Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87773
標題: 求職詐欺預測:應用集成學習
Job Scam Detection: An Application of Ensemble Learning
作者: 劉禹岑
Yu-Tsen Liu
指導教授: 林建甫
Chien-Fu Lin
共同指導教授: 樊家忠
Elliott Fan
關鍵字: 機器學習,集成學習,詐欺預測,特徵工程,資料平衡,
Machine Learning,Ensemble Learning,Scam Detection,Feature Engineering,Data Balance,
出版年 : 2023
學位: 碩士
摘要: 求職詐欺包含透過設立假職缺蒐集個人資訊、銀行帳戶密碼或是取得金錢,本文主要探討假職缺的特徵與集成學習是否可以顯著提升預測表現,應用六種機器學習分類模型,以及職缺文字敘述、數值與虛擬變數等觀察特徵,預測樣本資料為真實或是虛假職缺。實證結果顯示,結合邏輯迴歸、K近鄰演算法、隨機森林三個子模型的集成模型表現最佳;另外,本文計算特徵重要性篩選出期望薪資平均、職缺和公司相關資訊敘述長度、職缺公告中是否含有公司商標等皆為預測求職詐欺的關鍵指標。
Job scams are fraudulent job advertisements that aim to steal personal information, banking details, or money from unsuspecting job seekers. In this article, we will be discussing the key characteristics of fake job postings and examining whether ensemble learning methods can significantly improve the performance of machine learning models in identifying job scams.
We applied six different machine learning algorithms to predict fraudulent job postings using both textual and numerical variables. Our results show that the ensemble learning model, which combined logistic regression, KNeighbors classifier, and random forest classifier, performed the best. Furthermore, we used a framework based on Gini impurity to identify the ten most important factors in the random forest classifier, including average salary, company profile length, and whether the job posting had a company logo.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87773
DOI: 10.6342/NTU202300672
全文授權: 未授權
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
1.93 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved