請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87839完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙修武 | zh_TW |
| dc.contributor.advisor | Shiu-Wu Chau | en |
| dc.contributor.author | 蔡育勝 | zh_TW |
| dc.contributor.author | Yu-Sheng Cai | en |
| dc.date.accessioned | 2023-07-19T16:47:22Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-19 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-04-02 | - |
| dc.identifier.citation | [1] Half-year Report 2022: Worldwide windpower boom continues in 2022, World Wind Energy Association, 2022. [Online] Available: https://wwindea.org/worldwide-windpower-boom-continues-in-2022/
[2] Premalatha, M., Abbasi, T., & Abbasi, S. A., “Wind energy: increasing deployment, rising environmental concerns,” Renewable and Sustainable Energy Reviews, vol. 31, pp. 270–288, 2014. [3] Li, Y., Huang, X., Tee, K. F., Li, Q., & Wu, X. P., “Comparative study of onshore and offshore wind characteristics and wind energy potentials: A case study for southeast coastal region of China,” Sustainable Energy Technologies and Assessments, vol. 39, pp. 100711, 2020. [4] Global Offshore Wind Speed Rankings, 4C Offshore, 2022. [Online] Available: https://www.4coffshore.com/windfarms/windspeeds.aspx [5] Henderson, A. R. & Witcher, D., “Floating offshore wind energy – A review of the current status and an assessment of prospects,” Wind Engineering, vol. 34, no. 1, pp. 1-16, 2010. [6] Ma, K. T., Wu, Y., Stolen, S. F., Bello, L., van der Horst, M., & Luo, Y., “Mooring designs for floating offshore wind turbines leveraging experience from the oil & gas industry,” presented at the 40st OMAE Conf., 2021. [Online] Available: https://www.researchgate.net/publication/355290041_Mooring_Designs_for_Floating_Offshore_Wind_Turbines_Leveraging_Experience_From_the_Oil_Gas_Industry [7] Floating Offshore Wind - a Global Opportunity, Global Wind Energy Council., 2022. [Online] Available: https://gwec.net/wp-content/uploads/2022/03/GWEC-Report-Floating-Offshore-Wind-A-Global-Opportunity.pdf [8] Bagbanci, H., Karmakar, D., & Soares, C. G., “Review of offshore floating wind turbines concepts,” in Maritime Engineering and Technology. Boca Raton, FL, USA: CRC Press, 2012, pp. 553-562. [9] Hywind: Siemens and Statoilhydro install first floating wind turbine, SIEMENS, 2009. [Online] Available: https://www.euro-energie.com/hywind-siemens-and-statoilhydro-install-first-floating-wind-turbine-n-1375 [10] ABS Consulting Inc., “Floating Offshore Wind Turbine Development Assessment,” ABS, Texas, USA, Final Rep. 140M0120F0021, 2020. [11] WindFloat Atlantic, Principle Power, 2022. [Online] Available: https://www.principlepower.com/projects/windfloat-atlantic/ [12] Brower, M., Marcus, M., Taylor, M., Bernadett, D., Filippelli, M., …& Ryan, D., “Wind Resource Assessment Handbook,” AWS Truepower, New York, NY, USA, Final Rep. 10, 2010. [13] Weather Hazards maps, GCSE Geography, 2016. [Online]. Available: https://www.oakwoodacademy.org.uk/uploads/images/file/Weather%20Hazards.pdf [14] Typhoon Database, Central Weather Bureau, 2022. [Online] Available: https://rdc28.cwb.gov.tw/TDB/public/warning_typhoon_list/ [15] Hsu, I. J., Ivanov, G., Ma, K. T., Huang, Z. Z., Wu, H. T., Huang, Y. T., & Chou, M., “Optimization of Semi-Submersible Hull Design for Floating Offshore Wind Turbines,” presented at the 41st OMAE Conf., Hamburg, Germany, 2022. [16] Coupled analysis of floating wind turbines, DNVGL-RP-0286, DNV GL, Oslo, Norway, 2019. [17] Coupled analysis of floating wind turbines, DNVGL-RP-0286, DNV GL, Oslo, Norway, 2021. [18] Position Mooring, DNVGL-OS-E301, DNV GL, Oslo, Norway, 2021. [19] Rules for Building and Classing Floating Production Installations, ABS, 2014. [Online]. Available: https://ww2.eagle.org/content/dam/eagle/rules-and-guides/archives/offshore/82_fpirules_2014/FPI_Rules_e-July14.pdf [20] Tong, H. Y., “Normal Operating Performance Study of a 15MW Floating Wind Turbine System using Semi-Submersible Taida Floating Platform in the Hsinchu Offshore Area,” M.S. thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2022. [21] Thomsen, J. B., Bergua, R., Jonkman, J., Robertson, A., Mendoza, N., Brown, C., ... & Stiesdal, H., “Modeling the TetraSpar Floating Offshore Wind Turbine Foundation as a Flexible Structure in OrcaFlex and OpenFAST,” Energies, vol. 14, no. 23, pp. 7866, 2021. [22] Chen, C. Y., “Comparative Study on Semi-Submersible Floating Plat-forms for Offshore Wind in Taiwan Strait,” M.S. thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2020. [23] Wind Data, Orcina, 2022. [Online] Available: https://www.orcina.com/webhelp/OrceFlex/ [24] Gu, J. Y., Zhang, P., Xie, Y. L., Deng, B. L., & Chen, Y., “Characteristic Study of the Random Wind Load on Semi-submersible Tender Support Platform,” Journal of Ship Mechanics, vol. 21, no. 6, pp. 672-684, 2017. [25] Huang Y. R., Yang C. H., Lin Y. H., “The investigation of the wind and Wave Loadings on a Deepwind Semisubmersible Floating Offshore Wind Turbine with Mooring Lines Losses in an Irregular Sea Condition,” Journal of Taiwan Society of Naval Architects and Marine Engineers, vol. 40, no. 1, pp. 21-31, 2021. [26] How turbulence can impact power performance, National Wind Watch, 2020. [Online] Available: https://www.wind-watch.org/documents/how-turbulence-can-impact-power-performance/ [27] Huang, W. H., “Influence of Water Depth Variation on the Mooring Line Design for FOWT in Shallow Waters,” M.S. thesis, Dept. Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan, 2021. [28] Pan, Q., Mahfouz, M. Y., & Lemmer, F., “Assessment of mooring configurations for the IEA 15MW floating offshore wind turbine,” Journal of Physics, vol. 2018, no. 1, pp. 012030, 2021. [29] Lin, T. Y., Yang, C. Y., Chau, S. W., & Kouh, J. S., “Dynamic Amplification of Gust-Induced Aerodynamic Loads Acting on a Wind Turbine during Typhoons in Taiwan,” Journal of Marine Science and Engineering, vol. 9, no. 4, pp. 352, 2021. [30] Wind turbines – Part 1: Design requirements, IEC 61400-1, IEC, Geneva, Switzerland, 2014. [31] Lin, P. H. & Tu, C. T., “The characteristics of gust wind at western coast of Taiwan during typhoon weather condition—An example from typhoon,” presented at Taiwan Wind Energy Conference, Penghu, Taiwan, 2010. [32] Wang, Z., Zhao, Y., Li, F., & Jiang, J., “Extreme dynamic responses of MW-level wind turbine tower in the strong typhoon considering Wind-Rain Loads,” Mathematical Problems in Engineering, vol. 2013, pp. 13, 2013. [33] Højstrup, J., “Velocity spectra in the unstable planetary boundary layer,” Journal of the Atmospheric Sciences, vol. 39, no.10, pp. 2239–2248, 1982. [34] Hong, J. J., “Performance Prediction of a Disk-Type Semi-Submersible Floating Platform in Taiwan Strait,” M.S. thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2022. [35] Tanaka, K., Sato, I., Utsunomiya, T., & Kakuya, H., “Validation