. 26. Ensafi, A.A., et al., Ni3S2/ball-milled silicon flour as a bi-functional electrocatalyst for hydrogen and oxygen evolution reactions. Energy, 2016. 116: p. 392-401. 27. Mahale, N.K. and S.T. Ingle, Electrocatalytic hydrogen evolution reaction on nano-nickel decorated graphene electrode. Energy, 2017. 119: p. 872-878. 28. Kitagawa, S., Metal–organic frameworks (MOFs). Chemical Society Reviews, 2014. 43(16): p. 5415-5418. 29. Abednatanzi, S., et al., Mixed-metal metal–organic frameworks. Chemical Society Reviews, 2019. 48(9): p. 2535-2565. 30. Zhou, H.-C., J.R. Long, and O.M. Yaghi, Introduction to metal–organic frameworks. 2012, ACS Publications. p. 673-674. 31. Li, Y. and R.T. Yang, Gas adsorption and storage in metal− organic framework MOF-177. Langmuir, 2007. 23(26): p. 12937-12944. 32. Goetjen, T.A., et al., Metal–organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chemical Communications, 2020. 56(72): p. 10409-10418. 33. Li, J.-C., et al., Bifunctional MOF-derived Co-N-doped carbon electrocatalysts for high-performance zinc-air batteries and MFCs. Energy, 2018. 156: p. 95-102. 34. Vincent, I. and D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable and Sustainable Energy Reviews, 2018. 81: p. 1690-1704. 35. Santos, D., et al., Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys. Energy, 2013. 50: p. 486-492. 36. Gao, L., et al., Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews, 2021. 50(15): p. 8428-8469. 37. Peng, J., et al., High-performance Ru-based electrocatalyst composed of Ru nanoparticles and Ru single atoms for hydrogen evolution reaction in alkaline solution. international journal of hydrogen energy, 2020. 45(38): p. 18840-18849. 38. Doan, T.L., et al., Influence of IrO2/TiO2 coated titanium porous transport layer on the performance of PEM water electrolysis. Journal of Power Sources, 2022. 533: p. 231370. 39. Parkash, A., et al., Evaluation of Novel Fuel Cell Catalysts with Ultra-Low Noble Metal Contents towards Electrochemical Catalysis. ECS Journal of Solid State Science and Technology, 2022. 40. Zhou, D., et al., Recent advances in non‐precious metal‐based electrodes for alkaline water electrolysis. ChemNanoMat, 2020. 6(3): p. 336-355. 41. Li, Y., et al., Exploration of the configuration and operation rule of the multi-electrolyzers hybrid system of large-scale alkaline water hydrogen production system. Applied Energy, 2023. 331: p. 120413. 42. Kim, S., et al., Highly selective porous separator with thin skin layer for alkaline water electrolysis. Journal of Power Sources, 2022. 524: p. 231059. 43. Yu, L., et al., Characteristics of a sintered porous Ni–Cu alloy cathode for hydrogen production in a potassium hydroxide solution. Energy, 2016. 97: p. 498-505. 44. Waseem, S., et al., Configuring the porosity and microstructure of carbon paper electrode using pore formers and its influence on the performance of PEMFC. Energy & Fuels, 2020. 34(12): p. 16736-16745. 45. Gao, Y., A. Montana, and F. Chen, Evaluation of porosity and thickness on effective diffusivity in gas diffusion layer. Journal of Power Sources, 2017. 342: p. 252-265. 46. Yao, C., et al., Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery. Journal of Power Sources, 2012. 218: p. 455-461. 47. Chen, G., et al., An amorphous nickel–iron‐based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Advanced Materials, 2019. 31(28): p. 1900883. 