Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曲芳華zh_TW
dc.contributor.advisorFang-Hua Chuen
dc.contributor.author黃群智zh_TW
dc.contributor.authorChiun-Jr Huangen
dc.date.accessioned2023-07-19T16:41:33Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-02-15-
dc.identifier.citation王瑋筑、王麗渝、林恩仕、莊正宏 (2017) 檜木精油對人類皮膚角質細胞增殖的影響及其抗氧化活性。中醫本草芳香療法期刊 1(1):29-40。
徐國士 (1993) 從巨木的發現談台灣的檜木。 科學學習月刊 41:7-11。
陳盈如、林群雅、鄭森松、張上鎮 (2012) 精油裡的秘密 - 鑑定扁柏屬植物之親緣關係。 台灣林業 38(2) :26-33。
陳盈如、張上鎮 (2017) 臺灣檜木之分布與特徵比較。 台灣林業科學 32(1) :71-86。
黃啟俊、林其永、王國雄、許再聞、蔣鎮宇 (2007) 玉山國家公園境內紅檜之微衛星DNA研究。國家公園學報 17(1):17-32。
黃麗虹、黃士穎、林讚標 (2000) 紅槍與台灣扁柏低的葉綠體 DNA 遺傳變異及族群分化。台灣林業科學 15(2):229-236。
蒲長恩、陳孟宜、孟令敏、鄭秀銘、吳芳親、Linacre, A. (2004) DNA鑑識常用STR多型性相關評估數據EXCEL試算表程式研究D-2。 2004年犯罪偵查與鑑識科學研討會論文集 189-196。
劉業經、呂福原、歐辰雄 (1994) 臺灣樹木誌增補修訂版 925頁。
鍾國芳 (2015) 臺灣扁柏與紅檜個體鑑定實驗平台之建置(1/4)。科技部 MOST 104-2321-B-002-056。
Adnan, A., Kasim, K., Rakha, A., Noor, A., Cheema, A. S., Hadi, S., & Xing, J. (2019). Population data of 23 Y STRs from Manchu population of Liaoning province, Northeast China. International Journal of Legal Medicine, 133(3), 785-788.
Alghanim, H., & Almirall, J. (2003). Development of microsatellite markers in Cannabis sativa for DNA typing and genetic relatedness analyses. Analytical and Bioanalytical Chemistry, 376(8), 1225-1233.
Asif, M., & Cannon, C. H. (2005). DNA extraction from processed wood: a case study for the identification of an endangered timber species (Gonystylus bancanus). Plant Molecular Biology Reporter, 23(2), 185-192.
Barbara, T., Palma?Silva, C., Paggi, G. M., Bered, F., Fay, M. F., & Lexer, C. (2007). Cross?species transfer of nuclear microsatellite markers: potential and limitations. Molecular Ecology, 16(18), 3759-3767.
Ben?Shlomo, R. (2017). Invasiveness, chimerism and genetic diversity. Molecular Ecology, 26(23), 6502-6509.
Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27(2), 573-580.
Blais, J., Lavoie, S. B., Giroux, S., Bussi?res, J., Lindsay, C., Dionne, J., Laroche, M., Gigu?re, Y. & Rousseau, F. (2015). Risk of misdiagnosis due to allele dropout and false-positive PCR artifacts in molecular diagnostics: analysis of 30,769 genotypes. The Journal of Molecular Diagnostics, 17(5), 505-514.
Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314.
Bouck, A., & Vision, T. (2007). The molecular ecologist's guide to expressed sequence tags. Molecular Ecology, 16(5), 907-924.
Braun, B. (2013). Wildlife detector dogs-A guideline on the training of dogs to detect wildlife in trade. WWF Germany, Berlin, 1-16.
Budowle, B., Chakraborty, R., Carmody, G., & Monson, K. L. (2000). Source attribution of a forensic DNA profile. Forensic Science Communications, 2(3), 6.
Carlsson, J. (2008). Effects of microsatellite null alleles on assignment testing. Journal of Heredity, 99(6), 616-623.
Castella, V., Lesta, M. d. M., & Mangin, P. (2009). One person with two DNA profiles: a (nother) case of mosaicism or chimerism. International Journal of Legal Medicine, 123(5), 427-430.
Castelo, A. T., Martins, W., & Gao, G. R. (2002). TROLL-tandem repeat occurrence locator. Bioinformatics, 18(4), 634-636.
Celani, C. P., Lancaster, C. A., Jordan, J. A., Espinoza, E. O., & Booksh, K. S. (2019). Assessing utility of handheld laser induced breakdown spectroscopy as a means of Dalbergia speciation. Analyst, 144(17), 5117-5126. https://doi.org/10.1039/c9an00984a
Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11(2), 113-116.
Chavali, S., Mahajan, A., Tabassum, R., Maiti, S., & Bharadwaj, D. (2005). Oligonucleotide properties determination and primer designing: a critical examination of predictions. Bioinformatics, 21(20), 3918-3925.
Chen, C. J., Kumar, K. S., Chen, Y. T., Tsao, N. W., Chien, S. C., Chang, S. T., Chu, F. H., & Wang, S. Y. (2015). Effect of Hinoki and Meniki essential oils on human autonomic nervous system activity and mood states. Natural Product Communications, 10(7), 1934578X1501000742.
Chen, Y. J., Lin, C. Y., Cheng, S. S., & Chang, S. T. (2011). Phylogenetic relationships of the genus Chamaecyparis inferred from leaf essential oil. Chemistry and Biodiversity, 8(6), 1083-1097.
Cheng, Y. P., Hwang, S. Y., & Lin, T. P. (2005). Potential refugia in Taiwan revealed by the phylogeographical study of Castanopsis carlesii Hayata (Fagaceae). Molecular Ecology, 14(7), 2075-2085.
Chiang, T. Y., & Schaal, B. A. (2006). Phylogeography of plants in Taiwan and the Ryukyu Archipelago. Taxon, 55(1), 31-41.
Chiang, Y. C., Hung, K. H., Schaal, B. A., Ge, X. J., Hsu, T. W., & Chiang, T. Y. (2006). Contrasting phylogeographical patterns between mainland and island taxa of the Pinus luchuensis complex. Molecular Ecology, 15(3), 765-779.
Cline, J., Braman, J. C., & Hogrefe, H. H. (1996). PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Research, 24(18), 3546-3551.
Colson, I., & Goldstein, D. B. (1999). Evidence for complex mutations at microsatellite loci in Drosophila. Genetics, 152(2), 617-627.
Dakin, E., & Avise, J. (2004). Microsatellite null alleles in parentage analysis. Heredity (Edinb), 93(5), 504-509.
Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M., & Blaxter, M. L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12(7), 499-510.
Dawnay, N., Ogden, R., Thorpe, R. S., Pope, L. C., Dawson, D. A., & McEwing, R. (2008). A forensic STR profiling system for the Eurasian badger: a framework for developing profiling systems for wildlife species. Forensic Science International: Genetics, 2(1), 47-53. https://doi.org/10.1016/j.fsigen.2007.08.006
Dormontt, E. E., Boner, M., Braun, B., Breulmann, G., Degen, B., Espinoza, E., Gardner, S., Guillery, P., Hermanson, J. C., Koch, G., Lee, S. L., Kanashiro, M., Rimbawanto, A., Thomas, D., Wiedenhoeft, A. C., Yin, Y., Zahnen, J., & Lowe, A. J. (2015). Forensic timber identification: It's time to integrate disciplines to combat illegal logging. Biological Conservation, 191, 790-798. https://doi.org/10.1016/j.biocon.2015.06.038
Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15.
Dufresnes, C., Brelsford, A., B?ziers, P., & Perrin, N. (2014). Stronger transferability but lower variability in transcriptomic?than in anonymous microsatellites: evidence from H ylid frogs. Molecular Ecology Resources, 14(4), 716-725.
Eichmann, C., Berger, B., Steinlechner, M., & Parson, W. (2005). Estimating the probability of identity in a random dog population using 15 highly polymorphic canine STR markers. Forensic Science International, 151(1), 37-44.
Ekblom, R., & Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb), 107(1), 1-15.
Elliott, C. P., Enright, N. J., Allcock, R. J., Gardner, M. G., Megl?cz, E., Anthony, J., & Krauss, S. L. (2014). Microsatellite markers from the Ion Torrent: a multi?species contrast to 454 shotgun sequencing. Molecular Ecology Resources, 14(3), 554-568.
Ellis, J., & Burke, J. (2007). EST-SSRs as a resource for population genetic analyses. Heredity (Edinb), 99(2), 125-132.
Fang, P., Niu, S., Yuan, H., Li, Z., Zhang, Y., Yuan, L., & Li, W. (2014). Development and characterization of 25 EST?SSR markers in Pinus sylvestris var. mongolica (Pinaceae). Applications in Plant Sciences, 2(1), 1300057.
Fatima, T., Srivastava, A., Hanur, V. S., & Rao, M. S. (2018). An effective wood DNA extraction protocol for three economic important timber species of India. American Journal of Plant Sciences, 09(02), 139-149. https://doi.org/10.4236/ajps.2018.92012
Fisher, R. (1951). Standard calculations for evaluating a blood-group system. Heredity (Edinb), 5(1), 95.
Franks, T., Botta, R., Thomas, M., & Franks, J. (2002). Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theoretical and Applied Genetics, 104(2), 192-199.
Fregeau, C. J., & Fourney, R. M. (1993). DNA typing with fluorescently tagged short tandem repeats: a sensitive and accurate approach to human identification. Biotechniques, 15(1), 100-119.
Gadek, P. A., Alpers, D. L., Heslewood, M. M., & Quinn, C. J. (2000). Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany, 87(7), 1044-1057.
Gagneux, P., Boesch, C., & Woodruff, D. (1997). Microsatellite scoring errors associated with noninvasive genotyping based on nuclear DNA amplified from shed hair. Molecular Ecology, 6(9), 861-868.
Gao, L., Tang, J., Li, H., & Jia, J. (2003). Analysis of microsatellites in major crops assessed by computational and experimental approaches. Molecular Breeding, 12(3), 245-261.
Gardner, M. G., Fitch, A. J., Bertozzi, T., & Lowe, A. J. (2011). Rise of the machines-recommendations for ecologists when using next generation sequencing for microsatellite development. Molecular Ecology Resources, 11(6), 1093-1101.
Gasson, P. (2011). How precise can wood identification be? Wood anatomy's role in support of the legal timber trade, especially CITES. Iawa Journal, 32(2), 137-154.
Glenn, T. C., & Schable, N. A. (2005). Isolating microsatellite DNA loci. In. Methods in Enzymology, 395, 202-222.
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., & Zeng, Q. (2011). Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology, 29(7), 644.
Graham, B., & Bormann, F. (1966). Natural root grafts. The Botanical Review, 32(3), 255-292.
Guo, B., Ren, J. Y., He, M. N., Yao, K., Wang, T. S., Wang, L. Q., Liu, X., He, W., Fu, Y. P., Wang, D. L. (2019). Development of polymorphic simple sequence repeat markers in Huperzia serrata (Lycopodiaceae). Applications in Plant Sciences, 7(7), e11273.
