請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87821
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 駱遠 | zh_TW |
dc.contributor.advisor | Yuan Luo | en |
dc.contributor.author | 陳映如 | zh_TW |
dc.contributor.author | Ying-Ju Chen | en |
dc.date.accessioned | 2023-07-19T16:41:12Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-07-19 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-02-19 | - |
dc.identifier.citation | [1] H.H. Barrett, and K.J. Myers, Foundations of image science: John Wiley & Sons, 2013.
[2] Types of Microscopes with their applications. https://microbiologynote.com/types-of-microscopes-with-their-applications/ [3] Guilbault, G. George, ed. “Practical fluorescence,” CRC Press, 2020. [4] S. Aumann, S. Donner, J. Fischer, and F. Müller, “Optical coherence tomography (OCT): principle and technical realization,” High Resolution Imaging in Microscopy and Ophthalmology, pp. 59-85, 2019. [5] Y. Han, Z. Zhang, W. Liu, Y. Yao, Y. Xu, X. Liu, C. Kuang, and X. Hao, “A Labeling Strategy for Living Specimens in Long-Term/Super-Resolution Fluorescence Imaging,” Frontiers in Chemistry, vol. 9, 2021. [6] F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica, vol. 9, no. 7, pp. 686-698, 1942. [7] C.R. Burch, and J.P.P. Stock, “Phase-contrast microscopy,” Journal of Scientific Instruments, vol. 19, no. 5, pp. 71, 1942. [8] L. Walter, “Nomarski differential interference-contrast microscopy,” Oberkochen: Carl Zeiss, 1982. [9] Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nature Photon, vol. 12, pp. 578–589, 2018. [10] P. Gao, B. Yao, I. Harder, N. Lindlein, and F.J. Torcal-Milla, "Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement," Optics Letters, vol. 36, pp. 4305-4307, 2011. [11] C.J.R. Sheppard, “Three-dimensional phase imaging with the intensity transport equation,” Applied Optics, vol. 41 , pp. 5951-5955,2002. [12] J.P. Guigay, M. Langer, R. Boistel, and P. Cloetens, "Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region," Optics Letters, vol. 32, pp. 1617-1619, 2007. [13] M.K. Kim, "Digital holographic microscopy," Digital Holographic Microscopy. Springer, New York, pp. 149-190, 2017. [14] Y. Sung, C.J.R. Sheppard, ” Three-dimensional imaging by partially coherent light under nonparaxial condition," Journal of the Optical Society of America A, vol. 28, pp. 554-559, 2011. [15] H. Lu, J. Chung, X. Ou, and C. Yang, “Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast,” Optics Express, vol. 24, no. 22, pp. 25345-25361, 2016. [16] S.B. Mehta, and C.J.R. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Optics Letters, vol. 34, no. 13, pp. 1924, 2009. [17] L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Optics Express, vol. 23, pp. 11394–403, 2015. [18] Z.F. Phillips, M. Chen, and L. Waller, “Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC),” PLoS One, vol. 12, no. 2, e0171228, 2017. [19] Y. Fan, J. Sun, Q. Chen, X. Pan, M. Trusiak, and C. Zuo, “Single-shot isotropic quantitative phase microscopy based on color-multiplexed differential phase contrast,” APL Photonics, vol. 4, no. 12, 121301, 2019. [20] Y.H. Lin, A.C. Li, S. Vyas, Y.Y. Huang, J.A. Yeh, and Y. Luo, “Isotropic quantitative differential phase contrast microscopy using radially asymmetric color-encoded pupil,” Journal of Physics: Photonics, vol. 3, no. 3, 035001, 2021. [21] M.R. Kellman, E. Bostan, N. Repina, and L. Waller, ”Physics-Based Learned Design: Optimized Coded-Illumination for Quantitative Phase Imaging,” IEEE Transactions on Computational Imaging, vol. 5, p.344-353, 2015. [22] J. Mertz, “Introduction to optical microscopy,” Cambridge University Press, 2019. [23] M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM SIGGRAPH 2006 Papers, pp. 924-934, 2006. [24] D. Gabor, ”A New Microscope Principle,” Nature, vol. 161, pp. 777-778, 1948. [25] M. Lippmann, “Integral photograph,” Journal of Physics, vol. 7, pp. 821, 1908. [26] A. Gershun, “The light field,” Journal of Mathematics and Physics, vol. 18, no. 1-4, pp. 51-151, 1939. [27] S. Zhu, A. Lai, K. Eaton, P. Jin, and L. Gao, “On the fundamental comparison between unfocused and focused light field cameras,” Applied Optics, vol. 57, no. 1, A1-A11, 2018. [28] T.E. Bishop, P. Favaro, “Full-resolution depth map estimation from an aliased plenoptic light field,” in Asian Conference on Computer Vision, pp. 186–200, 2011. [29] M.S.K. Gul and B.K. Gunturk, "Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks," in IEEE Transactions on Image Processing, vol. 27, no. 5, pp. 2146-2159, 2018. [30] M. Martínez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems,” Advances in Optics and Photonics, vol. 10, no. 3, pp. 512-566, 2018. [31] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural networks: analysis, applications, and prospects,” IEEE Transactions on Neural Networks and Learning Systems, 2021. [32] K. Fukushima, S. Miyake, “Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition,” Competition and Cooperation in Neural Nets, pp. 267-285, 1982. [33] B.B. Le Cun, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, “Handwritten digit recognition with a back-propagation network,” Proceedings of the Advances in Neural Information Processing Systems (NIPS), pp. 396-404,1989. [34] K. O'Shea and R. Nash, “An introduction to convolutional neural networks,” arXiv preprint, arXiv:1511.08458, 2017. [35] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, et.al., “Recent advances in convolutional neural networks,” Pattern Recognition, vol. 77, pp. 354-377, 2018. [36] G. Ongie, A. Jalal, C.A. Metzler, R.G. Baraniuk, A.G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in imaging,” IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 1, pp. 39-56, 2020. [37] A. Sinha, J. Lee, S. Li et al., “Lensless computational imaging through deep learning,” Optica, vol. 4, no. 9, pp. 1117-1125, 2017. [38] T. Vu, A. DiSpirito III, D. Li et al., “Deep image prior for undersampling high-speed photoacoustic microscopy,” Photoacoustics, vol. 22, pp. 100266, 2021. [39] F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis and G. Situ, “Phase imaging with an untrained neural network,” Light: Science & Applications, vol. 9, no. 1, pp. 1-7, 2020. [40] Y. Yoon, H.-G. Jeon, D. Yoo, J.-Y. Lee, and I. S. Kweon, “Learning a deep convolutional network for light-field image super-resolution,” in Proceedings of the IEEE Conference on Computer Vision Workshops, pp. 24–32, 2015. [41] A.C. Li, S Vyas, Y.H. Lin, Y.Y. Huang, H.M. Huang, and Y. Luo, ”Patch-based U-net Model for Isotropic Quantitative Differential Phase Contrast Imaging,” IEEE Transactions on Medical Imaging, vol. 40, no. 11, p.3229-3237, 2021. [42] X. Li, H. Qi, S. Jiang, P. Song, and G. Zeng, “Quantitative phase imaging via a cGAN network with dual intensity images captured under centrosymmetric illumination,” Optics Letters, vol. 44, p.2879-2882, 2019. [43] Z. Wang, J. Chen, and S. C. Hoi, ”Deep learning for image super-resolution: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 10, pp. 3365-3387, 2020. [44] D. Ulyanov, A. Vedaldi, and V. Lempitsky, "Deep image prior," Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 9446-9454, 2018. [45] J.-Y. Zhu, T. Park, P. Isola et al., "Unpaired image-to-image translation using cycle-consistent adversarial networks," Proceedings of the IEEE International Conference on Computer Vision, pp. 2223-2232, 2017. [46] K. Gong, C. Catana, J. Qi, and Q. Li, “PET image reconstruction using deep image prior,” IEEE Transactions on Medical Imaging, vol. 38, no. 7, pp. 1655-1665, 2018. [47] Y. Shechtman, Y.C. Eldar, O. Cohen, H.N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 87-109, 2015. [48] M. Chen, Z.F. Phillips, and L. Waller, “Quantitative differential phase contrast (DPC) microscopy with computational aberration correction,” Optics Express, vol. 26, no. 25, pp. 32888-32899, 2018. [49] Y. Wang, W. Huang, Q. He, Z. Zhu, J. Zhang, Q. Yuan, K. Zhang, and P. Zhu, “Adaptive weighted total variation regularized phase retrieval in differential phase-contrast imaging,” Optical Engineering, vol.57, no. 5, 2018. [50] S. Zhang, T. Peng, Z. Ke, M. Shao, T.T. Berendschot, and J. unZhou, “High-fidelity quantitative differential phase contrast deconvolution using dark-field sparse prior.” arXiv:2206.07465, 2022. [51] Z. Cheng, Z. Xiong, C. Chen, and D. Liu, “Light field super-resolution: A benchmark,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019. [52] H. H. Chen, Y. Z. Lin, and Y. Luo, "Isotropic differential phase contrast microscopy for quantitative phase bio-imaging," Journal of Biophotonics, vol. 11, no. 8, 2018. [53] J. W. Goodman, Introduction to Fourier optics: Roberts and Company Publishers, 2005. [54] T. Latychevskaia, "Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes," Applied Optics, vol. 58, pp. 3597-3603, 2019. [55] A.A. Michelson, “Studies in Optics”, Chicago University Press, 1927. [56] Edmund Optics Inc., “Resolution and MTF Testing,” Imaging Resource Guide, section 12.1. https://www.edmundoptics.com.tw/knowledge-center/application-notes/imaging/resolution-and-mtf-testing/ [57] Y.Z. Lin, K.Y. Huang, and Y. Luo, “Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination,” Optics Letters, vol. 43, pp. 2973–6, 2018. [58] A. Verkhratsky, M. Nedergaard, “Physiology of Astroglia,” Physiological Review, vol. 98, no. 1, pp. 239-389, 2018. [59] H.K. Kimelberg, "Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy," Glia, vol. 50, no. 4, pp. 389-97, 2005. [60] E. Gouix, A. Buisson, A. Nieoullon, L. Kerkerian-Le Goff, J.S. Tauskela, N. Blondeau, and L. Had-Aissouni, "Oxygen glucose deprivation-induced astrocyte dysfunction provokes neuronal death through oxidative stress," Pharmacological Research, vol. 87, pp. 8-17, 2014. [61] E. Bostan, R. Heckel, M. Chen, M. Kellman, and L. Waller, "Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural network," Optica, vol. 7, pp. 559-562, 2020. [62] T. Chang, D. Ryu, Y. Jo, G. Choi, H.S. Min, and Y.K. Park, “Calibration-free quantitative phase imaging using data-driven aberration modeling,” Optics Express, vol. 28, no. 23, pp. 34835-34847, 2020. [63] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234-241, 2015. [64] M.T. McCann, K.H. Jin, and M. Unser, “Convolutional neural networks for inverse problems in imaging: A review,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 85-95, 2017. [65] Z.F. Phillips, and M. Chen. "Technical report: benchmark technologies quantitative phase target." [66] E.Y. Lam, "Computational photography with plenoptic camera and light field capture: tutorial," Journal of the Optical Society of America A, vol.32, pp. 2021-2032, 2015. [67] R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, ... and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nature Methods, vol. 11, no. 7, pp. 727-730, 2014. [68] https://www.ucl.ac.uk/computer-science/research/research-groups/ucl-touchlab/touchlab-research/light-field-microscopy [69] J.E. Greivenkamp, “Field Guide to Geometrical Optics”, Bellingham, WA: SPIE, 2004. [70] S. Zhou, T. Zhu, K. Shi, Y. Li, W. Zheng, and J. Yong, “Review of light field technologies,” Visual Computing for Industry, Biomedicine, and Art, vol. 4, no. 29, 2021. [71] R. Ng, “Fourier slice photography,” In ACM Siggraph 2005 Papers, pp. 735-744, 2005. [72] I. Ihrke, "An equivalent F-number for light field systems: light efficiency, signal-to-noise ratio, and depth of field." In Fourteenth International Conference on Quality Control by Artificial Vision, vol. 11172, pp. 1117203, 2019. [73] K. Mitra and A. Veeraraghavan, “Light field denoising, light field super-resolution and stereo camera based refocusing using a GMM light field patch prior,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPRW), pp. 22–28, 2012. [74] M.S.K. Gul, B.K. Gunturk, “Spatial and angular resolution enhancement of light fields using convolutional neural networks,” IEEE Transactions on Image Processing, vol. 27, no. 5, pp. 2146-2159, 2018. [75] J. L. Pech-Pacheco, G. Cristobal, J. Chamorro-Martinez and J. Fernandez-Valdivia, "Diatom autofocusing in brightfield microscopy: a comparative study," Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol.3, pp. 314-317, 2000. [76] N. Viganò, P.M. Gil, C. Herzog, O. de la Rochefoucauld, R. van Liere, K.J. Batenburg, “Advanced light-field refocusing through tomographic modeling of the photographed scene,” Optics Express, vol. 27, no. 6. p.p. 7834-7856, 2019. [77] Q. Zhou, C. Zhou, H. Hu, Y. Chen, S. Chen, and X. Li, “Towards the automation of deep image prior,” arXiv preprint arXiv:1911.07185, 2019. [78] H. Wang, T. Li, Z. Zhuang, T. Chen, H. Liang, and J. Sun, “Early stopping for deep image prior,” arXiv preprint arXiv:2112.06074, 2021. [79] Y. Jo, S.Y. Chun, and J. Choi, “Rethinking deep image prior for denoising,” In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5087-5096, 2021. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87821 | - |
dc.description.abstract | 光學顯微鏡可以通過各種鏡頭和光源的组合來觀察微觀尺度的標本。由於穎體設計和光的物理限制(如繞射極限),系统的性能和穩定性會有所不同,有時可能限制系统能應用的範圍。
基于深度學習的方法被廣泛用於解决逆問题,如相位回推或超分辨率。近期,一種特殊的深度學習演算法:深度圖像先驗被應用於生物醫學影像的計算成像,因為使用這種方法不需要基準真相及大量資料集。深度圖像先驗可以實現自我監督式學習,在此將它予兩種光學系統結合,定量未分相位差顯微鏡和光場顯微鏡,以解决目前技術面臨的問題。 幾乎無法使用傳統亮場顯微鏡觀察薄而透明的待測物,因為這些待測物的相位太小。對於這類待測物,我們使用定量相位差顯微鏡,配合弱相位轉移函數與吉諾洪夫(Tikhonov)正則化,可以自拍攝到的強度影像中計算出待測物的相位分布。雖然目前的方法能有效計算出定量相位,但對於待測物選擇的侷限性和正則化參數調整的不便,影響了該技術的實用性。因此,在論文的第一部分,我們使用深度圖像先驗重建定量相位影像,以解决上述問题。並且使用具有不同相位值的標準樣本,以驗證方法的可行性。 由於透鏡的物理特性,具有高數值孔徑的傳統光學系統的景深通常很短。而光場顯微鏡藉由在相機前插入一個為透鏡陣列来收集更多的角度信息,即使在相同的數值孔徑下也能擁有較長的景深。然而,额外的方向性信息是以空间分辨率為交換獲得的。因此,本論文的第二部分是將深度圖象先驗應用於光場顯微鏡的超级分辨率,以提高空間解析度。空間解析度的提高可以進一步改善影像重建後的品質。實驗中,首先使用解析度測試片,以評估方法的可行性,並將結果與差值方法進行比較。另外,我們使用螢光染色後的三維類器官,以展示系統於生物領域應用的可行性。 結合定量維分相位差顯微鏡和光場顯微鏡中实现的深度圖像先驗可以擴大測物的選擇範圍,免除手動參數調整,並提高空間解析度。自監督學習方法為當前問题提供另一種解决方法,有助於生物醫學成像。 | zh_TW |
dc.description.abstract | Optical microscopy plays a crucial role in many research areas. Optical microscopes enable the observation of micro-scale specimens by various combinations of lenses and light sources. Due to hardware design and physical limitations of light (such as diffraction limits), system performance and stability would be different and may limit the usefulness of the systems.