of dynamic response of a 2-MW hybrid-spar floating wind turbine during typhoon using full-scale field data,” Ocean Engineering, vol. 218, pp. 108262, 2020. [36] Ma, Z., Li, W., Ren, N., & Ou, J., “The typhoon effect on the aerodynamic performance of a floating offshore wind turbine,” Journal of Ocean Engineering and Science, vol. 2, no. 4, pp. 279-287, 2017. [37] Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. E., ... & Viselli, A., “Definition of the IEA Wind 15-Megawatt Offshore Reference Wind Turbine,” National Renewable Energy Lab., Golden, CO, USA, Tech. Rep. TP-5000-75698, 2020. [38] Harnessing offshore mooring experience and anchoring technology for the floating renewable energy systems, Vryhof Anchors B.V., 2020. [Online] Available: https://www.kivi.nl/uploads/media/5ae711f5178c0/SOZ-KIVI%20-lecture%20-%20Anchoring%20Technologies%20for%20FOWT%20by%20Vry-of%20Anchors.pdf [39] Ma, K. T., Luo, Y., Kwan, T., & Wu, Y., Mooring System Engineering for Offshore Structures. Huston, Texas, USA: Gulf Professional Publishing, 2019. [40] Ikhennicheu, M., Lynch, M., Doole, S., Borisade, F., Matha, D., Dominguez, J. L., Vicente, R. D., ... & Trubat, P., “Review of the state of the art of mooring and anchoring designs, technical challenges and identification of relevant DLCs,” CoreWind Project, Barcelona, Spain, Tech. Rep. 815083, 2020. [41] Haskind, M. D., “The Oscillation of a Ship in Still Water,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, vol. 1, pp. 23-34, 1946. [42] Haskind, M. D., “The Hydrodynamic Theory of Ship Oscillations in Rolling and Pitching,” Prikl Mat. Mekh, vol. 10, pp. 33-66, 1946. [43] Wehausen, J. V. & Laitone, E. V., “Surface Waves in Fluid Dynamics III,” Handbuch der Physik, vol. 9, no. 3, pp. 446-778, 1960. [44] Simcenter STAR-CCM+ User Guide, ver. 2206, Siemens, Berlin, Germany, 2022. [45] Hirt, C. W. & Nichols, B. D., “Volume of fluid method for the dynamics of free surface,” Journal of Computational Physics, vol. 39, no. 1, pp. 201-225, 1981. [46] Sorensen, R. M., Basic Wave Mechanics for Coastal and Ocean Engineering. New York, NY, USA: John Wiley & Sons, 1993. [47] Dixon, S. L., Fluid Mechanics and Thermodynamics of Turbomachinery. Oxford. UK: Pergamon Press Ltd., 2014. [48] Hansen, M. H., Hansen, A., Larsen, T. J., Øye, S., Sørensen, P., & Fuglsang, P., “Control Design for a Pitch-Regulated, Variable Speed Wind Turbine,” Risoe National Lab., Roskilde, Denmark, Tech. Rep. RISO-R-1500(EN), 2005. [49] OrcaFlex Documentation, ver. 11.2d, Orcina, Daltongate, UK, 2022. [50] Ghafari, H. & Dardel, M., “Parametric study of catenary mooring system on the dynamic response of the semi-submersible platform,” Ocean Engineering, vol. 153, no. 3, pp. 319-332, 2018. [51] Yu, Q., Kim, K., & Lo, T. W., “Design standards for offshore wind farms,” ABS, Houston, Texas, USA, Final Rep., 2011. [52] Yang, C. Y., “Study of Aerodynamic Loads Acting on Wind Turbines under the Typhoon Condition in Taiwan,” Ph.D. dissertation, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2016. [53] Wind turbines – Part 3: Design requirements, IEC 61400-3, IEC, Geneva, Switzerland, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87839 | - |
| dc.description.abstract | 本研究使用半潛式臺大浮台搭載IEA 15MW 風機與3×2、3×3懸垂式繫纜佈置的浮式風機系統,預測新竹外海海氣象條件下一般、高波海況及考慮50年迴歸週期極端海況下的運動響應與功率性能。本研究使用JONSWAP波譜描述新竹外海波況,除考慮固定風速外,一般與高波海況下亦使用API風譜描述風速變化情形,極端海況下則以颱風陣風模型加以描述。本研究使用ANSYS-AQWA與STAR-CCM+預測水動力特性,接著以OrcaFlex求解運動方程式,預測風機系統的性能。由於波浪主要起因於風,因此假定風向與波向一致。本研究探討七組風向、四組流向、三種海況條件與兩種繫纜設計,共計一百六十八組分析案例。風機系統運動響應、風機功率與繫纜受力的平均值與標準差,在一般與高波海況下受到流向影響較不明顯,極端海況下流向影響則較為顯著,三種海況下風向造成的影響皆十分明顯。風速變化對運動響應與繫纜張力的平均值影響不大,對標準差影響較大。與固定風速條件比較,使用API風譜風機功率輸出約減少1%至3%。使用3×2繫纜風機功率於一般海況下皆高於14.14 MW,高波海況下皆高於14.53 MW;使用3×3繫纜風機功率於一般海況下皆高於14.47 MW,高波海況下皆高於14.65 MW。3×2及3×3繫纜佈置最大縱搖角度於一般海況下分別為5.59°與5.48°,高波海況下分別為1.50°與1.49°,極限海況下分別為10.81°與9.73°;最大位移於一般海況下分別為12.59 m與7.67 m,高波海況下分別為7.98 m 與 3.79 m,極限海況下分別為15.87 m與14.56 m; 最大繫纜張力於一般海況下分別為斷裂負荷的37.3% 與14.8%,高波海況下分別為斷裂負荷的16.0% 與11.2%,極端海況下分別為斷裂負荷的95.7% 與44.8%,風機系統使用3×3 繫纜佈置的運動較為穩定且纜繩安全係數較高。根據浮式風機在一般運轉與極端海況下的運轉安全性要求,對於本研究的目標風機系統建議使用3×3繫纜設計。 | zh_TW |
| dc.description.abstract | The study aims to predict the behavior of a floating offshore wind turbine (FOWT) system equipped with a semi-submersible Taida platform and an IEA 15 MW wind turbine under different metocean conditions in the Hsinchu offshore area where the performance of the FOWT system with 3×2 and 3×3 mooring designs is compared as well as three metocean conditions, i.e., common wave (CW), high wave (HW), and extreme wave (EW), are considered. The JONSWAP spectrum is utilized to describe the irregular wave in the Hsinchu offshore area. In addition to the constant wind speed, API spectrum is used under the CW and HW conditions to describe the wind speed variation, and the transient typhoon profile is employed to describe the extreme gust under the EW condition based on 50-year return period. The hydrodynamic properties are predicted via ANSYS-AQWA and STAR-CCM+, and the motion response, mooring line tension and aerodynamic of the FOWT system are solved via OrcaFlex. As waves are mainly driven by winds, the wind and wave direction are assumed to be identical. With seven wind and wave directions, four current directions, and two mooring line designs, a total of 168 cases is investigated in this study. The results show that the mean value and standard deviation of the motion response, generator power, and mooring line tension are sensitive to wind (wave) directions, but insensitive to the current direction under the CW and HW conditions, while under the EW condition, the current and wind and wave direction both pose a significant impact on the mean value and standard deviation of the motion response. The wind speed variation slightly impacts the mean value, but can significantly influence on the standard deviation of the motion response and mooring line tension. The API spectrum leads to a 1% to 3% reduction of generator power. The powers of 14.14 MW and 14.53 MW are guaranteed under the CW and HW conditions when a 3×2 mooring design is employed; 14.47 MW and 14.65 MW are guaranteed under the CW and HW conditions when a 3×3 mooring design is employed. The maximum pitch angle is 5.59° and 5.48° under the CW condition, 1.50° and 1.49° under the HW condition, and 10.81° and 9.73° under the EW condition; the maximum offset is 12.59 m and 7.67 m under the CW condition, 7.98 m and 3.79 m under the HW condition, and 15.89 m and 14.55 m under the EW condition; the maximum mooring line tension reach 37.3% and 14.8% of the MBL under the CW condition, 16.0% and 11.2% under the HW condition, 95.7% and 44.8% under the EW condition, respectively. The 3×3 mooring design shows a lower offset and a greater safety factor. According to the safety requirements of operating a FOWT system under the normal operating and extreme wave condition, a 3×3 mooring design is recommended for the investigated FOWT system. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:47:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-19T16:47:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Abstract I