Hartl, D., & Clark, A. (1989). Principles of population genetics. Sinauer Assoc. Inc, Sunderland, Massachusetts.
He, G., Chen, P., Zou, X., Chen, X., Song, F., Yan, J., & Hou, Y. (2017). Genetic polymorphism investigation of the Chinese Yi minority using PowerPlex? Y23 STR amplification system. International Journal of Legal Medicine, 131(3), 663-666.
Hedrick, P. W. (2009). Genetics of Populations. Jones & Bartlett Publishers.
Hizume, M., Kondo, T., Shibata, F., & Ishizuka, R. (2001). Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia, 66(3), 307-311.
Hua, Q., Barbetti, M., & Rakowski, A. Z. (2013). Atmospheric radiocarbon for the period 1950-2010. Radiocarbon, 55(4), 2059-2072. https://doi.org/10.2458/azu_js_rc.v55i2.16177
Huang, C. C., Hsu, T. W., Wang, H. V., Liu, Z. H., Chen, Y. Y., Chiu, C. T., Huang, C. L., Hung, K. H., & Chiang, T. Y. (2016). Multilocus analyses reveal postglacial demographic shrinkage of Juniperus morrisonicola (Cupressaceae), a dominant alpine species in Taiwan. Plos One, 11(8), e0161713.
Huang, C. J., Chu, F. H., Liu, S. C., Tseng, Y. H., Huang, Y. S., Ma, L. T., Wang., C. T., You, Y. T., Hsu, S. Y., Hsieh., H. C., Chen., C. T., & Chao, C. H. (2018). Isolation and characterization of SSR and EST-SSR loci in Chamaecyparis formosensis (Cupressaceae). Applications in Plant Sciences, 6(8), e01175. https://doi.org/10.1002/aps3.1175
Huang, C. J., Chu, F. H., Huang, Y. S., Hung, Y. M., Tseng, Y. H., Pu, C. E., Chao, C. H., Chou, Y. S., Liu, S. C., You, Y. T., Hsu, S. Y., Hsieh., H. C., Hsu., C. T., Cheng, M. Y., Lin., T. A., Shyu, H. Y., Tu., Y. C. & Chen., C. T. (2020). Development and technical application of SSR-based individual identification system for Chamaecyparis taiwanensis against illegal logging convictions. Scientific Reports, 10:22095.
Huang, C. J., Chu, F. H., Huang, Y. S., Tu, Y. C., Hung, Y. M., Tseng, Y. H., Pu, C. E., Hsu, C. T., Chao, C. H., Chou, Y. S., Liu, S. C., You, Y. T., Hsu, S. Y., Hsieh., H. C., Wang., C. T., & Chen., C. T.(2022). SSR individual identification system construction and population genetics analysis for Chamaecyparis formosensis. Scientific Reports, 12:4126.
Hung, K. H., Lin, C. H., & Ju, L. P. (2017). Tracking the geographical origin of timber by DNA fingerprinting: a study of the endangered species Cinnamomum kanehirae in Taiwan. Holzforschung, 71(11), 853-862.
Hwang, S. Y., Lin, H. W., Kuo, Y. S., & Lin, T. P. (2001). RAPD variation in relation to population differentiation of Chamaecyparis formosensis and Chamaecyparis taiwanensis. Botanical Bulletin of Academia Sinica, 42, 173-179.
Jeffreys, A. J. (2005). Genetic fingerprinting. Nature Medicine, 11(10), 1035-1039.
Jeon, S. A., Park, J. L., Kim, J. H., Kim, J. H., Kim, Y. S., Kim, J. C., & Kim, S. Y. (2019). Comparison of the MGISEQ-2000 and Illumina HiSeq 4000 sequencing platforms for RNA sequencing. Genomics and Informatics, 17(3).
Jobling, M. A., & Gill, P. (2004). Encoded evidence: DNA in forensic analysis. Nature Reviews Genetics, 5(10), 739-751. https://doi.org/10.1038/nrg1455
Jones, D. A. (1972). Blood Samples : Probability of Discrimination. Journal of the Forensic Science Society, 12(2), 355-359. https://doi.org/10.1016/s0015-7368(72)70695-7
Kim, Y. M., Shin, Y. S., & Jeong, J. H. (2016). Development and characterization of microsatellite primers for Chamaecyparis obtusa (Cupressaceae). Applications in Plant Sciences, 4(5), 1500136.
Kofler, R., Schl?tterer, C., & Lelley, T. (2007). SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics, 23(13), 1683-1685.
Koren, S., Schatz, M. C., Walenz, B. P., Martin, J., Howard, J. T., Ganapathy, G., Wang, Z., Rasko, D. A., McCombie, W. R., Jarvis, E. D. (2012). Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnology, 30(7), 693-700.
Kozarewa, I., Armisen, J., Gardner, A. F., Slatko, B. E., & Hendrickson, C. (2015). Overview of target enrichment strategies. Current Protocols in Molecular Biology, 112(1), 7.21. 21-27.21. 23.
Krapp, F., W?hrmann, T., Pinang?, D. S. d. B., Benko?Iseppon, A. M., Huettel, B., & Weising, K. (2012). A set of plastid microsatellite loci for the genus Dyckia (Bromeliaceae) derived from 454 pyrosequencing. American Journal of Botany, 99(12), e470-e473.
Kumpatla, S. P., & Mukhopadhyay, S. (2005). Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species. Genome, 48(6), 985-998.
Lee, J. C. I., Tsai, L. C., Kuan, Y. Y., Chien, W. H., Chang, K. T., Wu, C. H., Linacre, A., & Hsieh, H. M. (2007). Racing pigeon identification using STR and chromo?helicase DNA binding gene markers. Electrophoresis, 28(23), 4274-4281.
Levinson, G., & Gutman, G. A. (1987). Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molecular Biology and Evolution, 4(3), 203-221.
Li, H. L., & Keng, H. (1994). Flora of Taiwan second edition volume one. In (pp. 586-588). National Science Council.
Li, J., Zhang, D., & Donoghue, M. J. (2003). Phylogeny and biogeography of Chamaecyparis (Cupressaceae) inferred from DNA sequences of the nuclear ribosomal ITS region. Rhodora, 106-117.
Liao, P. C., Lin, T. P., & Hwang, S. Y. (2010). Reexamination of the pattern of geographical disjunction of Chamaecyparis (Cupressaceae) in North America and East Asia. Botanical Studies, 51(4).
Lin, Y. C., Hsieh, H. M., Lee, J. C. I., Hsiao, C. T., Lin, D. Y., Linacre, A., & Tsai, L. C. (2014). Establishing a DNA identification system for pigs (Sus scrofa) using a multiplex STR amplification. Forensic Science International: Genetics, 9, 12-19.
Liu, Y. S., Mohr, B. A., & Basinger, J. F. (2009). Historical biogeography of the genus Chamaecyparis (Cupressaceae, Coniferales) based on its fossil record. Palaeobiodiversity and Palaeoenvironments, 89(3), 203-209.
Little, D. P., Schwarzbach, A. E., Adams, R. P., & Hsieh, C. F. (2004). The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). American Journal of Botany, 91(11), 1872-1881. https://doi.org/10.3732/ajb.91.11.1872
Liu, K., & Muse, S. V. (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9), 2128-2129.
Liu, Y. S., Mohr, B. A., & Basinger, J. F. (2009). Historical biogeography of the genus Chamaecyparis (Cupressaceae, Coniferales) based on its fossil record. Palaeobiodiversity and Palaeoenvironments, 89(3), 203-209.
Lowe, A. J., Wong, K. N., Tiong, Y. S., Iyerh, S., & Chew, F. T. (2010). A DNA method to verify the integrity of timber supply chains; confirming the legal sourcing of merbau timber from logging concession to sawmill. Silvae Genetica, 59(1-6), 263-268. https://doi.org/10.1515/sg-2010-0037
Luo, L., Gao, H., Yao, L., Liu, H., Zhang, H., Wu, J., He, G., & Chen, P. (2020). Updated population genetic data of 15 autosomal STR loci in a Shandong Han population from East China and genetic relationships among 26 Chinese populations. Annals of Human Biology, 47(5), 472-477.
Mallona, I., Weiss, J., & Egea-Cortines, M. (2011). pcrEfficiency: a Web tool for PCR amplification efficiency prediction. BMC Bioinformatics, 12(1), 1-7.
Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. Ju., & Chen, Z. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057), 376-380.
Martin, J., Bruno, V. M., Fang, Z., Meng, X., Blow, M., Zhang, T., Sherlock, G., Snyder, M., Wang, Z. (2010). Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics, 11(1), 1-8.
Masel, J. (2012). Rethinking Hardy-Weinberg and genetic drift in undergraduate biology. BioEssays, 34(8), 701-710.
Matsumoto, A., Tani, N., LI, X. G., Nakao, Y., Tomaru, N., & Tsumura, Y. (2006). Development and polymorphisms of microsatellite markers for hinoki (Chamaecyparis obtusa). Molecular Ecology Notes, 6(2), 310-312. https://doi.org/10.1111/j.1471-8286.2006.01212.x
McCarthy, A. (2010). Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chemistry and Biology, 17(7), 675-676.
McClure, P. J., Chavarria, G. D., & Espinoza, E. (2015). Metabolic chemotypes of CITES protected Dalbergia timbers from Africa, Madagascar, and Asia. Rapid Communications in Mass Spectrometry, 29(9), 783-788. https://doi.org/10.1002/rcm.7163
Megl?cz, E., Costedoat, C., Dubut, V., Gilles, A., Malausa, T., Pech, N., & Martin, J. F. (2010). QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics, 26(3), 403-404.
Megl?cz, E., Pech, N., Gilles, A., Dubut, V., Hingamp, P., Trilles, A., Grenier, R., & Martin, J. F. (2014). QDD version 3.1: A user?friendly computer program for microsatellite selection and primer design revisited: Experimental validation of variables determining genotyping success rate. Molecular Ecology Resources, 14(6), 1302-1313.
Melnyk, C. W., & Meyerowitz, E. M. (2015). Plant grafting. Current Biology, 25(5), R183-R188.
Mertes, F., ElSharawy, A., Sauer, S., van Helvoort, J. M., Van Der Zaag, P., Franke, A., Nilsson, M., Lehrach, H., Brookes, A. J. (2011). Targeted enrichment of genomic DNA regions for next-generation sequencing. Briefings in Functional Genomics, 10(6), 374-386.
Motahari, A. S., Bresler, G., & David, N. (2013). Information theory of DNA shotgun sequencing. IEEE Transactions on Information Theory, 59(10), 6273-6289.
Nakao, Y., Iwata, H., Matsumoto, A., Tsumura, Y., & Tomaru, N. (2001). Highly polymorphic microsatellite markers in Chamaecyparis obtusa. Canadian Journal of Forest Research, 31(12), 2248-2251. https://doi.org/10.1139/cjfr-31-12-2248
Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321-3323.
Ng, C. H., Ng, K. K. S., Lee, S. L., Tnah, L. H., Lee, C. T., & Zakaria, N. F. (2020). A geographical traceability system for Merbau (Intsia palembanica Miq.), an important timber species from peninsular Malaysia. Forensic Science International: Genetics, 44, 102188.
Ng, C. H., Ng, K. K. S., Lee, S. L., Zakaria, N. F., Lee, C. T., & Tnah, L. H. (2022). DNA databases of an important tropical timber tree species Shorea leprosula (Dipterocarpaceae) for forensic timber identification. Scientific Reports, 12(1), 1-11.
Ng, K. K. S., Lee, S. L., Tnah, L. H., Nurul-Farhanah, Z., Ng, C. H., Lee, C. T., Tani, N., Diway, B., Lai, P. S., & Khoo, E. (2016). Forensic timber identification: a case study of a CITES listed species, Gonystylus bancanus (Thymelaeaceae). Forensic Science International: Genetics, 23, 197-209.
O'Connell, L., & Ritland, K. (2004). Somatic mutations at microsatellite loci in western redcedar (Thuja plicata: Cupressaceae). Journal of heredity, 95(2), 172-176.
Ohri, D., & Khoshoo, T. N. (1986). Genome size in gymnosperms. Plant Systematics and Evolution, 153(1-2), 119-132.
Paetkau, D., Slade, R., Burden, M., & Estoup, A. (2004). Genetic assignment methods for the direct, real?time estimation of migration rate: a simulation?based exploration of accuracy and power. Molecular Ecology, 13(1), 55-65.
Pan, Y. B. (2006). Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech, 8(4), 246-256.
Panneerchelvam, S., & Norazmi, M. (2003). Forensic DNA profiling and database. The Malaysian journal of medical sciences: The Malaysian Journal of Medical Sciences, 10(2), 20.
Parchman, T. L., Geist, K. S., Grahnen, J. A., Benkman, C. W., & Buerkle, C. A. (2010). Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics, 11(1), 1-16.
Pashley, C. H., Ellis, J. R., McCauley, D. E., & Burke, J. M. (2006). EST databases as a source for molecular markers: lessons from Helianthus. Journal of Heredity, 97(4), 381-388.
Peakall, R., Gilmore, S., Keys, W., Morgante, M., & Rafalski, A. (1998). Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Molecular Biology and Evolution, 15(10), 1275-1287.
Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537-2539.
Piry, S., Alapetite, A., Cornuet, J. M., Paetkau, D., Baudouin, L., & Estoup, A. (2004). GENECLASS2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity, 95(6), 536-539.
Qian, H. (2002). A comparison of the taxonomic richness of temperate plants in East Asia and North America. American Journal of Botany, 89(11), 1818-1825.
Qian, H., & Ricklefs, R. E. (2000). Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 407(6801), 180-182.
Qiu, L. W., Huang, Q. X., Wu, C. C., & Hsieh, H. T. (2015). The Summary of The Fourth Forest Resources Inventory in Taiwan. Taipei
Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., Bertoni, A., Swerdlow, H. P., & Gu, Y. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 13(1), 1-13.
Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249.
Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., Mungall, K., Lee, S., Okada, H. M., & Qian, J. Q. (2010). De novo assembly and analysis of RNA-seq data. Nature Methods, 7(11), 909-912.
Rummel, S., Hoelzl, S., Horn, P., Rossmann, A., & Schlicht, C. (2010). The combination of stable isotope abundance ratios of H, C, N and S with 87Sr/86Sr for geographical origin assignment of orange juices. Food Chemistry, 118(4), 890-900. https://doi.org/10.1016/j.foodchem.2008.05.115
Scaglione, D., Acquadro, A., Portis, E., Taylor, C. A., Lanteri, S., & Knapp, S. J. (2009). Ontology and diversity of transcript-associated microsatellites mined from a globe artichoke EST database. BMC Genomics, 10(1), 1-17.
Schury, N., Schleenbecker, U., & Hellmann, A. (2014). Forensic animal DNA typing: Allele nomenclature and standardization of 14 feline STR markers. Forensic Science International: Genetics, 12, 42-59.
Seeb, J., Carvalho, G., Hauser, L., Naish, K., Roberts, S., & Seeb, L. (2011). Single?nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. In (Vol. 11, pp. 1-8): Wiley Online Library.
Selkoe, K. A., & Toonen, R. J. (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters, 9(5), 615-629.
Sharma, R., Kumar, B., Arora, R., Ahlawat, S., Mishra, A., & Tantia, M. (2016). Genetic diversity estimates point to immediate efforts for conserving the endangered Tibetan sheep of India. Meta Gene, 8, 14-20.
Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature biotechnology, 26(10), 1135-1145.
Shih, F. L., Hwang, S. Y., Cheng, Y. P., Lee, P. F., & Lin, T. P. (2007). Uniform genetic diversity, low differentiation, and neutral evolution characterize contemporary refuge populations of Taiwan fir (Abies kawakamii, Pinaceae). American Journal of Botany, 94(2), 194-202.
Speer, J. H. (2010). Fundamentals of tree-ring research. University of Arizona Press.
Squirrell, J., Hollingsworth, P., Woodhead, M., Russell, J., Lowe, A., Gibby, M., & Powell, W. (2003). How much effort is required to isolate nuclear microsatellites from plants? Molecular Ecology, 12(6), 1339-1348.
Surget-Groba, Y., & Montoya-Burgos, J. I. (2010). Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Research, 20(10), 1432-1440.
Taheri, S., Abdullah, T. L., Jain, S. M., Sahebi, M., & Azizi, P. (2017). TILLING, high-resolution melting (HRM), and next-generation sequencing (NGS) techniques in plant mutation breeding. Molecular Breeding, 37(3), 1-23.
Taheri, S., Lee Abdullah, T., Yusop, M. R., Hanafi, M. M., Sahebi, M., Azizi, P., & Shamshiri, R. R. (2018). Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules, 23(2), 399.
Tarroux, E., & DesRochers, A. (2011). Effect of natural root grafting on growth response of jack pine (Pinus banksiana; Pinaceae). American Journal of Botany, 98(6), 967-974.
Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S., & McCouch, S. (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 11(8), 1441-1452.
Tereba, A., Woodward, S., Konecka, A., Borys, M., & Nowakowska, J. A. (2017). Analysis of DNA profiles of ash (Fraxinus excelsior L.) to provide evidence of illegal logging. Wood Science and Technology, 51(6), 1377-1387. https://doi.org/10.1007/s00226-017-0942-5
Thiel, T., Michalek, W., Varshney, R., & Graner, A. (2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 106(3), 411-422.
Tnah, L. H., Lee, S. L., Ng, K. K. S., Bhassu, S., & Othman, R. Y. (2012). DNA extraction from dry wood of Neobalanocarpus heimii (Dipterocarpaceae) for forensic DNA profiling and timber tracking. Wood Science and Technology, 46(5), 813-825.
Tozaki, T., Kakoi, H., Mashima, S., Hirota, K. i., Hasegawa, T., Ishida, N., Miura, N., Choi-Miura, N. H., & Tomita, M. (2001). Population study and validation of paternity testing for Thoroughbred horses by 15 microsatellite loci. Journal of Veterinary Medical Science, 63(11), 1191-1197.
Travers, K. J., Chin, C. S., Rank, D. R., Eid, J. S., & Turner, S. W. (2010). A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Research, 38(15), e159-e159.
Tsuchikawa, S., & Schwanninger, M. (2013). A review of recent near-infrared research for wood and paper (Part 2). Applied Spectroscopy Reviews, 48(7), 560-587. https://doi.org/10.1080/05704928.2011.621079
Van de Goor, L., Koskinen, M., & Van Haeringen, W. (2011). Population studies of 16 bovine STR loci for forensic purposes. International Journal of Legal Medicine, 125(1), 111-119.
Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genic microsatellite markers in plants: features and applications. Trends Biotechnol, 23(1), 48-55. https://doi.org/10.1016/j.tibtech.2004.11.005
Venter, J. C., Adams, M. D., Sutton, G. G., Kerlavage, A. R., Smith, H. O., & Hunkapiller, M. (1998). Shotgun sequencing of the human genome. In (Vol. 280, pp. 1540-1542): American Association for the Advancement of Science.
Vlam, M., de Groot, G. A., Boom, A., Copini, P., Laros, I., Veldhuijzen, K., Zakamdi, D., & Zuidema, P. A. (2018). Developing forensic tools for an African timber: Regional origin is revealed by genetic characteristics, but not by isotopic signature. Biological Conservation, 220, 262-271. https://doi.org/10.1016/j.biocon.2018.01.031
W?hrmann, T., & Weising, K. (2011). In silico mining for simple sequence repeat loci in a pineapple expressed sequence tag database and cross-species amplification of EST-SSR markers across Bromeliaceae. Theoretical and Applied Genetics, 123(4), 635-647.
Wagner, A., Creel, S., & Kalinowski, S. (2006). Estimating relatedness and relationships using microsatellite loci with null alleles. Heredity (Edinb), 97(5), 336-345.
Wall, W. (2002). Genetics and DNA Technology: Legal Aspects. Routledge-Cavendish.
Wang, Y., Chou, Y., Chang, T., & Chang, K. (2000). Using RAPD markers to study the genetic variation in straight and forking trees of Chamaecyparis formosensis. Journal of The Experimental Forest of National Taiwan University, 14(4), 179-184.
Wang, W. P., Hwang, C. Y., Lin, T. P., & Hwang, S. Y. (2003). Historical biogeography and phylogenetic relationships of the genus Chamaecyparis (Cupressaceae) inferred from chloroplast DNA polymorphism. Plant Systematics and Evolution, 241(1-2), 13-28. https://doi.org/10.1007/s00606-003-0031-0
Wei, N., Bemmels, J. B., & Dick, C. W. (2014). The effects of read length, quality and quantity on microsatellite discovery and primer development: from I llumina to P ac B io. Molecular Ecology Resources, 14(5), 953-965.
Weising, K., Nybom, H., Pfenninger, M., Wolff, K., & Kahl, G. (2005). DNA fingerprinting in plants: principles, methods, and applications. CRC press.
Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114.
Wright, S. (1969). Evolution and The Genetics of Populations: Vol. 2. The Theory of Gene Frequencies.
Wu, C. S., Sudianto, E., Hung, Y. M., Wang, B. C., Huang Jr, C., Chen, C. T., & Chaw, S. M. (2020). Genome skimming and exploration of DNA barcodes for Taiwan endemic cypresses. Scientific Reports, 10(1), 1-10.
Xu, H., Tremblay, F., & Bergeron, Y. (2013). Development and multiplexed amplification of SSR markers for Thuja occidentalis (Cupressaceae) using shotgun pyrosequencing. Applications in Plant Sciences, 1(5), 1200427.
You, F. M., Huo, N., Gu, Y. Q., Luo, M. C., Ma, Y., Hane, D., Lazo, G. R., Dvorak, J. & Anderson, O. D. (2008). BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics, 9, 253. https://doi.org/10.1186/1471-2105-9-253
Zahradn?kov?, E., Ficek, A., Brejov?, B., Vina?, T., & Mi?ieta, K. (2020). Mosaicism in old trees and its patterns. Trees, 34(2), 357-370.
Zalapa, J. E., Cuevas, H., Zhu, H., Steffan, S., Senalik, D., Zeldin, E., McCown, B., Harbut, R., Simon, P. (2012). Using next?generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. American Journal of Botany, 99(2), 193-208.
Zane, L., Bargelloni, L., & Patarnello, T. (2002). Strategies for microsatellite isolation: a review. Molecular Ecology, 11(1), 1-16.
Zhang, B., Li, Z., Li, K., Chen, P., & Chen, F. (2019). Forensic parameters and mutation analysis of 23 short tandem repeat (PowerPlex Fusion System) loci in Fujian Han Chinese population. Legal Medicine, 37, 33-36.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87822-
dc.description.abstract紅檜與臺灣扁柏合稱檜木,是臺灣特有的本土植物,皆為臺灣中高海拔800-2900公尺針闊葉混交林帶的優勢樹種。檜木的樹型高大、材質極佳,為臺灣林業相當重要的珍貴資產。因檜木的價格高昂,造成非法盜伐事件層出不窮。林務及檢警人員即使能適時逮捕罪犯,但經常礙於證明贓木與犯罪現場的被害木是否為同一植株所需科學證據之不足,從而無法有效起訴罪犯。本論文以次世代定序(next generation sequencing, NGS)技術提供之序列資訊,篩選具多型性的簡單重複序列標誌(simple sequence repeat marker, SSR marker),分別建立可用來鑑定紅檜與臺灣扁柏植株的個體鑑定系統,用來提供贓木和被害木比對的直接科學證據。
紅檜和臺灣扁柏皆同時使用DNA和RNA作為開發SSR標誌的序列來源。DNA和RNA的基因庫經Illumina平台定序後,紅檜和臺灣扁柏分別產生83,978,146及25,415,224的原始讀子。整理序列後紅檜和臺灣扁柏分別產生10,696,325和8,628,818的重疊群加單序列,分別篩選出383,918和381,543條含有SSR的序列。紅檜和臺灣扁柏分別設計了400組和500組SSR引子。紅檜以4個族群(北大武山、赫威神木、觀霧、向陽)共92個個體及臺灣扁柏以4個族群(太平山、思源啞口、大雪山、林道160)共96個個體進行標誌驗證。
紅檜一共開發了36個具有多型性的SSR標誌,對偶基因數在2至27間,觀察雜合度在0.000至0.891間,預期雜合度在0.103到0.906間,多型性信息含量在0.097至0.876間,有6個顯著連鎖群。以28個非連鎖的SSR標誌建立了紅檜的個體鑑定系統,累積相符率低至 1.652 × 10 -12,顯示即使紅檜族群數量達6,000萬株,仍然具有99.99%的信心水準,已超過紅檜的族群個體數(3206萬 ± 320萬株)。
臺灣扁柏一共開發了35個具有多型性的SSR標誌,對偶基因數在2至16間,觀察雜合度在0.000至0.802間,預期雜合度在0.041到0.872間,多型性信息含量介於0.058至0.858間,有4個顯著連鎖群。以30個非連鎖的SSR標誌建立了臺灣扁柏的個體鑑定系統,累積相符率低至 5.596 × 10 -12,顯示即使臺灣扁柏族群數量達1800萬株,仍然具有99.99%的信心水準,已超過臺灣扁柏的族群個體數(739萬 ± 73萬株)。
紅檜所開發的SSR標誌被用來進行紅檜樣品出處模擬分析,樣品回到正確出處的整體正確率為88.04%。未來在查扣贓木時,大致可以以基因型別初步判別紅檜贓木是來自臺灣島東部、西北或是西南部,可適當縮小需比對的被害木範圍。由於西部紅檜族群間有基因交流的情況,無法達到100%的正確率,因此,當贓木可能來自臺灣島西部時,仍需擴大檢視地理位置相近的族群。
而在臺灣扁柏的個體鑑定系統方面,以羅東林管處被盜伐的植株進行個體鑑定系統驗證,最終成功的將三件查扣贓木比對回被害木,這是臺灣第一件由分生技術證實贓木和被害木相符的案例,完成最初本論文所設定目標。此外,由盜伐案中也證實臺灣扁柏植株具有嵌合體現象,未來在以SSR系統進行贓木和被害木比對時,仍應謹慎與其他輔助證據合併使用。
紅檜暨臺灣扁柏個體鑑定分子標誌系統的建立,不僅可用來提供法院連結贓木和被害木的直接證據,本論文所開發的SSR標誌也是研究檜木族群遺傳及育種的重要參考資訊。
zh_TW
dc.description.abstractChamaecyparis formosensis Matsum. and Chamaecyparis obtusa Sieb. & Zucc. var. formosana (Hayata) Rehder are Taiwan endemic cypress species and the dominant tree in the middle and high altitude (800-2,900 meters) mixed coniferous and broad-leaved forest in Taiwan. The cypress trees are tall with excellent wood quality, rendering them a precious asset to Taiwan's forest industry. Due to the high-priced timber of cypress, illegal logging incidents emerge in endlessly. Even though law enforcement authorities can arrest criminals in time, the scientific evidence that proves the stolen wood and the victim trees at the crime scene of the same individual is often unavailable. Thus, the criminals usually cannot be effectively prosecuted. In this thesis, the sequence information provided by next generation sequencing (NGS) technology was used to establish polymorphic simple sequence repeat (SSR) markers. Individual identification systems that can be used to identify C. formosensis and C. obtusa var. formosana for providing direct scientific evidence of stolen wood and victim trees.
