Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87745
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳泓熹zh_TW
dc.contributor.advisorSteven Hung-Hsi Wuen
dc.contributor.author賴以勳zh_TW
dc.contributor.authorYi-Syun Laien
dc.date.accessioned2023-07-19T16:14:58Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-04-17-
dc.identifier.citationAndermann, T., Antonelli, A., Barrett, R. L., & Silvestro, D. (2022). Estimating Alpha, Beta, and Gamma Diversity Through Deep Learning. Front Plant Sci, 13, 839407. https://doi.org/10.3389/fpls.2022.839407
Anderson, M. J. (2001). A new method for non‐parametric multivariate analysis of variance. Austral ecology, 26(1), 32-46.
Anderson, M. J. (2017). Permutational Multivariate Analysis of Variance ( PERMANOVA). In Wiley StatsRef: Statistics Reference Online (pp. 1-15). https://doi.org/10.1002/9781118445112.stat07841
Anderson, M. J., & Walsh, D. C. (2013). PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological monographs, 83(4), 557-574.
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Verges, M. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., . . . Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), 103. https://doi.org/10.1186/s40168-020-00875-0
Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., & Abebe, E. (2005). Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1935-1943.
Bloom, S. A. (1981). Similarity indices in community studies: potential pitfalls. Marine Ecology Progress Series, 5(2), 125-128.
Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological monographs, 27(4), 326-349.
Chen, E. Z., Bushman, F. D., & Li, H. (2017). A Model-Based Approach For Species Abundance Quantification Based On Shotgun Metagenomic Data. Stat Biosci, 9(1), 13-27. https://doi.org/10.1007/s12561-016-9148-x
Chiarello, M., McCauley, M., Villeger, S., & Jackson, C. R. (2022). Ranking the biases: The choice of OTUs vs. ASVs in 16S rRNA amplicon data analysis has stronger effects on diversity measures than rarefaction and OTU identity threshold. PLoS One, 17(2), e0264443. https://doi.org/10.1371/journal.pone.0264443
Clarke, K. R., Somerfield, P. J., & Chapman, M. G. (2006). On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology, 330(1), 55-80. https://doi.org/10.1016/j.jembe.2005.12.017
de Queiroz, K. (1997). The Linnaean hierarchy and the evolutionization of taxonomy, with emphasis on the problem of nomenclature. Aliso: A Journal of Systematic and Floristic Botany, 15(2), 125-144.
French, A., Macedo, M., Poulsen, J., Waterson, T., & Yu, A. (2008). Multivariate analysis of variance (MANOVA). In.
Gaston, K. J., & McArdle, B. H. (1994). The temporal variability of animal abundances: measures, methods and patterns. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 345(1314), 335-358.
Green, J. L., & Plotkin, J. B. (2007). A statistical theory for sampling species abundances. Ecol Lett, 10(11), 1037-1045. https://doi.org/10.1111/j.1461-0248.2007.01101.x
Hamilton, A. J. (2005). Species diversity or biodiversity? J Environ Manage, 75(1), 89-92. https://doi.org/10.1016/j.jenvman.2004.11.012
Heather, J. M., & Chain, B. (2016). The sequence of sequencers: The history of sequencing DNA. Genomics, 107(1), 1-8. https://doi.org/10.1016/j.ygeno.2015.11.003
Hubbell, S. P. (2011). The unified neutral theory of biodiversity and biogeography (MPB-32). In The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Princeton University Press.
Kaul, A., Mandal, S., Davidov, O., & Peddada, S. D. (2017). Analysis of Microbiome Data in the Presence of Excess Zeros. Front Microbiol, 8, 2114. https://doi.org/10.3389/fmicb.2017.02114
Liu, Y. X., Qin, Y., Chen, T., Lu, M., Qian, X., Guo, X., & Bai, Y. (2021). A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell, 12(5), 315-330. https://doi.org/10.1007/s13238-020-00724-8
Mandal, S., Van Treuren, W., White, R. A., Eggesbø, M., Knight, R., & Peddada, S. D. (2015). Analysis of composition of microbiomes: a novel method for studying microbial composition. Microbial ecology in health and disease, 26(1), 27663.
Margulis, L. (2008). Symbiotic planet: a new look at evolution. Basic books.
McArdle, B. H., & Anderson, M. J. (2001). Fitting multivariate models to community data: a comment on distance‐based redundancy analysis. Ecology, 82(1), 290-297.
Mumby, P. J., Clarke, K. R., & Harborne, A. R. (1996). Weighting species abundance estimates for marine resource assessment. Aquatic Conservation: Marine and Freshwater Ecosystems, 6(3), 115-120. https://doi.org/10.1002/(sici)1099-0755(199609)6:3<115::Aid-aqc188>3.0.Co;2-t
Nearing, J. T., Douglas, G. M., Hayes, M. G., MacDonald, J., Desai, D. K., Allward, N., Jones, C. M. A., Wright, R. J., Dhanani, A. S., Comeau, A. M., & Langille, M. G. I. (2022). Microbiome differential abundance methods produce different results across 38 datasets. Nat Commun, 13(1), 342. https://doi.org/10.1038/s41467-022-28034-z
Padial, J. M., Miralles, A., De la Riva, I., & Vences, M. (2010). The integrative future of taxonomy. Frontiers in zoology, 7(1), 1-14.
Prost, V., Gazut, S., & Bruls, T. (2021). A zero inflated log-normal model for inference of sparse microbial association networks. PLoS Comput Biol, 17(6), e1009089. https://doi.org/10.1371/journal.pcbi.1009089
Ricotta, C., & Podani, J. (2017). On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecological Complexity, 31, 201-205. https://doi.org/10.1016/j.ecocom.2017.07.003
Salafsky, N., Margoluis, R., Redford, K. H., & Robinson, J. G. (2002). Improving the practice of conservation: a conceptual framework and research agenda for conservation science. Conservation biology, 16(6), 1469-1479.
