請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87858
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉如熹 | zh_TW |
dc.contributor.advisor | Ru-Shi Liu | en |
dc.contributor.author | 張芷瑜 | zh_TW |
dc.contributor.author | Chih-Yu Chang | en |
dc.date.accessioned | 2023-07-24T16:08:03Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-07-24 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-06-21 | - |
dc.identifier.citation | [1] De Broglie, L. Waves and Quanta. Nature 1923, 112, 540.
[2] Nogues, G.; Rauschenbeutel, A.; Osnaghi, S.; Brune, M.; Raimond, J. M.; Haroche, S. Seeing a Single Photon without Destroying It. Nature 1999, 400, 239–242. [3] Browne, M. Schaum's Outline of Physics for Engineering and Science; McGraw-Hill Education, 2013. [4] Uzan, J. P.; Leclercq, B.; Mizon, B. The Natural Laws of the Universe: Understanding Fundamental Constants; Praxis: New York, NY, 2008. [5] Sliney, D. What Is Light? The Visible Spectrum and Beyond. Eye 2016, 30, 222–229. [6] Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting above 1000 nm. Nanoscale Horiz. 2016, 1, 168–184. [7] Wang, C.; Wang, X.; Zhou, Y.; Zhang, S.; Li, C.; Hu, D.; Xu, L.; Jiao, H. An Ultra-Broadband Near-Infrared Cr3+-Activated Gallogermanate Mg3Ga2GeO8 Phosphor as Light Sources for Food Analysis. ACS Appl. Electron. Mater. 2019, 1, 1046–1053. [8] Zhang, L.; Wang, D.; Hao, Z.; Zhang, X.; Pan, G. H.; Wu, H.; Zhang, J. Cr3+‐Doped Broadband NIR Garnet Phosphor with Enhanced Luminescence and Its Application in NIR Spectroscopy. Adv. Opt. Mater. 2019, 7, 1900185. [9] Fang, M. H.; De Guzman, G. N. A.; Bao, Z.; Majewska, N.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Hu, S. F.; Liu, R. S. Ultra-High-Efficiency Near-Infrared Ga2O3:Cr3+ Phosphor and Controlling of Phytochrome. J. Mater. Chem. C . 2020, 8, 11013–11017. [10] Zhu, S.; Yung, B. C.; Chandra, S.; Niu, G.; Antaris, A. L.; Chen, X. Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission. Theranostics 2018, 8, 4141. [11] Liu, B. M.; Guo, X. X.; Huang, L.; Zhou, R. F.; Zou, R.; Ma, C. G.; Wang, J. A Super‐Broadband NIR Dual‐Emitting Mg2SnO4:Cr3+,Ni2+ Phosphor for Ratiometric Phosphor‐Converted NIR Light Source Applications. Adv. Mater. Technol. 2022, 2201181. [12] Li, C.; Chen, G.; Zhang, Y.; Wu, F.; Wang, Q. Advanced Fluorescence Imaging Technology in the Near-Infrared-II Window for Biomedical Applications. J. Am. Chem. Soc. 2020, 142, 14789–14804. [13] McKittrick, J.; Shea‐Rohwer, L. E. Down Conversion Materials for Solid‐State Lighting. J. Am. Chem. Soc. 2014, 97, 1327–1352. [14] Shinde, K. N.; Dhoble, S.; Swart, H.; Park, K. Phosphate Phosphors for Solid-State Lighting; Springer Science & Business Media, 2012. [15] Nakamura, S. Zn-Doped Ingan Growth and Ingan/Algan Double-Heterostructure Blue-Light-Emitting Diodes. J. Cryst. Growth 1994, 145, 911–917. [16] Shionoya, S.; Yen, W. M.; Yamamoto, H. Phosphor Handbook; CRC press, 2018. [17] Cao, R.; Peng, M.; Qiu, J. Photoluminescence