Both DNA and RNA were used as sequence sources for mining SSR markers of C. formosensis and C. obtusa var. formosana. After establishment of the DNA and RNA libraries by Illumina platform, 83,978,146 and 25,415,224 raw reads were generated from C. formosensis and C. obtusa var. formosana, respectively. After sorting the sequences, 10,696,325 and 8,628,818 contigs and singletons for C. formosensis and C. obtusa var. formosana were generated, respectively. Sequences containing SSRs were mined, yielding 383,918 and 381,543 sequences containing SSRs, respectively. Then, 400 and 500 SSR primer pairs were designed, respectively. C. formosensis was divided into 4 populations MM, HV, GW, and SY, a total of 92 individuals, whereas C. obtusa var. formosana was divided into 4 populations TP, QS, DS, and FR, a total of 96 individuals were used for marker verification.
A total of 36 polymorphic SSR markers were developed in C. formosensis. The number of alleles for each markers is 2 and 27, observed heterozygosity and expected heterozygosity are ranged from 0.000 to 0.891 and 0.103 to 0.906. The levels of polymorphism information contentrange from 0.097 to 0.879. Six significant linkages were detected. The C. formosensis individual identification system was established with 28 non-linked SSR markers, and the combined probability of identity was as low as 1.652 × 10-12, which shows that even if the number of C. formosensis populations reached 60 million, greater than the known population size of 32.06 ± 3.2 million, it still has a confidence level of 99.99%.
On the other hand, a total of 35 polymorphic SSR markers were developed in C. obtusa var. formosana. The number of alleles for each markers is 2 and 16, observed heterozygosity and expected heterozygosity are ranged from 0.000 to 0.802 and 0.041 to 0.872. The levels of polymorphism information contentrange from 0.058 to 0.858. Four significant linkages were detected. The C. obtusa var. formosana individual identification system was established with 30 non-linked SSR markers, and the combined probability of identity was as low as 5.596 × 10-12, which shows that even if the number of C. obtusa var. formosana populations reached 18 million, greater than the known population size of 7.39 ± 0.73 million, it still has a confidence level of 99.99%.
The SSR mark developed by the C. formosensis was used to monitor the origin of the C. formosensis samples, and the overall correct rate of the samples returned to the correct source was 88.04%. In the future, when woods are seized, it may be possible to preliminarily determine whether the source of the C. formosensis wood is from the east, northwest, or southwest of Taiwan Island based on genotypes, which properly narrows the scope of the victim trees that need to be compared. However, due to the genetic exchange between the western C. formosensis groups, it is impossible to achieve a 100% accuracy rate. When the source of the wood may come from the western part of Taiwan Island, it is still necessary to expand the inspection of populations with similar geographical locations.
The C. obtusa var. formosana individual identification was verified with the seized woods samples from Forestry Bureau Council of Agriculture of Executive Yuan, Taiwan, and successfully compared the three pieces of seized stolen wood back to the victim trees. This is the first case in Taiwan in which the molecular biology evidence was provided to prove that the stolen woods match with the victim trees scientifically, fulfilling the original goal set in this thesis. In addition, this case also confirmed chimeras in C. obtusa var. formosana. In the future, when using the SSR system to compare stolen wood and victim tree, it should still be used with caution in combination with other auxiliary evidence.
The molecular marker system establishment of C. formosensis and C. obtusa var. formosana for individual identification not only provided direct evidence for the court to connect the relationship between the stolen wood and the victim trees but also provide essential reference information for studying genetics and breeding on cypress.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:41:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-19T16:41:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 文獻探討 1
1.2.1臺灣的檜木 1
1.2.2木材追蹤系統 7
1.2.3 SSR個體鑑定系統開發 13
第二章 材料與方法 30
2.1 紅檜和臺灣扁柏個體鑑定系統開發 30
2.1.1植物材料 30
2.1.2選擇合適的模板和基因庫製備 30
2.1.3選擇合適的定序平台進行次世代定序 34
2.1.4數據處理、搜尋含SSR序列及引子設計 35
2.1.5標誌驗證、分析及個體鑑定系統建立 35
2.2 紅檜個體鑑定系統應用 39
2.3 臺灣扁柏個體鑑定系統應用 39
第三章 結果與討論 43
3.1 紅檜和臺灣扁柏個體鑑定系統開發 43
3.2 紅檜個體鑑定系統應用 68
3.3 臺灣扁柏個體鑑定系統應用 73
3.3.1查獲贓木與被害木比對 73
3.3.2由SSR標誌分析臺灣扁柏植株的組成 79
第四章 結論 83
參考文獻 84
附件 95
-
dc.language.isozh_TW-
dc.title紅檜暨臺灣扁柏個體鑑定分子標誌系統之建置zh_TW
dc.titleEstablishment of molecular marker systems for individual identification of Chamaecyparis formosensis Matsum. and Chamaecyparis obtusa Sieb. & Zucc. var. formosana (Hayata) Rehderen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee鄭舒婷;鹿兒陽;鍾振德;吳家禎zh_TW
dc.contributor.oralexamcommitteeSu-Ting Cheng;Erh-Yang Lu;Jeng-Der Chung;Chia-Chen Wuen
dc.subject.keyword紅檜,臺灣扁柏,次世代定序,個體鑑定,簡單重複序列標誌,累積相符率,zh_TW
dc.subject.keywordChamaecyparis formosensis,C. obtusa var. formosana,next-generation sequencing (NGS),individual identification,simple sequence repeat (SSR) marker,combined probability of identity (CPI),en
dc.relation.page99-
dc.identifier.doi10.6342/NTU202300265-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-16-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2028-02-05-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
6.96 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved