請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8784
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李學智 | |
dc.contributor.author | Pao-Jen Wang | en |
dc.contributor.author | 王柏仁 | zh_TW |
dc.date.accessioned | 2021-05-20T20:01:12Z | - |
dc.date.available | 2012-01-11 | |
dc.date.available | 2021-05-20T20:01:12Z | - |
dc.date.copyright | 2010-01-11 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2010-01-02 | |
dc.identifier.citation | References
[1]. U.S. DOT: The National ITS Architecture Version 6.0. [2]. “A Summary of Vehicle Detection and Surveillance Technologies Used in Intelligent Transportation Systems,” The Vehicle Detector Clearinghouse, 2007. [3]. S. Oh, S. G. Ritchie, and C. Oh, “Real-Time Traffic Measurement from Single Loop Inductive Signatures,” in Transportation Research Record 1804, Washington, DC: TRB, National Research Council, pp. 98–106, 2002. [4]. J. Gajda, R. Sroka, M. Stencel, A. Wajda, and T. Zeglen, “A Vehicle Classification Based on Inductive Loop Detectors,” in Proc. IEEE Instrumentation and Measurement Technology Conference, 2001, vol. 1, pp. 460–464. [5]. C. Sun and S. G. Ritchie, “Individual Vehicle Speed Estimation Using Single Loop Inductive Waveforms,” Journal of Transportation Engineering, vol. 125, pp. 531–538, 1999. [6]. L. Andreone, P. C. Antonello, M. Bertozzi, A. Broggi, A. Fascioli, and D. Ranzato, “Vehicle Detection and Localization in Infra-red Images,” in Proc. IEEE Int. Conf. on Intelligent Transportation Systems, 2002, pp. 141–146. [7]. B. N. Nelson, “Automatic Vehicle Detection in Infrared Imagery Using a Fuzzy Inference-Based Classification System,” IEEE Trans. Fuzzy Systems, vol. 9, no. 1, pp. 53–61, 2001. [8]. M. Kagesawa, S. Ueno, K. Ikeuchi, and H. Kashiwagi, “Recognizing Vehicles in Infrared Images Using IMAP Parallel Vision Board,” IEEE Trans. Intelligent Transportation Systems, vol. 2, no. 1, pp. 10–17, 2001. [9]. Z. Sun, G. Bebis, and R. Miller, “On-Road Vehicle Detection: A Review,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp. 694–711, 2006. [10]. D. M. Ha, J. M. Lee, and Y. D. Kim, “Neural-Edge-Based Vehicle Detection and Traffic Parameter Extraction,” Image and Vision Computing, vol. 22, no. 11, pp. 899–907, 2004. [11]. Z. W. Kim and J. Malik, “Fast Vehicle Detection with Probabilistic Feature Grouping and Its Application to Vehicle Tracking,” in Proc. IEEE Int. Conf. on Computer Vision, 2003, pp. 521–528. [12]. S. Messelodi, C. M. Modena, and M. Zanin, “A Computer Vision System for the Detection and Classification of Vehicles at Urban Road Intersections,” Pattern Analysis and Applications, vol. 8, no. 1-2, pp. 17–31, 2005. [13]. T. N. Schoepflin and D. J. Dailey, “Dynamic Camera Calibration of Roadside Traffic Management Cameras for Vehicle Speed Estimation,” IEEE Trans. Intelligent Transportation Systems, vol. 4, no. 2, pp. 90–98, 2003. [14]. J. W. Hsieh, S. H. Yu, Y. S. Chen, and W. F. Hu, “Automatic Traffic Surveillance System for Vehicle Tracking and Classification,” IEEE Trans. Intelligent Transportation Systems, vol. 7, no. 2, pp. 175–187, 2006. [15]. C. C. C. Pang, W. W. L. Lam, and N. H. C. Yung, “A Method for Vehicle Count in the Presence of Multiple-Vehicle Occlusions in Traffic Images,” IEEE Trans. Intelligent Transportation Systems, vol. 8, no. 3, pp. 441–459, 2007. [16]. N. K. Kanhere and S. T. Birchfield, “Real-Time Incremental Segmentation and Tracking of Vehicles at Low Camera Angles Using Stable Features,” IEEE Trans. Intelligent Transportation Systems, vol. 9, no. 1, pp. 148–160, 2008. [17]. S. Gupte, O. Masoud, R. F. K. Martin, and N. P. Papanikolopoulos, “Detection and Classification of Vehicles,” IEEE Trans. Intelligent Transportation Systems, vol. 3, no. 1, pp. 37–47, 2002. [18]. Z. Sun, G. Bebis, and R. Miller, “On-Road Vehicle Detection Using Evolutionary Gabor Filter Optimization,” IEEE Trans. Intelligent Transportation Systems, vol. 6, no. 2, pp. 125–137, 2005. [19]. C. C. R. Wang and J. J. J. Lien, “Automatic Vehicle Detection Using Local Features—A Statistical Approach,” IEEE Trans. Intelligent Transportation Systems, vol. 9, no. 1, pp. 83–96, 2008. [20]. A. Khammari, E. Lacroix, F. Nashashibi, and C. Laurgeau, “Vehicle Detection Combining Gradient Analysis and AdaBoost Classification,” in Proc. IEEE Intelligent Transportation Systems, 2005, pp.66–71. [21]. S. Y. Kim, S. Y. Oh, J. K. Kang, Y. W. Ryu, K. Kim, S. C. Park, and K. H. Park, “Front and Rear Vehicle Detection and Tracking in the Day and Night Times Using Vision and Sonar Sensor Fusion,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2005, pp. 2173–2178. [22]. J. Zhou, D. Gao, and D. Zhang, “Moving Vehicle Detection for Automatic Traffic Monitoring,” IEEE Trans. Vehicular Technology, vol. 56, no. 1, pp. 51–59, 2007. [23]. S. Cherng, C. Y. Fang, C. P. Chen, and S. W. Chen, “Critical Motion Detection of Nearby Moving Vehicles in a Vision-Based Driver-Assistance System,” IEEE Trans. Intelligent Transportation Systems, vol. 10, no. 1, pp. 70–82, 2009. [24]. J. Ge, Y. Luo, and G. Tei, “Real-Time Pedestrian Detection and Tracking at Nighttime for Driver-Assistance Systems,” IEEE Trans. Intelligent Transportation Systems, vol. 10, no. 2, pp. 283–298, 2009. [25]. M. S. Shehata, J. Cai, W. M. Badawy, T. W. Burr, M. S. Pervez, R. J. Johannesson, and A. Radmanesh, “Video-Based Automatic Incident Detection for Smart Roads: The Outdoor Environmental Challenges Regarding False Alarms,” IEEE Trans. Intelligent Transportation Systems, vol. 9, no. 2, pp. 349–360, 2008. [26]. S. J. Wu, H. H. Chiang, J. W. Perng, C. J. Chen, B. F. Wu, and T. T. Lee, “The Heterogeneous Systems Integration Design and Implementation for Lane Keeping on a Vehicle,” IEEE Trans. Intelligent Transportation Systems, vol. 9, no. 2, pp. 246–263, 2008. [27]. A. Gern, R. Moebus, and U. Franke, “Vision-Based Lane Recognition under Adverse Weather Conditions Using Optical Flow,” in Proc. IEEE Intelligent Vehicles Symposium, 2002, vol. 2, pp. 652–657. [28]. M. Betke and H. Nguyen, “Highway Scene Analysis from a Moving Vehicle under Reduced Visibility Conditions,” in Proc. IEEE Intelligent Vehicles Symposium, 1998, vol. 1, pp. 131–136. [29]. K. Garg and S. K. Nayer, “Detection and Removal of Rain from Videos,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2004, vol. 1, pp. 528–535. [30]. J. C. Chun, T. S. Kim, J. M. Kim, Z. S. Lim, and W. S. Park, “Spectrum Correlation of Beat Signals in the FM-CW Radar Level Meter and Application for Precise Distance Measurement,” IEEE MTT-S International Microwave Symposium Digest, 2001, pp.2251–2254. [31]. S. J. Park, T. Y. Kim, S. M. Kang, and K. H. Koo, “A Novel Signal Processing Technique for Vehicle Detection Radar,” IEEE MTT-S International Microwave Symposium Digest, 2003, pp.607–610. [32]. J. Fang, H. Meng, H. Zhang, and X. Wang, “A Low-Cost Vehicle Detection and Classification System Based on Unmodulated Continuous-Wave Radar,” in Proc. IEEE Intelligent Transportation Systems Conference, 2007, pp.715–720. [33]. J. Chunguang and Y. Xiaobo, “A Front-End of FMCW Anticollision Radar,” in Proc. Int. Conf. on Microwave and Millimeter Wave Technology, 2000, pp. 568–571. [34]. I. Urazghildiiev, R. Ragnarsson, P. Ridderstrom, A. Rydberg, E. Ojefors, K. Wallin, P. Enochsson, M. Ericson, and G. Lofqvist, “Vehicle Classification Based on the Radar Measurement of Height Profiles,” IEEE Trans. Intelligent Transportation Systems, vol. 8, no. 2, pp. 245–253, 2007. [35]. C. Y. Wu, “A Study of Wireless Telematics,” M.S. thesis, National Taiwan Ocean University, Taiwan, 2008. [36]. C. Y. Chiu, “Measurements and Analysis of the Inter-Vehicle Wireless Communication,” M.S. thesis, National Taiwan Ocean University, Taiwan, 2009. [37]. S. Tsugawa, “Issues and Recent Trends in Vehicle Safety Communications,” IATSS RESEARCH, 2005, vol. 29, no. 1, pp. 7–15. [38]. D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich, “Design of 5.9 GHz DSRC-Based Vehicular Safety Communication,” IEEE Wireless Communications, vol. 13, pp. 36–43, 2006. [39]. S. Kato and S. Tsugawa, “Evaluation of Information Transmission over Inter-Vehicle Communication with Simulation Studies,” in Proc. IEEE Int. Conf. on Intelligent Transportation Systems, 2002, pp. 324–329. [40]. L. Briesemeister, L. Schafers, and G. Hommel, “Disseminating Messages among Highly Mobile Hosts Based on Inter-Vehicle Communication,” in Proc. IEEE Intelligent Vehicles Symposium, 2000, pp. 522–527. [41]. T. S. Rappaport, “Wireless Communications: Principles and Practice,” New Jersey: Prentice Hall, 2nd Edit., 2002. [42]. J. C. Liberti and T. S. Rappaport, “Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications,” New Jersey: Prentice-Hall, 1999. [43]. E. C. Jordan and K. G. Balmain, “Electromagnetic Waves and Radiating Systems,” New Jersey: Prentice Hall, 2nd Edit., 1998. [44]. A. Avila, G. Korkmaz, Y. Liu, H. Teh, E. Ekici, F. Ozguner, U. Ozguner, K. Redmill, O. Takeshita, K. Tokuda, M. Hamaguchi, S. Nakabayashi, and H. Tsutsui, “A Complete Simulator Architecture for Inter-Vehicle Communication Based Intersection Warning Systems,” in Proc. IEEE Int. Conf. on Intelligent Transportation Systems, 2005, pp. 461–466. [45]. S. R. Saunders and A. A. Zavala, “Antennas and Propagation for Wireless Communication Systems,” West Sussex: Wiley, 2nd Edit., 2007. [46]. J. S. Hammerschmidt, A. A. Hutter, and C. Drewes, “Comparison of Single Antenna, Selection Combining, and Optimum Combining Reception at the Vehicle,” The 50th IEEE Vehicular Technology Conference, 1999, vol. 1, pp. 11–16. [47]. X. Chengshan, Y. R. Zheng, and N. C. Beaulieu, “Statistical Simulation Models for Rayleigh and Rician Fading,” IEEE Int. Conf. on Communications, 2003, vol.5, pp. 3524–3529. [48]. Y. R. Zheng and C. Xiao, “Improved Models for the Generation of Multiple Uncorrelated Rayleigh Fading Waveforms,” IEEE Communications Letters, vol. 6, no. 6, pp. 256–258, 2002. [49]. R. B. Dybdal, “Radar Cross Section Measurements,” in Proc. IEEE, 1987, vol. 75, pp. 498–516. [50]. A. K. Singh, P. Kumar, T. Chakravarty, G. Singh, and S. Bhooshan, “A Novel Digital Beamformer with Low Angle Resolution for Vehicle Tracking Radar,” Progress in Electromagnetics Research, PIER 66, pp. 229–237, 2006. [51]. M. Soumekh, “Moving Target Detection in Foliage Using Along Track Monopulse Synthetic Aperture Radar Imaging,” IEEE Trans. Image Processing, vol. 6, pp. 1148–1163, 1997. [52]. R. L. Moses, L. C. Potter, and M. Cetin, “Wide Angle SAR Imaging,” in Proc. SPIE, 2004, vol. 5427, pp. 164–175. [53]. N. Weber, S. Moedl, and M. Hackner, “A Novel Signal Processing Approach for Microwave Doppler Speed Sensing,” IEEE MTT-S International Microwave Symposium Digest, 2002, pp. 2233–2235. [54]. P. A. C. Marques and J. M. B. Dias, “Velocity Estimation of Fast Moving Targets Using a Single SAR Sensor,” IEEE Trans. Aerospace and Electronic Systems, vol. 41, no. 1, pp. 75–89, 2005. [55].http://www2.rohde-schwarz.com/en/products/test_and_measurement/network_analysis/ [56]. M. H. Hayes, “Statistical Digital Signal Processing and Modeling,” John Wiley and Sons, 1996. [57]. S. L. Marple, “Digital Spectral Analysis with Applications,” Prentice Hall, 1987. [58]. A. Yamamoto, K. Ogawa, T. Horimatsu, A. Kato, and M. Fujise, “Path-Loss Prediction Models for Intervehicle Communication at 60 GHz,” IEEE Trans. Vehicular Technology, vol. 57, no. 1, pp. 65–78, 2008. [59]. M. Varshney, J. Zhengrong, M. Takai, and R. Bagrodia, “Modeling Environmental Mobility and Its Effect on Network Protocol Stack,” IEEE Int. Conf. on Wireless Communications and Networking, 2006, vol. 1, pp. 587–592. [60]. I. Sen and D. W. Matolak, “Vehicle-Vehicle Channel Models for the 5-GHz Band,” IEEE Trans. Intelligent Transportation Systems, vol. 9, no. 2, pp. 235–245, 2008. [61]. S. Chaabouni, M. Frikha, and M. Meincke, “Traffic Models for Inter-Vehicle Communications,” Int. Conf. on Information and Communication Technologies: From Theory to Applications, 2006, vol. 1, pp. 773–778. [62]. J. Maurer, T. Fugen, T. Schafer, and W. Wiesbeck, “A new inter-vehicle communications (IVC) channel model,” Proceedings of the IEEE Vehicular Technology Conference, vol. 1, Sep. 2004, pp. 9-13. [63]. C. L. Giovaneli, “An analysis of simplified solutions for multiple knife-edge diffraction,” IEEE Trans. Antennas and Propagation, vol. 32, pp. 297-301, Mar. 1984. [64]. C. M. Li, H. C. Chen, P. J. Wang, J. C. Wu, and I. T. Tang, “Timing Synchronization and Channel Estimation of a Constant Pilot Padding OFDM System,” The 14th Asia-Pacific Conference on Communications (APCC2008), 16-AM2-C, Oct. 2008, Tokyo, Japan. [65]. C. M. Li, S. M. Wen, P. J. Wang, J. C. Wu, and I. T. Tang, “An Overlap-Cut Frequency Domain Equalizer with Decision Feedback,” IEICE Trans. Communications, vol. E92-B, no. 5, pp. 1475-1483, May 2009. [66]. C. M. Li, H. J. Li, and P. J. Wang, “Beamforming Degradation of a W-CDMA Smart Antenna under FDD and MAI Channel Estimation Errors,” IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 137-140, Apr. 2007. [67]. P. J. Wang, C. M. Li, and H. J. Li, “Method of Vehicle Detection via Using Antenna Array with MUSIC Algorithm,” The 6th IEEE VTS Asia Pacific Wireless Communications Symposium, 2009. [68]. P. J. Wang, C. M. Li, and H. J. Li, “Influence of the Shadowing to the Information Transmission Distance in Inter-Vehicle Communications,” The 20th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2009. [69]. P. J. Wang, C. M. Li, C. Y. Wu, and H. J. Li, “A Channel Awareness Vehicle Detector,” Accepted by IEEE Trans. Intelligent Transportation Systems. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8784 | - |
dc.description.abstract | 摘 要
為了達到高效率的交通運輸,智慧型運輸系統(ITS)整合了網路、資訊、電子及管理等技術,收集各種道路交通資訊,並且透過車輛與車輛,或車輛與道路旁的通訊設備將訊息傳送出去;當車道上有交通事故發生時,能透過車間通訊(IVC)通知後方車輛,使得道路駕駛能更為順暢並且更為安全。 車輛偵測器是為了快速提供道路車流資訊,能有效管理道路交通的設備,是ITS的重要工具之一;目前較為常用的道路車輛偵測器為迴圈式車輛偵測器及影像車輛偵測器。其中,傳統迴圈式車輛偵測器必須安置在車道上,安置的困難度較高,而且所獲得的車流資訊不多;而影像車輛偵測器則是設備成本較高、資料的分析較複雜,並且極易受環境影響,如夜間、雨天及灰塵等狀況都會使接收信號變差。本論文提出簡單且有效率的微波系統作為道路車輛偵測器,使用一組含發射及接收的天線,並且配合車輛通過感測區域時,通道感測信號特性的變化,可以同時對於多輛車經過多車道進行偵測,利用適當的演算法計算出各種有用的訊息,例如車輛位置、速度及類型(小車或大車)等。另外也提出使用陣列天線作為車輛偵測器的接收端,利用陣列天線對車輛反射信號的角度偵測,也可以同時判斷出多輛車的位置及速度。 對於IVC的訊息傳送,有效的信號傳送距離與車道上車輛裝設通訊設備的比率以及IVC的無線通道特性的好壞有關。在IVC中,若信號發送車輛與信號接收車輛之間存在沒有裝設通訊設備的車輛時,則此沒有裝設通訊設備的車輛對於IVC的信號傳送可以被當成是遮蔽物,因此信號是以非直接波傳送;當信號發送車輛與信號接收車輛之間沒有存在車輛遮蔽時,則此時IVC的信號傳送之間沒有遮蔽物,因此信號是以直接波傳送。本論文對於IVC存在遮蔽車輛的情形做實際量測,並且提出適當的繞射模型及遮蔽車輛的三路模型做模擬,觀察因為遮蔽所產生的電波衰減,並且計算考慮衰減的情況下,IVC信號的有效傳送距離的變化。最後,我們也使用實際測量及模擬驗證,提出在接收端使用多天線的空間分集方法,達到提高IVC在有遮蔽情況下的有效傳送距離。 | zh_TW |
dc.description.abstract | Abstract
In order to achieve efficient traffic control, Intelligent Transportation System (ITS) has been widely deployed in many regions such as America, Europe, Australia, Japan, and Taiwan. ITS integrates various methods to extract useful information such as the vehicle location, speed, type (a small car or a big car) etc. In addition, to manage the serious traffic problems and prevent the unnecessary personal injuries, ITS adopts the inter-vehicle communications (IVC) to inform the drivers if there are accidents nearby. In this dissertation, we propose a channel awareness vehicle detection which employs only one single transmitter-receiver antenna pair to perform the multi-lane and multi-vehicle identifications simultaneously. By using the characteristics of channel variations, the proposed vehicle detection can determine the vehicle location, speed, and type. Our field-measurement results demonstrated its capabilities. Besides, we also propose a vehicle detection system of microwave that can extract multi-lane traffic information via using an antenna array. The proposed system adopts the multiple signal classification (MUSIC) algorithm to identify the vehicle location and speed. Regarding to transmit the information in the IVC, the ability of effective transmission distance of the emergency information depends notably on the percentage of the vehicles equipped with communication device and the characteristics of radio wave propagation. The vehicles which are not equipped with these communication devices will block the radio propagation and result in the undesirable shadowing attenuation. Hence, we survey the impact of the shadowing effect for the IVC via the computer simulations and the field-measurements. Besides, a modified three-ray shadowing model suitable for the IVC is proposed. Finally, we use the field-measurements to evaluate the spatial diversity performance of the IVC system under different wireless channels. Combined with the three-ray shadowing model, the range extension capability by using the two receiving antennas is evaluated. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:01:12Z (GMT). No. of bitstreams: 1 ntu-98-D91942010-1.pdf: 5888761 bytes, checksum: 806b0326b93c32bcca3b76cd8a018850 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Contents
口試委員會審定書 誌謝 摘要 Abstract……………………………………………………………………i Contents…………………………………………………………..………iii List of Figures……………………………………………………..………v List of Tables……………………………………………………..………ix Chapter 1 Introduction……………………………….……………….. 1 1.1 Motivation………………………….…….…….…………….… 1 1.2 Overview of the Dissertation……………….………….…….… 4 Chapter 2 A Channel Awareness Vehicle Detector………..…………. 7 2.1 Introduction..………………..………..…………………....…… 7 2.2 System Descriptions…………….……………………………… 7 2.3 Measurement and Simulation Results……………..…..……… 15 2.4 Summary………………………………………………………. 42 Chapter 3 Vehicle Detection Using the Antenna Array…………...….. 43 3.1 Introduction…………….…………………..…..…………...… 43 3.2 System Descriptions………………………………..……....…. 43 3.3 Measurement and Simulation Results………………………...… 53 3.4 Summary…………………………….……………………..…. 54 Chapter 4 Impact of the Shadowing Effect in Inter-Vehicle Communication……………………………………….….. 61 4.1 Introduction…..………..…..………………………………….. 61 4.2 System Models…………………………………………...…… 62 4.3 Measurement and Simulation Results………………………… 71 4.4 Summary………………..……..…………………………..……. 90 Chapter 5 Range Extension of the Inter-Vehicle Communication via Using the Spatial Diversity…………….…………..……91 5.1 Introduction…..…………....….………………………….....… 91 5.2 Analysis of Spatial Diversity………………………....….…… 92 5.3 Measurement and Simulation Results……….………………… 94 5.4 Summary……………………………………..……………….. 101 Chapter 6 Conclusions……………………………………………….. 103 References………….………………………………………………….. 107 | |
dc.language.iso | en | |
dc.title | 無線車載資通訊系統之車輛偵測及通道分析研究 | zh_TW |
dc.title | Vehicle Detection and Channel Analysis of Wireless Telematics Systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 曹恆偉,闕志達,唐震寰,林丁丙,李?民 | |
dc.subject.keyword | 智慧型運輸系統,車輛偵測器,陣列天線,車間通訊,遮蔽效應,空間分集, | zh_TW |
dc.subject.keyword | ITS (Intelligent Transportation System),Vehicle detector,Antenna array,IVC (Inter-Vehicle Communication),Shadowing effect,Spatial diversity, | en |
dc.relation.page | 118 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-01-03 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 5.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。