The deep learning (DL) based method is extensively used for solving inverse problems such as phase retrieval and super-resolution. Recently, one of the useful networks, deep image prior (DIP), is widely implanted in computational imaging for biomedical images since no exact ground truth or pre-training data are needed. In this thesis, DIP that enables self-supervised learning is adopted in two optical systems, quantitative differential phase contrast (QDPC) microscopy for phase retrieval and light field microscopy (LFM) for super-resolution. QDPC microscopy with weak phase transfer function (WOTF) and Tikhonov regularization can retrieve the phase distribution of samples from the captured measurements to visualize thin and transparent samples. Although the current method provides an efficient way for phase retrieval, the selection of thin samples and the tedium in regularization parameters tuning limit the usefulness. Therefore, in the first part of the thesis, we propose a DIP algorithm adapted to QDPC microscopy for phase retrieval to solve the above-mentioned issue. To verify the feasibility of the proposed method, standard phase targets with various phase values are used. Due to the physical properties of the lens, the depth of field (DoF) of conventional optical systems with a high numerical aperture (NA) is usually short. LF microscopy, on the other hand, has a larger DoF even with the same NA. By simply inserting a micro-lens array in front of the CCD, the imaging system can collect extra angular information to expand the DoF. However, additional directional information is obtained at the cost of spatial resolution. Therefore, to enhance the spatial resolution LFM, we proposed a DIP algorithm in the second part of the thesis. The resolution target is first used for evaluating the proposed method, and fluorescent organoids are used to show the ability for biological application. DIP implemented in QDPC microscopy can extend sample selection and eliminate manual parameter tuning. The implementation of the LF microscope can improve spatial resolution. The self-supervised learning method provides an alternative way of solving optical problems. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:41:12Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-07-19T16:41:12Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 ii
中文摘要 i Abstract iii Table of Content v List of Figures vii List of Tables xi List of Symbols xii Chapter1 Introduction 1 1.1 Optical Microscopy 1 1.2 Quantitative Phase Contrast Imaging 3 1.3 Light Field Microscopy 5 1.4 Deep Neural Network 6 1.5 Research Purpose and Method 9 1.6 Overview of the Thesis 10 Chapter2 Quantitative Differential Phase Contrast (QDPC) Microscopy 12 2.1 Setup of QDPC Microscope System 12 2.2 Principle of QDPC Microscopy 13 2.3 Evaluation Matrix 16 2.3.1 Lateral Resolution 16 2.3.2 Theoretical Phase 17 2.4 Simulation of QDPC imaging 17 2.5 Experimental results 19 2.5.1 Lateral Resolution Test 19 2.5.2 Results of Standard Phase Targets 20 2.5.3 Results of Biological Samples 21 2.6 Discussion of the regularization parameter 23 2.7 Summary 25 Chapter3 Self-supervised Neural Network for Phase Retrieval in QDPC Microscopy 26 3.1 Deep Image Prior (DIP) 26 3.1.1 Phase Retrieval Algorithm 28 3.2 Results of Standard Targets 31 3.3 Summary 38 Chapter4 Light Field Microscopy (LFM) 39 4.1 Setup of LFM 39 4.2 Fundamental of LFM System 40 4.2.1 Principle of the Light Field 40 4.2.2 The Role of MLA 43 4.2.3 Light Field Refocusing 45 4.2.4 Properties of the System 49 4.3 System Verification 52 4.4 Experimental Results of Standard Targets 54 4.5 Discussion of the Resolution 57 4.6 Summary 58 Chapter5 DL-based LFM 59 5.1 Deep Image Prior for Under-sampled LFM 59 5.1.1 Super-resolution Algorithm 60 5.2 Model Evaluation Metric 62 5.3 Results of Standard Targets 63 5.4 Summary 67 Chapter6 Discussion and Conclusion 68 6.1 Discussion on DIP Microscope 68 6.1.1 Non-zero Phase in the Background Region 69 6.1.2 Blurring Issue in the LFM Refocusing 69 6.1.3 Stopping Criterion of the Algorithm 70 6.1.4 Efficiency of the Algorithm 71 6.2 Conclusion 71 Reference 73 | - |
dc.language.iso | en | - |
dc.title | 深度學習應用於光學顯微術之研究 | zh_TW |
dc.title | Deep Learning Applications for Optical Microscopy | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 黃宣銘 | zh_TW |
dc.contributor.coadvisor | Hsuan-Ming Huang | en |
dc.contributor.oralexamcommittee | 陳惠文;林育君;張瀚 | zh_TW |
dc.contributor.oralexamcommittee | Huei-wei Chen;Yu-Chun Lin;Gary Han Chang | en |
dc.subject.keyword | 定量相位成像,差分相位對比顯微術,光場顯微術,深度學習,非監督式學習,深度影像先驗, | zh_TW |
dc.subject.keyword | Quantitative Phase Imaging,Differential Phase Contrast Microscopy,Light-field Microscopy,Unsupervised Learning,Deep Image Prior, | en |
dc.relation.page | 77 | - |
dc.identifier.doi | 10.6342/NTU202300632 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-02-19 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 醫學工程學系 | - |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 5.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。