48. Qi, J., et al., Porous nickel–iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Advanced Science, 2015. 2(10): p. 1500199. 49. Dutta, S., et al., Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity. ACS applied materials & interfaces, 2017. 9(39): p. 33766-33774. 50. Todoroki, N. and T. Wadayama, Heterolayered Ni–Fe hydroxide/oxide nanostructures generated on a stainless-steel substrate for efficient alkaline water splitting. ACS applied materials & interfaces, 2019. 11(47): p. 44161-44169. 51. Raja, D.S., H.-W. Lin, and S.-Y. Lu, Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy, 2019. 57: p. 1-13. 52. Wang, D., F. Watanabe, and W. Zhao, Reduced graphene oxide-NiO/Ni nanomembranes as oxygen evolution reaction electrocatalysts. ECS Journal of Solid State Science and Technology, 2017. 6(6): p. M3049. 53. Loh, A., et al., Development of Ni–Fe based ternary metal hydroxides as highly efficient oxygen evolution catalysts in AEM water electrolysis for hydrogen production. International Journal of Hydrogen Energy, 2020. 45(46): p. 24232-24247. 54. Thangavel, P., G. Kim, and K.S. Kim, Electrochemical integration of amorphous NiFe (oxy) hydroxides on surface-activated carbon fibers for high-efficiency oxygen evolution in alkaline anion exchange membrane water electrolysis. Journal of Materials Chemistry A, 2021. 9(24): p. 14043-14051. 55. Thangavel, P., et al., Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy & Environmental Science, 2020. 13(10): p. 3447-3458. 56. Tseng, C.-Y., I.-C. Cheng, and J.-Z. Chen, Low-pressure-plasma-processed NiFe-MOFs/nickel foam as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022. 47(85): p. 35990-35998. 57. Smolinka, T., et al., The history of water electrolysis from its beginnings to the present, in Electrochemical Power Sources: Fundamentals, Systems, and Applications. 2022, Elsevier. p. 83-164. 58. Zoulias, E., et al., A review on water electrolysis. Tcjst, 2004. 4(2): p. 41-71. 59. Katz, E., Electrochemical contributions: William Nicholson (1753–1815). 2021, Wiley Online Library. p. e2160003. 60. LeValley, T.L., A.R. Richard, and M. Fan, The progress in water gas shift and steam reforming hydrogen production technologies–A review. International Journal of Hydrogen Energy, 2014. 39(30): p. 16983-17000. 61. Kaiwen, L., Y. Bin, and Z. Tao, Economic analysis of hydrogen production from steam reforming process: A literature review. Energy Sources, Part B: Economics, Planning, and Policy, 2018. 13(2): p. 109-115. 62. Lee, S., et al., Scenario-based techno-economic analysis of steam methane reforming process for hydrogen production. Applied Sciences, 2021. 11(13): p. 6021. 63. Ziazi, R., K. Mohammadi, and N. Goudarzi. Techno-economic assessment of utilizing wind energy for hydrogen production through electrolysis. in ASME Power Conference. 2017. American Society of Mechanical Engineers. 64. David, M., C. Ocampo-Martínez, and R. Sánchez-Peña, Advances in alkaline water electrolyzers: A review. Journal of Energy Storage, 2019. 23: p. 392-403. 65. Bessarabov, D., et al., PEM electrolysis for hydrogen production: principles and applications. 2016: CRC press. 66. Carmo, M., et al., A comprehensive review on PEM water electrolysis. International journal of hydrogen energy, 2013. 38(12): p. 4901-4934. 67. Sood, S., et al., Generic dynamical model of PEM electrolyser under intermittent sources. Energies, 2020. 13(24): p. 6556. 68. Li, C. and J.-B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy, 2021. 87: p. 106162. 69. Chi, J. and H. Yu, Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 2018. 39(3): p. 390-394. 70. Ito, H., et al., Investigations on electrode configurations for anion exchange membrane electrolysis. Journal of Applied Electrochemistry, 2018. 48: p. 305-316. 71. Nechache, A. and S. Hody, Alternative and innovative solid oxide electrolysis cell materials: A short review. Renewable and Sustainable Energy Reviews, 2021. 149: p. 111322. 72. Nechache, A., M. Cassir, and A. Ringuedé, Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review. Journal of Power Sources, 2014. 258: p. 164-181. 73. Ruiz-Morales, J.C., et al., Symmetric and reversible solid oxide fuel cells. Rsc Advances, 2011. 1(8): p. 1403-1414. 74. Hauch, A., et al., Highly efficient high temperature electrolysis. Journal of Materials Chemistry, 2008. 18(20): p. 2331-2340. 75. Moçoteguy, P. and A. Brisse, A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells. International journal of hydrogen energy, 2013. 38(36): p. 15887-15902. 76. Tenhumberg, N. and K. Büker, Ecological and economic evaluation of hydrogen production by different water electrolysis technologies. Chemie Ingenieur Technik, 2020. 92(10): p. 1586-1595. 77. Ni, M., M.K. Leung, and D.Y. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). International journal of hydrogen energy, 2008. 33(9): p. 2337-2354. 78. Santos, D.M., C.A. Sequeira, and J.L. Figueiredo, Hydrogen production by alkaline water electrolysis. Química Nova, 2013. 36: p. 1176-1193. 79. Lasia, A., Mechanism and kinetics of the hydrogen evolution reaction. international journal of hydrogen energy, 2019. 44(36): p. 19484-19518. 80. Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. 81. Morales-Guio, C.G., L.-A. Stern, and X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014. 43(18): p. 6555-6569. 82. Wang, S., et al., High entropy alloy/C nanoparticles derived from polymetallic MOF as promising electrocatalysts for alkaline oxygen evolution reaction. Chemical Engineering Journal, 2022. 429: p. 132410. 83. Liang, Q., G. Brocks, and A. Bieberle-Hütter, Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. Journal of Physics: Energy, 2021. 3(2): p. 026001. 84. Jin, H., et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chemical reviews, 2018. 118(13): p. 6337-6408. 85. Huang, H.-H., 電解水產氫中極化作用之分析與研究. 2013, National Central University. 86. Gabrielli, C., F. Huet, and R.P. Nogueira, Fluctuations of concentration overpotential generated at gas-evolving electrodes. Electrochimica Acta, 2005. 50(18): p. 3726-3736. 87. Yang, S., et al., Electrochemical analysis of an anode-supported SOFC. Int. J. Electrochem. Sci, 2013. 8(2): p. 2330-2344. 88. Hren, M., et al., Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustainable Energy & Fuels, 2021. 5(3): p. 604-637. 89. Pan, J., et al., Constructing ionic highway in alkaline polymer electrolytes. Energy & Environmental Science, 2014. 7(1): p. 354-360. 90. Merle, G., M. Wessling, and K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 2011. 377(1-2): p. 1-35. 91. Li, Y., T. Zhao, and W. Yang, Measurements of water uptake and transport properties in anion-exchange membranes. International Journal of Hydrogen Energy, 2010. 35(11): p. 5656-5665. 92. Das, G., et al., Anion Exchange Membranes for Fuel Cell Application: A Review. Polymers, 2022. 14(6): p. 1197. 93. Bauer, B., H. Strathmann, and F. Effenberger, Anion-exchange membranes with improved alkaline stability. Desalination, 1990. 79(2-3): p. 125-144. 94. Robertson, N.J., et al., Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. Journal of the American Chemical Society, 2010. 132(10): p. 3400-3404. 95. Liu, Z., et al., The effect of membrane on an alkaline water electrolyzer. International Journal of Hydrogen Energy, 2017. 42(50): p. 29661-29665. 96. Ramírez, S.C. and R.R. Paz, Hydroxide transport in anion-exchange membranes for alkaline fuel cells. New Trends in Ion Exchange Studies, 2018. 51. 97. Sauermoser, M., et al., Flow field patterns for proton exchange membrane fuel cells. Frontiers in Energy Research, 2020. 8: p. 13. 98. James, S.L., Metal-organic frameworks. Chemical Society Reviews, 2003. 32(5): p. 276-288. 99. Kampouraki, Z.-C., et al., Metal organic frameworks as desulfurization adsorbents of DBT and 4, 6-DMDBT from fuels. Molecules, 2019. 24(24): p. 4525. 100. Altay, B.N., et al., Surface free energy estimation: a new methodology for solid surfaces. Advanced Materials Interfaces, 2020. 7(6): p. 1901570. 101. Zhang, M., et al., Lotus effect in wetting and self-cleaning. Biotribology, 2016. 5: p. 31-43. 102. Chen, C.-H., et al., Superhydrophobic, Oleophobic, Self-Cleaning Flexible Wearable Temperature Sensing Device. ECS Advances, 2022. 1(3): p. 036502. 103. Njobuenwu, D.O., E.O. Oboho, and R.H. Gumus, Determination of contact angle from contact area of liquid droplet spreading on solid substrate. Leonardo Electronic Journal of Practices and Technologies, 2007. 10: p. 29-38. 104. Nanakoudis, A. SEM: Types of Electrons and the Information They Provide. 2019; Available from: https://www.thermofisher.com/blog/materials/sem-signal-types-electrons-and-the-information-they-provide/. 105. Inkson, B.J., Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, in Materials characterization using nondestructive evaluation (NDE) methods. 2016, Elsevier. p. 17-43. 106. Baskaran, S., Structure and regulation of yeast glycogen synthase. 2010. 107. Guideline, I., N.A.R. Forensic, and S. Intern. ITWG GUIDELINE ON POWDER X-RAY DIFFRACTION ( XRD ) — GENERAL OVERVIEW. 2017. 108. Fang, D., et al., Calibration of binding energy positions with C1s for XPS results. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020. 35: p. 711-718. 109. Seah, M., I. Gilmore, and S. Spencer, XPS: binding energy calibration of electron spectrometers 4—assessment of effects for different x‐ray sources, analyser resolutions, angles of emission and overall uncertainties. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 1998. 26(9): p. 617-641. 110. Flitsch, R. and S. Raider, Electron mean escape depths from x− ray photoelectron spectra of thermally oxidized silicon dioxide films on silicon. Journal of Vacuum Science and Technology, 1975. 12(1): p. 305-308. 111. Thermoscientific. What is X-Ray Photoelectron Spectroscopy (XPS)? 2013; Available from: https://xpssimplified.com/_whatisxps.php. 112. Seyama, H., M. Soma, and B. Theng, X-ray photoelectron spectroscopy, in Developments in Clay Science. 2013, Elsevier. p. 161-176. 113. Cherevko, S., et al., Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catalysis Today, 2016. 262: p. 170-180. 114. Reier, T., M. Oezaslan, and P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. Acs Catalysis, 2012. 2(8): p. 1765-1772. 115. WM, H., CRC Handbook of Chemistry and Physics: . Vol. 95th Edition. CRC Press. 116. Zhu, J., et al., Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chemical reviews, 2019. 120(2): p. 851-918. 117. Weng, S., et al., In-Situ Formation of NiFe-MOF on Nickel Foam as a Self-Supporting Electrode for Flexible Electrochemical Sensing and Energy Conversion. Chemosensors, 2023. 11(4): p. 242. 118. Anuratha, K.S., et al., Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution. Nanomaterials, 2022. 12(17): p. 2970. 119. Sun, Y., et al., Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nature communications, 2021. 12(1): p. 1369. 120. Osorio Jiménez, J.M., et al., Comparative Effect of Adsorption and Photodegradation on Benzene and Naphthalene Using Bismuth Oxide Modify Graphene Oxide. Journal of the Mexican Chemical Society, 2022. 66(3): p. 371-384. 121. Cui, W., et al., Organic-inorganic hybrid-photoanode built from NiFe-MOF and TiO2 for efficient PEC water splitting. Electrochimica Acta, 2020. 349: p. 136383. 122. Zhang, J. and Z.-H. Chen, Preparation and electrochemical properties of mesoporous NiFe2O4/N-doped carbon nanocomposite as an anode for lithium ion battery. Frontiers in Materials, 2020. 7: p. 178. 123. Kotsugi, Y., et al., Atomic layer deposition of Ru for replacing Cu-interconnects. Chemistry of Materials, 2021. 33(14): p. 5639-5651. 124. Gopinath, K., et al., Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. leaf extract. Journal of Nanostructure in Chemistry, 2014. 4: p. 1-6. 125. Cai, M., et al., Fabrication of Ni2P cocatalyzed CdS nanorods with a well-defined heterointerface for enhanced photocatalytic H2 evolution. Catalysts, 2022. 12(4): p. 417. 126. Zhang, F.-S., et al., Extraction of nickel from NiFe-LDH into Ni 2 P@ NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting. Chemical science, 2018. 9(5): p. 1375-1384. 127. Morgan, D.J., Resolving ruthenium: XPS studies of common ruthenium materials. Surface and Interface Analysis, 2015. 47(11): p. 1072-1079. 128. Frackowiak, E., Carbon materials for supercapacitor application. Physical chemistry chemical physics, 2007. 9(15): p. 1774-1785. 129. Vangari, M., T. Pryor, and L. Jiang, Supercapacitors: review of materials and fabrication methods. Journal of energy engineering, 2013. 139(2): p. 72-79. 130. Xue, Q., et al., Recent progress on flexible and wearable supercapacitors. Small, 2017. 13(45): p. 1701827. 131. Manjakkal, L., et al., A wearable supercapacitor based on conductive PEDOT: PSS‐coated cloth and a sweat electrolyte. Advanced Materials, 2020. 32(24): p. 1907254. 132. Yun, T.G., et al., All-transparent stretchable electrochromic supercapacitor wearable patch device. Acs Nano, 2019. 13(3): p. 3141-3150. 133. Chen, I.-H., et al., Silver mirror reaction metallized chromatography paper for supercapacitor application. Flexible and Printed Electronics, 2021. 6(4): p. 045010. 134. Sheberla, D., et al., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature materials, 2017. 16(2): p. 220-224. 135. Shi, S., et al., Flexible supercapacitors. Particuology, 2013. 11(4): p. 371-377. 136. Wu, X., et al., A simple process to create micro-gaps in printed copper electrodes by sintering induced stress in flexible PET substrates. Flexible and Printed Electronics, 2021. 6(2): p. 024005. 137. Li, M., et al., Flexible strain sensors: from devices to array integration. Flexible and Printed Electronics, 2021. 6(4): p. 043002. 138. Tao, L., et al., Printable commercial carbon based mesoscopic perovskite solar cell using NiO/graphene as hole-transport materials. ECS Journal of Solid State Science and Technology, 2021. 10(10): p. 105003. 139. Nishihara, T., et al., Investigation of the chemical reaction between silver electrodes and transparent conductive oxide films for the improvement of fill factor of silicon heterojunction solar cells. ECS Journal of Solid State Science and Technology, 2021. 10(5): p. 055013. 140. Kharbanda, D., N. Suri, and P. Khanna, Design, fabrication and characterization of inter-layer microheaters using LTCC technology. ECS Journal of Solid State Science and Technology, 2022. 11(3): p. 037002. 141. Tarcan, R., et al., Reduced graphene oxide today. Journal of Materials Chemistry C, 2020. 8(4): p. 1198-1224. 142. Erickson, K., et al., Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Advanced materials, 2010. 22(40): p. 4467-4472. 143. Smith, A.T., et al., Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 2019. 1(1): p. 31-47. 144. Liu, X., et al., Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges. Journal of Materials Chemistry A, 2020. 8(35): p. 17938-17950. 145. Torrinha, Á. and S. Morais, Electrochemical (bio) sensors based on carbon cloth and carbon paper: An overview. TrAC Trends in Analytical Chemistry, 2021. 142: p. 116324. 146. Lai, J.-Y., C.-C. Hsu, and J.-Z. Chen, Comparison between atmospheric-pressure-plasma-jet-processed and furnace-calcined rGO-MnOx nanocomposite electrodes for gel-electrolyte supercapacitors. Journal of Alloys and Compounds, 2022. 911: p. 165006. 147. Tseng, C.-H., et al., Dielectric-barrier-discharge jet treated flexible supercapacitors with carbon cloth current collectors of long-lasting hydrophilicity. Journal of The Electrochemical Society, 2020. 167(11): p. 116511. 148. Tseng, C.-H., et al., Electropolymerized poly (3, 4-ethylenedioxythiophene)/screen-printed reduced graphene oxide–chitosan bilayer electrodes for flexible supercapacitors. ACS omega, 2021. 6(25): p. 16455-16464. 149. Xie, R.-J., I.-C. Cheng, and J.-Z. Chen, East asian calligraphy black ink-coated paper as flexible conducting electrode for supercapacitor. ECS Journal of Solid State Science and Technology, 2021. 10(12): p. 123013. 150. Sudhakar, R. and M. Krishnappa, Mesoporous materials for high-performance electrochemical supercapacitors, in Mesoporous Materials-Properties and Applications. 2019, IntechOpen. 151. Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014. 7(5): p. 1597-1614. 152. Lv, H., et al., A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors. Nano-Micro Letters, 2020. 12: p. 1-56. 153. Marken, F., A. Neudeck, and A.M. Bond, Cyclic voltammetry. Electroanalytical Methods: Guide to Experiments and Applications, 2010: p. 57-106. 154. Ban, S., et al., Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent. Electrochimica Acta, 2013. 90: p. 542-549. 155. Lee, J.J., et al., Alcohol-based highly conductive polymer for conformal nanocoatings on hydrophobic surfaces toward a highly sensitive and stable pressure sensor. NPG Asia Materials, 2020. 12(1): p. 65. 156. Osborne, K.L., Temperature-dependence of the contact angle of water on graphite, silicon, and gold. 2009, Worcester Polytechnic Institute Worcester, MA. 157. Ismail, Z., et al., Production of functional graphene by kitchen mixer: mechanism and metric development for in situ measurement of sheet size. Journal of Nanostructure in Chemistry, 2017. 7: p. 231-242. 158. Pavese, M., et al., An analysis of carbon nanotube structure wettability before and after oxidation treatment. Journal of Physics: Condensed Matter, 2008. 20(47): p. 474206. 159. Wang, S., et al., Wettability and surface free energy of graphene films. Langmuir, 2009. 25(18): p. 11078-11081. 160. Gutiérrez-Cano, V., et al., Thermal degradation of hydrophobic graphite-based thin film nano-coatings observed by Raman spectroscopy. Thin Solid Films, 2018. 648: p. 8-11. 161. Fowkes, F.M. and W.D. Harkins, The state of monolayers adsorbed at the interface solid—aqueous solution. Journal of the American Chemical Society, 1940. 62(12): p. 3377-3386. 162. Kuok, F.-H., et al., Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors. RSC advances, 2018. 8(6): p. 2851-2857. 163. Chang, J.-H., et al., Carbon dioxide tornado-type atmospheric-pressure-plasma-jet-processed rgo-sno2 nanocomposites for symmetric supercapacitors. Materials, 2021. 14(11): p. 2777. 164. He, C., et al., Electrochemically active phosphotungstic acid assisted prevention of graphene restacking for high‐capacitance supercapacitors. Energy & Environmental Materials, 2018. 1(2): p. 88-95. 165. Olthoff, J.K., R.J. Van Brunt, and S. Radovanov, Studies of ion kinetic-energy distributions in the gaseous electronics conference RF reference cell. Journal of research of the National Institute of Standards and Technology, 1995. 100(4): p. 383. 166. Lee, J.H., et al., Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS nano, 2013. 7(10): p. 9366-9374. 167. Contescu, C.I., et al., Practical aspects for characterizing air oxidation of graphite. Journal of nuclear materials, 2008. 381(1-2): p. 15-24. 168. Niinomi, M., Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 1998. 243(1-2): p. 231-236. 169. Veiga, C., J. Davim, and A. Loureiro, Properties and applications of titanium alloys: a brief review. Rev. Adv. Mater. Sci, 2012. 32(2): p. 133-148. 170. Welsch, G., R. Boyer, and E. Collings, Materials properties handbook: titanium alloys. 1993: ASM international. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87860 | - |
dc.description.abstract | 本研究提出一種電催化層的製造方法,可將鎳鐵金屬有機骨架與鎳鐵氧化物之混成材料以水熱法生長在碳紙上,並應用於鹼性電解水系統中。本研究製成的鎳鐵金屬有機骨架電催化層,經由X射線光電子能譜儀(XPS)可證實鎳與鐵材料被生長在碳紙上,並由場發射掃描式電子顯微鏡(SEM)顯示其材料附著狀況,X射線繞射儀(XRD)顯示一8.8°之繞射峰,為金屬有機骨架之結構,其餘材料主要為鎳鐵氧化物。
在電解系統測試中,陽極與陰極皆使用鎳鐵電催化層之系統命名為NiFe(+)/NiFe(-),本研究亦單獨置換陰極電催化層為釕電催化層,命名此系統為NiFe(+)/Ru(-),藉此比較貴金屬與非貴金屬的性能差異。在電流密度500 mA/cm2下,NiFe(+)/Ru(-)系統的核心電壓為1.79 V,功耗效能比為每立方公尺氫氣消耗4.9度電,能量效率為66.2%。相比之下,NiFe(+)/NiFe(-)系統的核心電壓為2.23 V,功耗效能比為每立方公尺氫氣消耗5.7度電,能量效率為56.6%。經由排水集器法測試系統氫氣之產率,NiFe(+)/Ru(-)與NiFe(+)/NiFe(-)系統的法拉第效率均在96%以上,表示系統幾乎無其他副反應或者漏電流。在電流密度400 mA/cm2的長時間測試中,經過150小時後,NiFe(+)/Ru(-)的核心電壓增加了0.167 V,而NiFe(+)/NiFe(-)的核心電壓下降了0.01 V,在長時間運轉下沒有衰退,證明鎳鐵材料電催化層有良好的穩定性,可做為低成本且易於製造的電催化層使用。 | zh_TW |
dc.description.abstract | The hydrothermal method is used to grow NiFe metal-organic frameworks (MOFs) and NiFe2O4 on carbon paper (CP) to serve as electrocatalysts in an alkaline electrolyzer. The NiFe metal-organic framework electrocatalyst prepared in this study can be confirmed by X-ray photoelectron spectroscopy (XPS) that nickel and iron materials are grown on carbon paper, and the morphology of the electrocatalyst is shown by field emission scanning electron microscope (FE-SEM). X-ray diffractometer (XRD) shows a diffraction peak of 8.8°, which is the structure of metal organic framework.
In the electrolysis system test, the system using NiFe electrocatalyst on both the anode and the cathode was named NiFe(+)/NiFe(-). In order to compare the performance difference between noble metals and non-noble metals, the cathode catalytic layer was replaced by a ruthenium electrocatalyst, and the system was named NiFe(+)/Ru(-). Results show that the current density reaches 500 mA/cm2 at a cell voltage of 1.79 V, with a specific energy consumption of 4.9 kWh/m3 and energy efficiency of 66.2% when using NiFe(+)/Ru(-). However, when using NiFe(+)/NiFe(-), the current density reaches 500 mA/cm2 at a higher cell voltage of 2.23 V, with a specific energy consumption of 5.7 kWh/m3 and energy efficiency of 56.6%. The Faradaic efficiency is high for both setups, ranging from 96% to 99%, indicating that there were almost no other side reactions or leakage currents in the system. After conducting a 150-hour test with a fixed current density of 400 mA/cm2, the cell voltage increases by 0.167 V for NiFe(+)/Ru(-), while it decreases by only 0.010 V for NiFe(+)/NiFe(-), which proves that the electrocatalyst of NiFe material has good stability, and can be used as a low-cost and easy-to-manufacture electrocatalyst. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-24T16:08:47Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-07-24T16:08:47Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 II
誌謝 III 中文摘要 IV ABSTRACT V 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2 研究動機 2 1.3 研究大綱 3 第二章 理論與文獻回顧 4 2.1 電解水系統簡介 4 2.2 鹼性電解水反應與析氫、析氧反應 10 2.3 氫氣理論產率 12 2.4 極化現象與過電位 13 2.5 陰離子交換膜 14 2.6 鹼性電解水系統組成 16 2.7 有機金屬骨架結構 20 2.8 實驗儀器原理 22 2.8.1 水接觸角測量儀 22 2.8.2 場發射掃描式電子顯微鏡 24 2.8.3 X射線繞射儀 26 2.8.4 X射線光電子能譜儀 27 第三章 實驗流程 29 3.1 實驗藥品與儀器清單 29 3.2 實驗流程 31 3.2.1 碳紙前處理 31 3.2.2 水熱反應溶液製備 31 3.2.3 鎳鐵電催化層、釕電催化層製備 31 3.2.4 電解系統組成 31 第四章 實驗結果與討論 34 4.1 鹼性水電解系統表現 34 4.1.1 電壓對電流密度 34 4.1.2 電解系統效率 34 4.1.3 系統穩定性表現 36 4.2 電催化層之材料附載量 38 4.3 電催化層之表面型態分析 39 4.4 X射線繞射分析 40 4.5 X射線光電子能譜分析 41 第五章 結論與未來展望 44 附錄A 網版印刷製備PEDOT:PSS與碳膠還原氧化石墨烯複合材料超級電容器之比較與應用 45 A.1 緒論 45 A.1.1 前言 45 A.1.2 研究動機 46 A.1.3 研究大綱 47 A.2 理論與文獻回顧 48 A.2.1 超級電容器之儲能原理 48 A.2.2 實驗儀器原理 49 A.2.2.1 迴旋濃縮儀 49 A.2.2.2 平面吸風網印機 49 A.2.2.3 電化學分析儀 50 A.3 實驗流程與儀器 52 A.3.1 實驗藥品與儀器清單 52 A.3.2 實驗流程 54 A.3.2.1 還原氧化石墨烯-殼聚醣漿料製備 54 A.3.2.2 凝膠態硫酸電解液製備 54 A.3.2.3 超級電容器製作 54 A.4 實驗結果與討論 56 A.4.1 電極之水接觸角分析 56 A.4.2 電極之表面型態分析 58 A.4.3 超級電容器之電化學分析 59 A.4.3.1 循環伏安法 59 A.4.3.2 定電流充放電法 60 A.4.4 超級電容器之穩定性分析 62 A.4.5 超級電容器之可撓性分析 63 A.5 結論與未來展望 64 附錄B 鎳鐵金屬有機骨架電催化材料生長於鈦紙 65 B.1 摘要 65 B.2 實驗流程 65 B.2.1 鈦紙前處理 65 B.2.2 水熱反應溶液製備 65 B.2.3 鎳鐵電催化層製備 65 B.3 實驗結果與討論 66 個人期刊著作發表 67 參考文獻 68 | - |
dc.language.iso | zh_TW | - |
dc.title | 鎳鐵金屬有機骨架/鎳鐵氧化物混成電催化材料於鹼性電解水之應用 | zh_TW |
dc.title | NiFe-MOF/NiFe2O4 Hybrid Material as an Electrocatalyst for Alkaline Water Electrolysis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳奕君;羅世強;陳建甫 | zh_TW |
dc.contributor.oralexamcommittee | I-Chun Cheng;Shyh-Chyang Luo;Chien-Fu Chen | en |
dc.subject.keyword | 鹼性電解水,金屬有機骨架,水熱法,電催化層,鎳鐵材料, | zh_TW |
dc.subject.keyword | alkaline water electrolysis,metal-organic framework (MOF),hydrothermal method,electrocatalyst,NiFe, | en |
dc.relation.page | 82 | - |
dc.identifier.doi | 10.6342/NTU202300996 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-06-15 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 5.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。