Content V Nomenclature VII List of Figures XII List of Tables XVII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 8 Chapter 2 FOWT System Design 11 2.1 Wind Turbine Design 11 2.2 Floating Platform Design 15 2.3 Mooring Design 17 2.4 Design requirements for a FOWT System 20 Chapter 3 Numerical Methods 23 3.1 Numerical Framework 23 3.2 Potential Flow Modeling of Floating Body 26 3.3 Viscous Flow Modeling of Floating Body 31 3.3.1 Governing Equations 31 3.3.2 Volume of Fluid Method 34 3.3.3 Boundary Condition and Computational Domain 37 3.3.4 Hydrodynamic Properties Prediction Considering Viscous Effects 41 3.4 Modeling of Floating Wind Turbine System 43 3.4.1 Aerodynamics Modeling 43 3.4.2 Control System Modeling 51 3.4.3 Mooring Modeling 57 Chapter 4 Simulation Conditions 59 4.1 Metocean Data 59 4.1.1 Wave Condition 59 4.1.2 Wind Condition 62 4.1.3 Current Condition 65 4.2 Case Descriptions 66 Chapter 5 Results 69 5.1 Hydrodynamic Properties 69 5.2 Response Amplitude Operator 73 5.3 Motion Response 75 5.3.1 Common Wave 75 5.3.2 High Wave 88 5.3.3 Extreme Wave 101 5.4 Power Performance 110 5.4.1 Common Wave 110 5.4.2 High Wave 114 5.5 Mooring Line Tension 118 5.5.1 Common Wave 119 5.5.2 High Wave 129 5.5.3 Extreme Wave 139 Chapter 6 Conclusion 145 Reference 149 Appendix 153 | - |
| dc.language.iso | en | - |
| dc.subject | 半潛式平台 | zh_TW |
| dc.subject | 浮式風機 | zh_TW |
| dc.subject | 臺灣海峽 | zh_TW |
| dc.subject | 新竹外海 | zh_TW |
| dc.subject | 正常運轉 | zh_TW |
| dc.subject | 極限海況 | zh_TW |
| dc.subject | 繫纜張力 | zh_TW |
| dc.subject | 運動響應 | zh_TW |
| dc.subject | 風機功率 | zh_TW |
| dc.subject | Taiwan Strait | en |
| dc.subject | Mooring Line Tension | en |
| dc.subject | Normal Operating Condition | en |
| dc.subject | Extreme Wave Condition | en |
| dc.subject | Power Performance | en |
| dc.subject | Semi-Submersible | en |
| dc.subject | Floating Offshore Wind Turbine | en |
| dc.subject | Hsinchu Offshore Area | en |
| dc.subject | Motion Response | en |
| dc.title | 使用半潛式臺大浮台之15MW浮式風機系統考慮3×2與3×3繫纜設計於新竹外海場址一般運轉與極限海況性能研究 | zh_TW |
| dc.title | Normal Operating and Extreme Condition Performance Study of 15MW Floating Wind Turbine System Using Semi-Submersible Taida Floating Platform with 3×2 and 3×3 Mooring Design in the Hsinchu Offshore Area | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江茂雄;林宗岳;鍾承憲;鍾年勉;蕭士俊 | zh_TW |
| dc.contributor.oralexamcommittee | Mao-Hsiung Chiang;Tsung-Yueh Lin;Cheng-Hsien Chung;Nien-Mien Chung;Shih-Chun Hsiao | en |
| dc.subject.keyword | 浮式風機,半潛式平台,風機功率,運動響應,繫纜張力,正常運轉,極限海況,新竹外海,臺灣海峽, | zh_TW |
| dc.subject.keyword | Floating Offshore Wind Turbine,Semi-Submersible,Power Performance,Motion Response,Mooring Line Tension,Normal Operating Condition,Extreme Wave Condition,Hsinchu Offshore Area,Taiwan Strait, | en |
| dc.relation.page | 187 | - |
| dc.identifier.doi | 10.6342/NTU202300705 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-04-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 38.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
