請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8785完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡定平 | |
| dc.contributor.author | Min-Wei Chen | en |
| dc.contributor.author | 陳敏瑋 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:01:13Z | - |
| dc.date.available | 2010-01-11 | |
| dc.date.available | 2021-05-20T20:01:13Z | - |
| dc.date.copyright | 2010-01-11 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-12-31 | |
| dc.identifier.citation | 第一章 參考文獻
[1-1] F. E. Wagner, S. Haslbeck, L. Stievano, S. Calogero, Q. A. Pankhurst, and K.-P. Martinek “Before striking gold in gold-ruby glass,” Nature 407, 691-692 (2000). [1-2] H. Raether, “Surface plasmons on smooth and rough surface and on gratings,” Springer-Verlag, Berlin (1998). [1-3] R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11, 1732-1740 (1975). [1-4] C. Noguez, “Surface plasmons on metal nanoparticles: The influence of shape and physical environment” J. Phys. Chem. B 111, 3806-3819 (2007). [1-5] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003). [1-6] P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238-7248 (2006). [1-7] O. L. Muskens, N. D. Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, “Single metal nanoparticle absorption spectroscopy and optical characterization,” Appl. Phys. Lett. 88, 063109 (2006). [1-8] http://en.wikipedia.org/wiki/Rayleigh_scattering [1-9] A. T. Young “Rayleigh scattering,” Appl. Opt. 20, 533-535 (1981). [1-10] A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys. 70, 620-625 (2002). [1-11] J. Anglister, and I. Z. Steinberg, “Resonance Rayleigh scattering of cyanine dyes in solution,” J. Chem. Phys. 78, 5358-5368 (1983). [1-12] C. F. Bohren, and D. R. Huffman, “Absorption and scattering of light by small particles,” Wiley, New York (1983). [1-13] Z. L. Jiang, S. P. Liu, and S. Chen, “A study of the resonance nonlinear scattering of silver atomic clusters,” Spectrochim. Acta Part A 58, 3121-3126 (2002). [1-14] X. L. Liu, H. Yuan, D. W. Pang, and R. X. Cai, “Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application,” Spectrochim. Acta Part A 60, 385-389 (2004). [1-15] R. C. Johnson, J. T. Li, J. T. Hupp, and G. C. Schatz, “Hyper-Rayleigh scattering studies of silver, copper, and platinum nanoparticle suspensions,” Chem. Phys. Lett. 356, 534-540 (2002). [1-16] Z. L. Jiang, Q. Y. Liu, and S. P. Liu, “Resonance scattering spectral analysis of chlorides based on the formation of (AgCl)n(Ag)s nanoparticle,” Spectrochim. Acta Part A 58, 2759-2764 (2002) [1-17] R. F. Pasternack, P. J. Collings, “Resonance light scattering: a new technique for studying chromophore aggregation,” Science 269, 935-939 (1995). [1-18] S. A. Maier, “Plasmonics:Fundamentals and Apllications,” Chapter5, Springer, (2007). [1-19] P. N. Prasad, “Nanophotonics,” p.130 Wily, (2004). [1-20] K. Arya, Z. B. Su, and Joseph L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559-1562 (1985). [1-21] J. P. Kottmann, and O. J. F. Martin, “Spectral response of Plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6, 213-219 (2000). [1-22] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755-6759 (2002). [1-23] J. P. Kottmann, and O. J. F. Martin, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001). [1-24] J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Non-regularly shaped plasmon resonant nanoparticle as localized light source for near-field microscopy,” J. Microsc. 202, 60 (2001). [1-25] J. P. Kottmann, and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655-663 (2001). [1-26] J. P. Kottmann, and O. J. F. Martin, “Retardation-induced Plasmon resonance in coupled nanoparticles,” Opt. Lett. 14, 1096-1098 (2001). [1-27] H. Xu, and M. Kall, “Surface-plasmon enhanced optical forces in silver nanoaggregates,” Phys, Rev. Lett. 89, 246802 (2002). [1-28] G. Mie, “Beiträge zur Optik trüber Medien speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377-445 (1908). [1-29] P. Bøggild, T. M. Hansen, C. Tanasa, and F. Grey, “Fabrication and actuation of customized nanotweezers with a 25 nm gap,” Nanotechnology 12, 331-335 (2001). [1-30] S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714-1716 (2002). [1-31] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics−A route to nanoscale optical devices,” Advanced Materials 13, 1501-1505 (2001). [1-32] M. Inoue, and K. Ohtaka, “Surface enhanced Raman scattering by metal spheres. I. Cluster Effect,” J. Phys. Soc. Jpn. 52, 3853 (1983). [1-33] H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357 (1999). [1-34] H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318- 4324 (2000). [1-35] C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Analyzing the scattering properties of coupled metallic nanoparticles,” J. Opt. Soc. Am. A 21, 1761-1768 (2004). [1-36] J. Zhu, Y. C. Wang, L. Q. Huang, and Y. M. Lu, “Resonance light scattering characters of core-shell structure of Au-Ag nanoparticles ,” Phys. Lett. A 323, 455-459 (2004). [1-37] J. Zhu, and Y. C. Wang, “Surface plasmon resonance enhanced scattering of Au colloidal nanoparticles,” Plasma Sci. Technol. 3, 1835-1839 (2003). [1-38] J. Pendry, “Applied physics: enhanced: playing tricks with light,” Science 285, 1687-1688 (1999). [1-39] M. R. Pufall, A. Berger, and S. Schultz, “Measurement of the scattered light magneto-optical Kerr effect from plasmon-resonant Ag particles near a magnetic film,” J. Appl. Phys. 81, 5689-5691 (1997). [1-40] H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Enhanced sensitivity near-field scanning optical microscopy at high spatial resolution,” Appl. Phys. Lett., 73, 1469-1471 (1998). [1-41] B. Knoll, and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134-137 (1999). [1-42] E. J. Sa′nchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. ReV. Lett. 82, 4014-4017 (1999). [1-43] M. Gu, and P. C. Ke, “Image enhancement in near-field scanning optical microscopy with laser-trapped metallic particles,” Opt. Lett. 24, 74-76 (1999). [1-44] K. Svoboda, and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930-932 (1994). [1-45] L. Novotny, R. X. Bian, and S. Xie, “Theory of nanometric optical tweezers,” Phys. ReV. Lett. 79, 645-648 (1997). [1-46] M. J. Feldstein, C. D. Keating, Y.-H. Liau, M. J. Natan, and N. F. Scherer, “Electronic relaxation dynamics in coupled metal nanoparticles,” J. Am. Chem. Soc. 119, 6638-6647 (1997). [1-47] K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075-3079 (1994). [1-48] R. F. Jr. Haglund, L. Yang, R. H., III Magruder, J. E. Wittig, K. Becker, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu: silica nanocluster composite,” Opt. Lett. 18, 373-375 (1993). [1-49] R. Neuendorf, M. Quinten, and U. Kreibig, “Optical bistability of small heterogeneous clusters,” J. Chem. Phys. 104, 6348-6354 (1996). [1-50] J. W. Haus, N. Kalyaniwalla, R. Inguva, and C. M. Bowden, “Optical bistability in small metallic particle composites,” J. Appl. Phys. 65, 1420-1423 (1989). [1-51] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance- dependent optical properties of gold nanoparticles,” Science 277, 1078-1081 (1997). [1-52] G. Bauer, F. Pittner, and T. Schalkhammer, “Metal Nano-Cluster Biosensors,” Microchimica Acta 131, 107-114 (1999). [1-53] Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization- dependent color filters,” Adv. Mater. 11, 223-227 (1999). [1-54] J. I. Kroschwitz, M. G. Howe-Grant, In encyclopedia of chemical technology, 4th ed.; J. I. Kroschwitz, M. G. Howe-Grant, Eds.; John Wiley & Sons: New York, Vol. 12, pp 569-571. (1994). [1-55] J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano Lett. 2, 465-469 (2002). [1-56] J. Zhu, L. Huang, J. Zhao, Y. Wang, Y. Zhao, L. Hao, and Y. Lu, “Shape dependent resonance light scattering properties of gold nanorods, ” Mater. Sci. and Engineering B 121, 199-203 (2005). [1-57] H. Fischer, and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144-9154 (2008). 第二章 參考文獻 [2-1] G. Mie, “Beiträge zur Optik trüber Medien speziell kolloidaler Metallösun- gen, Ann. Phys. 25, 377-445 (1908). [2-2] P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,” Ann. Phys. 30, 57-136 (1909). [2-3] M. Kerker, “The scattering of light and other electromagnetic radiation,” Academic, New York, p.54-59 (1969) [2-4] C. F. Bohren, and D. R. Huffman, “Absorption and scattering of light by small particles,” John Wiley & Sons (1983). [2-5] U. Kreibig, M. Vollmer, “Optical properties of metal clusters,” Springer series in materials science 25, Chapter 2, (1995). [2-6] U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon- polariton modes of small metal particles,” Phys. Rev. B 36, 5027-5030 (1987). [2-7] H. Raether, “Surface plasmons on smooth and rough surface and on gratings,” Springer-Verlag, Belin (1998). [2-8] 邱國斌,「金屬與負折射物質平板之表面電漿研究」,國立臺灣大學物理學研究所,博士論文 (2004)。 [2-9] S. A. Maier, “Plasmonics:Fundamentals and Apllications,” Chapter 5, Springer, (2007). [2-10] S. Kawata, “Near-field optics and surface plasmon polaritons,” Springer, Berlin (2001). [2-11] P. B. Johnson, and R. W. Christy, “Optical constnats of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). 第三章 參考文獻 [3-1] M. W. Chen, Y.-F. Chau, and D. P. Tsai, “Three dimensional analysis of scattering field interactions and surface Plasmon resonance in coupled silver nanospheres,” Plasmonics 3, 157-164 (2008). [3-2] W. Rechberger, A. Hohenau, J. R. Krenn, and B. Lamprecht, “Optical properties of two interacting gold nanoparticles,” Opt. Commu. 220, 137-141 (2003). [3-3] J. P. Kottmann, and O. J. F. Martin, “Spectral response of Plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6, 213-219 (2000). [3-4] J. P. Kottmann, and O. J. F. Martin, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001). [3-5] J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Non-regularly shaped plasmon resonant nanoparticle as localized light source for near-field microscopy,” J. Microsc. 202, 60 (2001). [3-6] J. P. Kottmann, and O. J. F. Martin, “Retardation-induced Plasmon resonance in coupled nanoparticles,” Opt. Lett. 14, 1096-1098 (2001). [3-7] R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11, 1732-1740 (1975). [3-8] E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures ,” Science 302, 419-422 (2003). [3-9] C. F. Bohren, and D. R. Huffman, “Absorption and scattering of light by small particles,” Chapter 5. Wiley, New York (1983). [3-10] S. Asano, “Light scattering properties of spheroidal particles,” Appl. Opt. 18, 712-723 (1979). [3-11] L. P. Bayvel, and A. R. Jones, “Electromagnetic scattering and its application,” Applied Scicnce Publishers, London, New Jersey (1981). [3-12] K. Bromann, “Controlling deposition of size-selected solver nanoclusters,” Science 274, 956-958, (1996). [3-13] D. M. Kolb, R. Ullmann, and T. Will, “Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope,” Science 275, 1097-1099 (1996). [3-14] H. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 1-7 (2000). [3-15] H. Xu, and M. Kall, “Surface plasmon enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002). [3-16] D. P. Tsai, and W. C. Lin, “Probing the near fields of the super resolution near-field optical structure,” Appl. Phys. Lett. 77, 1413 (2000). [3-17] W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78, 685 (2001). [3-18] W. C. Liu, and D. P. Tsai, “Nonlinear near-field optical effects of the AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys. 42, 1031-1032 (2003). 第四章 參考文獻 [4-1] H. W. Liao, and J. H. Hafner, “Gold nanorod bioconjugates,” Chem. Mater. 17, 4636-4641 (2005). [4-2] C. X. Yu, and J. Irudayaraj, “Multiplex Biosensor Using Gold Nanorods,” Anal. Chem. 79, 572-579 (2007). [4-3] S. M. Marinakos, S. Chen, and A. Chilkoti, “Plasmonic Detection of a Model Analyte in Serum by a Gold Nanorod Sensor,” Anal. Chem. 79, 5278-5283 (2007). [4-4] A. V. Alekseeva, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, L. A. Trachuk, A. G. Melnikov, and N. G. Khlebtsov, “Preparation and optical scattering characterization of gold nanorods and their application to a dot- immunogold assay,” Appl. Opt. 44, 6285-6295 (2005). [4-5] Thierry Laroche, and Christian Girard, “Near-field optical properties of single plasmonic nanowires” Appl. Phys. Lett. 89, 233119 (2006). [4-6] K. B. Crozier,a) A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. of Appl. Phys. 94, 4632- 4642 (2003). [4-7] 朱秋汝,「奈米金顆粒的研製與其奈米光學特性研究」,國立臺灣海洋大學光電科學研究所,碩士論文 (2005)。 [4-8] 黃鴻基,「奈米金棒波導之表面電漿震盪耦合與訊號傳遞」,國立臺灣大學物理研究所,博士論文 (2007)。 [4-9] H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. M. Chen, R.S. Liu, and D. P. Tsai, Opt. Express 15, 7132-7139 (2007). [4-10] Y.-F. Chau, M. W. Chen, and D. P Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod,” Appl. Opt. 48, 617-622 (2009). [4-11] P. B. Johnson, and R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [4-12] T. Okamoto, In:S. Kawata (ed)“Near-field optics and surface plasmon polaritons,” Springer, Berlin, p.99 (2001). [4-13] Aizpurua, Garnett W. Bryant, Lee J. Richter, and F. J. García de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005). 第五章 參考文獻 [5-1] W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images ofthe super-resolution near-field structure,” Appl. Phys. Lett. 78, 685-687 (2001) [5-2] V. M. Shalaev, “Nonlinear Optics of Random Media, Composites, Clusters, and Thin Films,” Springer, Berlin (1999) [5-3] D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, J. S. Suh, R. Botet, and V. M. Shalaev, “Photon STM images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994) [5-4] V. A. Markel, and T. F. George, “Optics of Nanostructured Materials,” Wiley, New York (2001) [5-5] C. A. Balanis, “Antenna Theory,” (2nd ed.). Wiley, New York (1997). [5-6] J. D. Jackson, “Classical Electrodynamics,” (3rd ed.). Wiley, New York (1998) [5-7] R. D. Grober, R. J. Schoelkopf, and D. E. Prober “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997). [5-8] J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz “Non regularly shaped plasmon resonant nanoparticle as localized light source for near-field microscopy,” J. Microsc. 202, 60-65 (2001) [5-9] W. Challener, T. McDaniel, C. Mihalcea, and K. Sendur, “Light delivery for heat assisted magnetic recording,” Joint International Symposium on Optical Memory and Optical Data Storage (ISOM), Hawaii, Technical Digest 159-161 (2002). [5-10] K. Sendur, and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies. J. Microsc. 210, 279-283 (2003). [5-11] E. Oesterschulze, G. Georgiev, M. Muller-Wiegand, A. Vollkopf, and O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202, 39-44 (2001). [5-12] K. Tanaka, and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294-300 (2003). [5-13] X. Shi, L. Hesselink, and R. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture” Opt. Lett. 28, 1320-1322 (2003). 第六章 參考文獻 [6-1] M. W. Chen, Y.-F. Chau, and D. P. Tsai, “Three dimensional analysis of scattering field interactions and surface Plasmon resonance in coupled silver nanospheres,” Plasmonics 3, 157-164 (2008). [6-2] J. P. Kottmann, and O. J. F. Martin, “Retardation-induced Plasmon resonance in coupled nanoparticles,” Opt. Lett. 14, 1096-1098 (2001). [6-3] C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Analyzing the scattering properties of coupled metallic nanoparticles,” J. Opt. Soc. Am. A 21, 1761-1768 (2004). [6-4] Y.-F. Chau, M. W. Chen, and D. P Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod,” Appl. Opt. 48, 617-622 (2009). [6-5] M. W. Chen, F. H. Ho, M-C Lin, and D. P. Tsai, “Localization of the optical fields using a bow-tie nano-antenna,” Scanning 26, 113-117 (2004). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8785 | - |
| dc.description.abstract | 本論文研究主要為使用三維有限元素法模擬計算不同幾何形狀、粒徑大小、粒子數目及排列之奈米金屬顆粒,由不同偏振方向及入射波長之平面電磁波入射時,產生之相異表面電漿共振現象。我們的研究對象,包括:雙顆及多顆排列之銀(Ag)奈米圓球、單根金(Au)奈米圓柱,以及兩三角形金奈米薄膜所構成之領結型天線結構。
第一部分我們研究奈米銀球之表面電漿現象,計算其近場電場振幅及遠場散射截面積、吸收截面積等物理量以了解其所對應之表面電漿共振模態及共振波長。模擬結果顯示,兩顆奈米銀球和多顆奈米銀球所構成之鏈狀波導結構的表面電漿共振現象,可藉由變化奈米銀顆粒的直徑大小、間距、入射電磁波長、入射電磁波之行進方向及電場偏振方向等因素來加以改變。 第二部份為了研究奈米金棒的表面電漿共振效應,我們選擇四種不同比例的奈米金棒,改變了奈米金棒的長短軸,計算並觀察在縱向及橫向表面電漿模態下,奈米金棒的近場電場振幅分佈,以及散射截面積和吸收截面積隨著波長變化的關係。 第三部份對於構成領結型天線之兩奈米金薄膜,我們變化中心間隙、觀測平面高度、以及天線之薄膜厚度,來觀測特定偏振行為下之天線結構的侷域光場現象,並對其做定性的分析討論。 模擬結果顯示,不同奈米金屬顆粒之排列與結構設計,可使其成為有效的可見光吸收體與散射體等應用,期待未來可將此研究結果作為進一步應用在奈米光電元件、奈米感測元件、奈米生醫光電等前瞻性科技領域之基石。 | zh_TW |
| dc.description.abstract | In this thesis, we use three-dimensional finite element method (FEM) to study the surface plasmon resonance (SPR) effects of metallic nanoparticles, which are of different shapes, sizes, numbers, and orientations when the particles are illuminated by a plane wave with different polarization and wavelength.
In the first part of this thesis, we investigate the phenomenon of SPR of silver nanospheres, the near-field distribution as well as the far-field scattering and absorption spectra are calculated to investigate the corresponding SPR modes and wavelengths. Simulation results show that the SPR effects of two and multiple silver nanospheres can be changed by controlling the particle size, gap of the silver nanospheres, as well as the propagation directions and polarizations of incident waves. In the second part of this thesis, we study the SPR effects of a single gold nanorod, which is of different aspect ratio. The properties of the near-field light intensity distributions as well as the far-field scattering and absorption spectra for longitudinal and transverse SPR modes are discussed. Finally we study the system of bow-tie antenna consist of two triangular gold nanoparticles, we change different geometric parameters of the bow-tie antenna, such as their gap distance or thickness, and discuss their optical responses to specific polarization light. The simulation results show that through suitable designing the structure and arrangement of metal nanoparticles, they can become efficient nano scatters or absorbers of visible light. These results can further be applied to the design of nanophotonic or nanobiomedicine devices, such as nanowaveguides, nanosensors, nanodetectors etc. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:01:13Z (GMT). No. of bitstreams: 1 ntu-98-D90222016-1.pdf: 2174228 bytes, checksum: 8fa44f50d75c5a4dea64885aca46048c (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 致謝………………………………………………………………………………I
中文摘要………………………………………………………………………II Abstract…………………………………………………………………………III 目錄……………………………………………………………………………IV 圖目錄…………………………………………………………………………VI 第一章 緒論……………………………………………………………………1 1-1 前言……………………………………………………………………1 1-2 文獻回顧…………………………………………………………………5 1-3 本文內容………………………………………………………………10 第二章 光與粒子交互作用之基本理論………………………………………17 2-1 歷史回顧………………………………………………………………17 2-2 光與單顆粒子之交互作用-Mie理論…………………………………18 (a)球座標下純量波動方程式之解……………………………………18 (b)向量球諧函數M、N………………………………………………21 (c)平面波展開…………………………………………………………23 2-3 Mie基本模態理論………………………………………………………27 (a)電、磁場之基本模態………………………………………………27 (b)吸收、散射與消光截面積之定義…………………………………29 (c)消光頻譜之組成與實例……………………………………………31 2-4 金屬之表面電漿共振…………………………………………………36 (a)介電質/金屬之表面電漿共振 (表面電漿子)……………………36 (b)小金屬球之侷域表面電漿共振 (顆粒電漿子)………………….39 (c)尺寸效應……………………………………………………………42 第三章 奈米銀球之表面電漿共振效應研究………………………………………………………46 3-1 研究動機………………………………………………………………47 3-2 兩顆奈米銀球…………………………………………………………49 (a)固定尺寸和間距比值………………………………………………49 (b)間距效應……………………………………………………………55 3-3 多顆奈米銀球…………………………………………………………64 3-4 結論……………………………………………………………………71 第四章 奈米金棒之表面電漿共振效應研究…………………………………74 4-1 研究動機…………………………………………………………………74 4-2 計算模型與結果討論……………………………………………………76 4-3 結論………………………………………………………………………90 第五章 奈米領結天線之侷域光場研究………………………………………93 5-1 研究動機………………………………………………………………93 5-2 計算模型與結果討論…………………………………………………94 5-3 結論……………………………………………………………………102 第六章 總結…………………………………………………………………105 | |
| dc.language.iso | zh-TW | |
| dc.title | 奈米金屬顆粒之表面電漿共振效應研究 | zh_TW |
| dc.title | Study of Surface Plasmon Resonance Effects of
Metallic Nanoparticles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳瑞琳,藍永強,江海邦,周趙遠鳳,賈至達 | |
| dc.subject.keyword | 表面電漿共振,散射截面積,吸收截面積,奈米銀球,奈米金棒,奈米領結天線, | zh_TW |
| dc.subject.keyword | surface plasmon resonance (SPR),scattering cross section,absorption cross section,silver nanospheres,gold nanorod,bow-tie nanoantenna, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-01-03 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 2.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