of Bi2+-Doped BaSO4 as a Red Phosphor for White LEDs. Opt. Express 2012, 20, A977–A983. [18] Liu, B. M.; Gu, S. M.; Huang, L.; Zhou, R. F.; Zhou, Z.; Ma, C. G.; Zou, R.; Wang, J. Ultra-Broadband and High-Efficiency Phosphors to Brighten NIR-II Light Source Applications. Cell Rep. Phys. Sci. 2022, 3, 101078. [19] Ropp, R. C. Luminescence and the Solid State; Elsevier, 2013. [20] Halappa, P.; Shivakumara, C. Synthesis and Characterization of Luminescent La2Zr2O7/Sm3+ Polymer Nanocomposites. Trends Appl. Adv. Polym. Mater. 2017, 163–189. [21] Jaffé, H. H.; Miller, A. L. The Fates of Electronic Excitation Energy. J. Chem. Educ. 1966, 43, 469. [22] Schweizer, T.; Kubach, H.; Koch, T. Investigations to Characterize the Interactions of Light Radiation, Engine Operating Media and Fluorescence Tracers for the Use of Qualitative Light-Induced Fluorescence in Engine Systems. Automot. Engine Technol. 2021, 6, 275–287. [23] Lax, M. The Franck–Condon Principle and Its Application to Crystals. J. Chem. Phys. 1952, 20, 1752–1760. [24] Coolidge, A. S.; James, H. M.; Present, R. D. A Study of the Franck–Condon Principle. J. Chem. Phys. 1936, 4, 193–211. [25] Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer New York, NY, 2006. [26] Gispert, J. R. Coordination Chemistry; Wiley-VCH, Weinheim, 2008. [27] Kitai, A. Luminescent Materials and Applications; John Wiley & Sons, 2008. [28] De Jong, M.; Seijo, L.; Meijerink, A.; Rabouw, F. T. Resolving the Ambiguity in the Relation between Stokes Shift and Huang–Rhys Parameter. Phys. Chem. Chem. Phys. 2015, 17, 16959–16969. [29] Dreyer, C. E.; Stengel, M.; Vanderbilt, D. Current-Density Implementation for Calculating Flexoelectric Coefficients. Phys. Rev. B 2018, 98, 075153. [30] Zhao, F.; Song, Z.; Liu, Q. Advances in Chromium‐Activated Phosphors for Near‐Infrared Light Sources. Laser Photonics Rev. 2022, 16, 2200380. [31] Kong, L.; Liu, Y.; Dong, L.; Zhang, L.; Qiao, L.; Wang, W.; You, H. Near-Infrared Emission of CaAl6Ga6O19:Cr3+,Ln3+(Ln = Yb, Nd, and Er) Via Energy Transfer for C-Si Solar Cells. Dalton Trans. 2020, 49, 8791–8798. [32] Yang, Z.; Zhao, Y.; Zhou, Y.; Qiao, J.; Chuang, Y. C.; Molokeev, M. S.; Xia, Z. Giant Red‐Shifted Emission in (Sr, Ba) Y2O4:Eu2+ Phosphor toward Broadband Near‐Infrared Luminescence. Adv. Funct. Mater. 2022, 32, 2103927. [33] Park, J. Y.; Joo, J. S.; Yang, H. K.; Kwak, M. Deep Red-Emitting Ca14Al10Zn6O35:Mn4+ Phosphors for WLED Applications. J. Alloys Compd. 2017, 714, 390–396. [34] Griffith, J. S.; Orgel, L. E. Ligand-Field Theory. Q. Rev. Chem. Soc. 1957, 11, 381–393. [35] Wang, X.; Wang, Z.; Zheng, M.; Cui, J.; Yao, Y.; Cao, L.; Zhang, M.; Yang, Z.; Suo, H.; Li, P. A Dual-Excited and Dual Near-Infrared Emission Phosphor Mg14Ge5O24:Cr3+,Cr4+ with a Super Broad Band for Biological Detection. Dalton Trans. 2021, 50, 311–322. [36] Yuan, S.; Mu, Z.; Lou, L.; Zhao, S.; Zhu, D.; Wu, F. Broadband NIR-II Phosphors with Cr4+ Single Activated Centers Based on Special Crystal Structure for Nondestructive Analysis. Ceram. Int. 2022, 48, 26884–26893. [37] Cai, H.; Liu, S.; Song, Z.; Liu, Q. Tuning Luminescence from NIR-I to NIR-II in Cr3+-Doped Olivine Phosphors for Nondestructive Analysis. J. Mater. Chem. C 2021, 9, 5469–5477. [38] Zhong, J.; Zhuo, Y.; Du, F.; Zhang, H.; Zhao, W.; You, S.; Brgoch, J. Efficient Broadband Near‐Infrared Emission in the GaTaO4:Cr3+ Phosphor. Adv. Opt. Mater. 2022, 10, 2101800. [39] Zhou, H.; Cai, H.; Zhao, J.; Song, Z.; Liu, Q. Crystallographic Control for Cr4+ Activators toward Efficient NIR-II Luminescence. Inorg. Chem. Front. 2022, 9, 1912–1919. [40] Zhang, Q.; Liu, D.; Wang, Z.; Dang, P.; Lian, H.; Li, G.; Lin, J. LaMgGa11O19:Cr3+, Ni2+ as Blue‐Light Excitable Near‐Infrared Luminescent Materials with Ultra‐Wide Emission and High External Quantum Efficiency. Adv. Opt. Mater. 2023, 2202478. [41] Yuan, L.; Jin, Y.; Wu, H.; Deng, K.; Qu, B.; Chen, L.; Hu, Y.; Liu, R. S. Ni2+-Doped Garnet Solid-Solution Phosphor-Converted Broadband Shortwave Infrared Light-Emitting Diodes toward Spectroscopy Application. ACS Appl. Mater. Interfaces 2022, 14, 4265–4275. [42] Atkins, P.; Overton, T. Shriver and Atkins' Inorganic Chemistry; Oxford University Press, USA, 2010. [43] Racah, G. Theory of Complex Spectra. II. Phys. Rev. 1942, 62, 438. [44] Tanabe, Y.; Sugano, S. On the Absorption Spectra of Complex Ions II. J. Phys. Soc. Japan 1954, 9, 766–779. [45] Tanabe, Y.; Sugano, S. On the Absorption Spectra of Complex Ions III: The Calculation of the Crystalline Field Strength. J. Phys. Soc. Japan 1956, 11, 864–877. [46] Schlapp, R.; Penney, W. G. Influence of Crystalline Fields on the Susceptibilities of Salts of Paramagnetic Ions. II. The Iron Group, Especially Ni, Cr and Co. Phys. Rev. 1932, 42, 666. [47] Fang, M. H.; Chen, K. C.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Liu, R. S. Hidden Structural Evolution and Bond Valence Control in Near-Infrared Phosphors for Light-Emitting Diodes. ACS Energy Lett. 2020, 6, 109–114. [48] Zhong, J.; Zhuo, Y.; Du, F.; Zhang, H.; Zhao, W.; Brgoch, J. Efficient and Tunable Luminescence in Ga2–xInxO3:Cr3+ for Near-Infrared Imaging. ACS Appl. Mater. Interfaces 2021, 13, 31835–31842 [49] Som, S.; Kunti, A.; Kumar, V.; Kumar, V.; Dutta, S.; Chowdhury, M.; Sharma, S.; Terblans, J.; Swart, H. Defect Correlated Fluorescent Quenching and Electron Phonon Coupling in the Spectral Transition of Eu3+ in CaTiO3 for Red Emission in Display Application. J. Appl. Phys. 2014, 115, 193101. [50] Chen, J.; Liu, Y.; Fang, M.; Huang, Z. Luminescence Properties and Energy Transfer of Eu/Mn-Coactivated Mg2Al4Si5O18 as a Potential Phosphor for White-Light LEDs. Inorg. Chem. 2014, 53, 11396–11403. [51] Yang, W. J.; Luo, L.; Chen, T. M.; Wang, N. S. Luminescence and Energy Transfer of Eu-and Mn-Coactivated CaAl2Si2O8 as a Potential Phosphor for White-Light UVLED. Chem. Mater. 2005, 17, 3883–3888. [52] Chen, H.; Wang, Y. Sr2LiScB4O10:Ce3+/Tb3+: A Green-Emitting Phosphor with High Energy Transfer Efficiency and Stability for LEDs and FEDs. Inorg. Chem. 2019, 58, 7440–7452. [53] Bosze, E.; Hirata, G.; Shea-Rohwer, L.; McKittrick, J. Improving the Efficiency of a Blue-Emitting Phosphor by an Energy Transfer from Gd3+ to Ce3+. J. Lumin. 2003, 104, 47–54. [54] Wang, L.; Zhang, X.; Hao, Z.; Luo, Y.; Zhang, J.; Wang, X. J. Interionic Energy Transfer in Y3Al5O12:Ce3+,Pr3+ Phosphor. J. Appl. Phys. 2010, 108, 93515. [55] Miao, S.; Liang, Y.; Zhang, Y.; Chen, D.; Wang, X. J. Blue Led‐Pumped Broadband Short‐Wave Infrared Emitter Based on LiMgPO4:Cr3+,Ni2+ Phosphor. Adv. Mater. Technol. 2022, 7, 2200320. [56] Wang, C.; Zhang, Y.; Han, X.; Hu, D.; He, D.; Wang, X.; Jiao, H. Energy Transfer Enhanced Broadband Near-Infrared Phosphors: Cr3+/Ni2+ Activated ZnGa2O4–Zn2SnO4 Solid Solutions for the Second NIR Window Imaging. J. Mater. Chem. C . 2021, 9, 4583–4590. [57] Chang, C.; Xu, J.; Jiang, L.; Mao, D.; Ying, W. Luminescence of Long-Lasting CaAl2O4:Eu2+,Nd3+ Phosphor by Co-Precipitation Method. Mater. Chem. Phys. 2006, 98, 509–513. [58] Huang, L.; Zhu, Y.; Zhang, X.; Zou, R.; Pan, F.; Wang, J.; Wu, M. Hf-Free Hydrothermal Route for Synthesis of Highly Efficient Narrow-Band Red Emitting Phosphor K2Si1–xF6:xMn4+ for Warm White Light-Emitting Diodes. Chem. Mater. 2016, 28, 1495–1502. [59] Kang, Y. C.; Roh, H. S.; Park, S. B. Preparation of Y2O3:Eu Phosphor Particles of Filled Morphology at High Precursor Concentrations by Spray Pyrolysis. Adv. Mater. 2000, 12, 451–453. [60] Peng, T.; Huajun, L.; Yang, H.; Yan, C. Synthesis of SrAl2O4:Eu,Dy Phosphor Nanometer Powders by Sol–Gel Processes and Its Optical Properties. Mater. Chem. Phys. 2004, 85, 68–72. [61] Shikao, S.; Jiye, W. Combustion Synthesis of Eu3+ Activated Y3Al5O12 Phosphor Nanoparticles. J. Alloys Compd. 2001, 327, 82–86. [62] Song, Z.; Liao, J.; Ding, X.; Liu, X.; Liu, Q. Synthesis of YAG Phosphor Particles with Excellent Morphology by Solid State Reaction. J. Cryst. Growth 2013, 365, 24–28. [63] Tamrakar, R. K.; Bisen, D. P.; Brahme, N. Comparison of Photoluminescence Properties of Gd2O3 Phosphor Synthesized by Combustion and Solid State Reaction Method. J. Radiat. Res. Appl. Sci. 2014, 7, 550–559. [64] Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, 32, 751–767. [65] Chen, K. C.; Fang, M. H.; Huang, W. T.; Kamiński, M.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Liu, R. S. Chemical and Mechanical Pressure-Induced Photoluminescence Tuning Via Structural Evolution and Hydrostatic Pressure. Chem. Mater. 2021, 33, 3832–3840. [66] Eckert, M. Max Von Laue and the Discovery of X‐Ray Diffraction in 1912. Ann. Phys. 2012, 524, A83–A85. [67] Pope, C. G. X-Ray Diffraction and the Bragg Equation. J. Chem. Educ. 1997, 74, 129. [68] Pecharsky, V. K.; Zavalij, P. Y. Fundamentals of Diffraction. In Fundamentals of Powder Diffraction and Structural Characterization of Materials; Pecharsky, V. K.; Zavalij, P. Y., Eds.; Springer: Boston, MA, 2005, Chapter 2, pp 99–260. [69] Toby, B. H.; Von Dreele, R. B. GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46, 544–549. [70] Lovesey, S. W. Theory of Neutron Scattering from Condensed Matter; Clarendon Press, UK, 1984. [71] Avdeev, M.; Hester, J.; Peterson, V.; Studer, A. Wombat and Echidna: The Powder Diffractometers. Neutron News 2009, 20, 29–33. [72] Avdeev, M.; Hester, J. R. Echidna: A Decade of High‐Resolution Neutron Powder Diffraction at Opal. J. Appl. Crystallogr. 2018, 51, 1597–1604. [73] Coelho, A. A. Topas and Topas-Academic: An Optimization Program Integrating Computer Algebra and Crystallographic Objects Written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [74] Rietveld, H. Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement. Acta Crystallogr. 1967, 22, 151–152. [75] Rietveld, H. M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. [76] Wang, H.; Chu, P. K., Surface Characterization of Biomaterials. In Characterization of Biomaterials; Bandyopadhyay, A.; Bose, S., Eds.; Elsevier, 2013, Chapter 4, pp 105–147. [77] Kowalska, J.; DeBeer, S. The Role of X-Ray Spectroscopy in Understanding the Geometric and Electronic Structure of Nitrogenase. Biochim. Biophys. Acta-Mol. Cell Res. 2015, 1853, 1406–1415. [78] Yamamoto, T. Assignment of Pre‐Edge Peaks in K‐Edge X‐Ray Absorption Spectra of 3d Transition Metal Compounds: Electric Dipole or Quadrupole? X-Ray Spectrom. 2008, 37, 572–584. [79] Penner-Hahn, J. E. X-Ray Absorption Spectroscopy. In Comprehensive Coordination Chemistry II; McCleverty, J. A.; Meyer, T. J., Eds.; Elsevier: London, UK, 2003; Vol. 2, pp 159–186. [80] Ravel, B.; Newville, M. Athena, Artemis, Hephaestus: Data Analysis for X-Ray Absorption Spectroscopy Using Ifeffit. J. Synchrotron Radiat. 2005, 12, 537–541. [81] Graves, P.; Gardiner, D. Practical Raman Spectroscopy. Springer 1989, 10, 978–973. [82] Stuart, B. H. Analytical Techniques in Materials Conservation; John Wiley & Sons, 2007. [83] Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach; John Wiley & Sons, 2019. [84] Bleaney, B.; Stevens, K. Paramagnetic Resonance. Rep. Prog. Phys. 1953, 16, 108. [85] Song, E.; Zhou, Y.; Yang, X. B.; Liao, Z.; Zhao, W.; Deng, T.; Wang, L.; Ma, Y.; Ye, S.; Zhang, Q. Highly Efficient and Stable Narrow-Band Red Phosphor Cs2SiF6:Mn4+ for High-Power Warm White LED Applications. ACS Photonics 2017, 4, 2556–2565. [86] Wang, S.; Sun, Q.; Devakumar, B.; Liang, J.; Sun, L.; Huang, X. Novel Highly Efficient and Thermally Stable Ca2GdTaO6:Eu3+ Red-Emitting Phosphors with High Color Purity for UV/Blue-Excited WLEDs. J. Alloys Compd. 2019, 804, 93–99. [87] Kubicki, A. A.; Bojarski, P.; Grinberg, M.; Sadownik, M.; Kukliński, B. Time-Resolved Streak Camera System with Solid State Laser and Optical Parametric Generator in Different Spectroscopic Applications. Opt. Commun. 2006, 263, 275–280. [88] Krishnan, R.; Saitoh, H.; Terada, H.; Centonze, V.; Herman, B. Development of a Multiphoton Fluorescence Lifetime Imaging Microscopy System Using a Streak Camera. Rev. Sci. Instrum. 2003, 74, 2714–2721. [89] Onuma, T.; Fujioka, S.; Yamaguchi, T.; Itoh, Y.; Higashiwaki, M.; Sasaki, K.; Masui, T.; Honda, T. Polarized Raman Spectra in β-Ga2O3 Single Crystals. J. Cryst. Growth 2014, 401, 330–333. [90] Brik, M.; Camardello, S.; Srivastava, A.; Avram, N.; Suchocki, A. Spin-Forbidden Transitions in the Spectra of Transition Metal Ions and Nephelauxetic Effect. ECS J. Solid State Sci. Technol. 2015, 5, R3067. [91] Lin, C. C.; Tsai, Y. T.; Johnston, H. E.; Fang, M. H.; Yu, F.; Zhou, W.; Whitfield, P.; Li, Y.; Wang, J.; Liu, R. S. Enhanced Photoluminescence Emission and Thermal Stability from Introduced Cation Disorder in Phosphors. J. Am. Chem. Soc. 2017, 139, 11766–11770. [92] He, H.; Orlando, R.; Blanco, M. A.; Pandey, R.; Amzallag, E.; Baraille, I.; Rérat, M. First-Principles Study of the Structural, Electronic, and Optical Properties of Ga2O3 in Its Monoclinic and Hexagonal Phases. Phys. Rev. B 2006, 74, 195123. [93] Lipinska-Kalita, K.; Chen, B.; Kruger, M.; Ohki, Y.; Murowchick, J.; Gogol, E. High-Pressure X-Ray Diffraction Studies of the Nanostructured Transparent Vitroceramic Medium K2O−SiO2−Ga2O3. Phys. Rev. B 2003, 68, 035209. [94] Machon, D.; McMillan, P. F.; Xu, B.; Dong, J. High-Pressure Study of the Β-to-Α Transition in Ga2O3. Phys. Rev. B 2006, 73, 094125. [95] Rajendran, V.; Fang, M. H.; Huang, W. T.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Peterson, V. K. Chromium Ion Pair Luminescence: A Strategy in Broadband Near-Infrared Light-Emitting Diode Design. J. Am. Chem. Soc. 2021, 143, 19058–19066. [96] Ottonello-Briano, F.; Errando-Herranz, C.; Rödjegård, H.; Martin, H.; Sohlström, H.; Gylfason, K. B. Carbon Dioxide Absorption Spectroscopy with a Mid-Infrared Silicon Photonic Waveguide. Opt. Lett. 2020, 45, 109–112. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87858 | - |
dc.description.abstract | 近年來,近紅外光源之應用日益蓬勃發展,然因傳統白熾燈與鹵素燈效率低、便攜性低、工作溫度高等劣勢,促使螢光粉轉換發光二極體(phosphor-converted light-emitting diodes; pc-LEDs) 之需求增加,故優化近紅外光螢光粉並將其利用於光源為首要發展目標。
本研究第一部分著重於寬化近紅外光一區Ga2–x(Al0.68In0.32)xO3:Cr3+螢光粉放射光譜。藉(Al0.68In0.32)3+比例之陽離子取代主結構Ga2O3中半徑相同之Ga3+陽離子,增加結構中之亂度以提升電子–聲子耦合效應,使結構中Cr3+放射光譜增寬。於摻雜量達x = 0.8時,可得放射光譜涵蓋近紅外光一區650–1000 nm波段,且半高寬增寬30%達148 nm,同時維持內部量子效率約80%,並於LED封裝測試藉350 mA之驅動電流下得68.8 mW之輸出功率。 本研究第二部分專注於提升近紅外光二區Mg1–yGa2–xO4:xCr3+,yNi2+螢光粉之放光效率。此系統藉部分尖晶石結構與共摻雜活化劑之能量轉移概念,欲將藍光LED能量自Cr3+之吸收轉移至Ni2+之放光系統並放射二區近紅外光。於調控Cr3+濃度時揭示Cr3+團簇之產生,且其可大幅提升Cr3+與Ni2+間之能量轉移效率,優化後得其放射光譜涵蓋近紅外光二區1000–1650 nm波段,並可得高達97%之放光效率,為現今文獻中最高紀錄。 本研究之新穎性為藉陽離子取代法優化近紅外光螢光粉,此方法於第一部分寬化放射光譜,於第二部分提升放光效率,並於合成後以結構精修等結構鑑定方法探討其對於配位環境與放光性質之影響,最終藉LED進行封裝測試並證實其於應用層面之潛力。 | zh_TW |
dc.description.abstract | The application of near-infrared (NIR) light sources has been increasingly popular recently, which has led to an increase in demand for phosphor-converted light-emitting diodes (pc-LEDs). Therefore, the primary goal is to optimize the NIR phosphors.
The first part of this study focuses on broadening the emission spectrum of Ga2–x(Al0.68In0.32)xO3:Cr3+ phosphors in the NIR-I region. By substituting the cation Ga3+ in the main structure of Ga2O3 with the same radius cation (Al0.68In0.32)3+ to increase the disorder in the structure and enhance the electron–phonon coupling effect, the emission spectrum of Cr3+ in the structure is broadened. At the highest concentration of substitution, the emission spectrum covers the NIR-I region of 650–1000 nm with a 30% increase in the full width at half-maximum to 148 nm, while maintaining an internal quantum efficiency (IQE) of about 80%. Furthermore, under the condition of 350 mA current in LED packaging testing, an output power of 68.8 mW can be obtained. The second part of this study aims to improve the IQE of Mg1–yGa2–xO4:xCr3+,yNi2+ phosphor that emits light in the NIR-II region. This system uses the energy transfer (ET) concept in intermediate spinel structure by co-doping activators, resulting in emission in the NIR-II region. When adjusting the concentration of Cr3+, Cr3+ clusters were found to be induced, which can significantly enhance the ET efficiency between Cr3+ and Ni2+. After optimization, the radiative spectrum covers the NIR-II region with an IQE up to 97% can be obtained, which is the highest record in the works of literature. This study investigates the effects of the changed coordination environment and luminescent properties of synthesized samples by cation substitution and studies the luminescent mechanism along with a demonstration of practical application. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-24T16:08:03Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-07-24T16:08:03Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 I
謝誌 II 摘要 III Abstract IV 目錄 V 圖目錄 VIII 表目錄 XV 第一章 緒論 1 1.1 光 1 1.1.1 紅外光 2 1.1.2 近紅外光一區之特質與應用 3 1.1.3 近紅外光二區之特質與應用 4 1.2 固態照明(Solid-State Lighting; SSL) 5 1.2.1 發光二極體(Light-Emitting Diodes; LEDs) 5 1.3 螢光粉(Phosphor) 7 1.3.1 螢光粉之組成 8 1.4 螢光粉之放光機制 9 1.4.1 賈布朗斯基圖(Jabłoński Diagram) 10 1.4.2 法蘭克–康頓原理(Franck–Condon Principle) 11 1.4.3 斯托克斯位移(Stokes Shift) 12 1.4.4 電子–聲子耦合效應(Electron–Phonon Coupling) 13 1.5 活化劑之選擇 15 1.5.1 3d過渡金屬之優勢 16 1.5.2 活化劑Cr3+之特性 17 1.5.3 活化劑Ni2+之特性 18 1.6 主體晶格影響活化劑之因素 19 1.6.1 晶體場理論(Crystal Field Theory) 19 1.6.2 田邊–菅野圖(Tanabe–Sugano Diagram) 20 1.6.3 淬滅效應(Quenching Effect) 23 1.7 螢光粉中之能量轉移(Energy Transfer) 25 1.7.1 Cr3+至Ni2+之能量轉移 26 1.8 研究動機與目的 27 第二章 實驗步驟與儀器分析原理 30 2.1 化學藥品 30 2.2 近紅外光螢光粉之合成方法 31 2.2.1 Ga2–x(Al0.68In0.32)xO3:Cr3+螢光粉之設計與合成 31 2.2.2 MgGa2O4:Cr3+,Ni2+螢光粉之設計與合成 33 2.3 儀器分析 36 2.3.1 結構鑑定 36 2.3.2 螢光性質分析 48 第三章 結果與討論 54 3.1 近紅外光一區Ga2–x(Al0.68In0.32)xO3:Cr3+螢光粉 54 3.1.1 Ga2–x(Al0.68In0.32)xO3:Cr3+螢光粉之結構分析 55 3.1.2 Ga2–x(Al0.68In0.32)xO3:Cr3+螢光粉之螢光性質 72 3.1.3 Ga2–x(Al0.68In0.32)xO3:Cr3+螢光粉之熱特性 79 3.1.4 Ga2–x(Al0.68In0.32)xO3:Cr3+螢光粉之變壓光譜 81 3.1.5 Ga2–x(Al0.68In0.32)xO3:Cr3+螢光粉之實際應用 87 3.2 近紅外光二區MgGa2O4:Cr3+,Ni2+螢光粉 88 3.2.1 MgGa2O4:Cr3+,Ni2+螢光粉之結構分析 88 3.2.2 MgGa2O4:Cr3+,Ni2+螢光粉之螢光性質 102 3.2.3 MgGa2O4:Cr3+,Ni2+螢光粉之能量轉換機制 115 3.2.4 MgGa2O4:Cr3+,Ni2+螢光粉之熱特性 124 3.2.5 MgGa2O4:Cr3+,Ni2+螢光粉之實際應用 126 第四章 結論 129 參考文獻 131 | - |
dc.language.iso | zh_TW | - |
dc.title | 藉陽離子取代調控近紅外光螢光粉之放光特性 | zh_TW |
dc.title | Tuning Luminescence of Near-Infrared Phosphors by Cation Substitution | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊吉水;廖秋峯;汪建民;陳錦明 | zh_TW |
dc.contributor.oralexamcommittee | Jye-Shane Yang;Chiou-Feng Liaw;Jian-Ming Wang;Jin-Ming Chen | en |
dc.subject.keyword | 螢光粉,紅外光,寬譜放射,含鉻紅外光,含鎳紅外光,能量轉移, | zh_TW |
dc.subject.keyword | phosphors,infrared,broadband emission,chromium,nickel,energy transfer, | en |
dc.relation.page | 141 | - |
dc.identifier.doi | 10.6342/NTU202301084 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-06-26 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 化學系 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 13.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。