Sokal, R. R., & Sneath, P. H. A. (1963). Principles of numerical taxonomy. Principles of numerical taxonomy.
Sweet, M. J., & Bulling, M. T. (2017). On the importance of the microbiome and pathobiome in coral health and disease. Frontiers in Marine Science, 4, 9.
Terlizzi, A., Bevilacqua, S., Fraschetti, S., & Boero, F. (2003). Taxonomic sufficiency and the increasing insufficiency of taxonomic expertise. Mar Pollut Bull, 46(5), 556-561. https://doi.org/10.1016/S0025-326X(03)00066-3
Turner, T. R., James, E. K., & Poole, P. S. (2013). The plant microbiome. Genome biology, 14(6), 1-10.
van Dijk, E. L., Auger, H., Jaszczyszyn, Y., & Thermes, C. (2014). Ten years of next-generation sequencing technology. Trends Genet, 30(9), 418-426. https://doi.org/10.1016/j.tig.2014.07.001
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytol, 206(4), 1196-1206. https://doi.org/10.1111/nph.13312
Whittaker, R. H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological monographs, 30(3), 279-338.
Willis, A. D. (2019). Rarefaction, Alpha Diversity, and Statistics. Front Microbiol, 10, 2407. https://doi.org/10.3389/fmicb.2019.02407
Xia, Y., & Sun, J. (2017). Hypothesis Testing and Statistical Analysis of Microbiome. Genes Dis, 4(3), 138-148. https://doi.org/10.1016/j.gendis.2017.06.001
Xia, Y., Sun, J., & Chen, D.-G. (2018). Statistical analysis of microbiome data with R (Vol. 847). Springer.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87745-
dc.description.abstract在微生物學中,多樣性通常是研究兩個或多個不同區域的微生物群落差異。在分析微生物群落差異時,研究人員會依據不同的生物分類等級(Taxonomic rank)作為研究目標。然而,在不同的生物分類等級所得到的統計分析結果很可能不一致。研究人員往往只關注在特定分類學水平上的微生物群落,而這導致一些重要的微生物群落訊息可能被遺漏或誤判。因此,本論文提出了一種新方法,利用成對組合(Pairwise combination)的概念以及置換多元變異數分析(Permutational multivariate analysis of variance, PERMANOVA)來深入了解不同微生物群落之間的差異。本文利用對數常態分布(log-normal distribution)模擬了兩個不同地區的微生物群落並使用混淆矩陣來展現先前研究方法對模擬資料的結果。基於此結果,我利用成對組合的方法來增加檢定結果,並使用校正演算法提高模型的預測率。其中一個結果顯示,在 delta parameter 參數為1.6的情況下,TPR(True Positive Rate, TPR)從0.643提高至0.907。然而,這同時導致 TNR(True Negative Rate, TNR)從 0.96 降低到 0.703 。校正演算法提供了一個不同的角度去分析微生物群落資料,研究人員必須考慮這些匯總統計數據之間的權衡,並根據他們的研究問題選擇最佳標準。此分析結果只適用在此次模擬資料。模型的整體準確率還需要多不同的模擬方法加以驗證。zh_TW
dc.description.abstractIn microbiology, diversity is an important concept that refers to the variety of different species or ecosystems present in different region. However, analyzing the difference in microbial community at various taxonomic ranks can yield inconsistent results. Researchers may only focus on a specific taxonomic level, leading to the omission or misjudgment of important microbial community information. Therefore, this paper proposes a new method that utilizes the concept of pairwise combination and permutational multivariate analysis of variance (PERMANOVA) to gain insights into the differences between microbial communities. To demonstrate the effectiveness of this method, the log-normal distribution was used to simulate microbial communities in two different regions, and a confusion matrix was used to show the results of previous research methods on the simulated data. Based on the results, a pairwise combination method was used to increase the accuracy of the tests, and a correction algorithm was employed to improve the model's prediction rate. One of the simulation results shows that when the delta parameter is set to 1.6, the TPR (True Positive Rate) increases from 0.643 to 0.907. Nevertheless, it does come with the cost of reducing TNR (True Negative Rate) from 0.96 to 0.703. The correction algorithms provide a new perspective on analyzing microbial community data, researchers must consider the tradeoff between these summary statistics and select the optimal criteria based on their research questions. The results of this analysis are only applicable to this simulation data. The overall performance of the model needs to be verified through various simulation methods.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:14:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-19T16:14:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Chapter 1 Introduction 1
1.1 Taxonomy 1
1.2 Microbiology 2
1.3 DNA Sequencing 3
1.4 Biological Diversity 5
1.5 Microbiome Diversity 6
1.6 Microbiome Analysis 9
1.7 PERMANOVA 11
1.8 The Thesis Objectives 12
Chapter 2 Method 14
2.1 Distance Matrix 14
2.1.1 Bray–Curtis Dissimilarity 14
2.1.2 Zero-Adjusted Coefficient Bray–Curtis 15
2.1.3 Weighted Coefficient Bray–Curtis 15
2.2 One-Way PERMANOVA 17
2.2.1 Background 17
2.2.2 Statistic Method 18
2.3 The Proposed Method 19
2.4 Simulated Studies 22
2.4.1 The Process of Simulated Data 23
2.4.2 Confusion Matrix 25
2.5 Correction Algorithm 27
Chapter 3 Result 29
3.1 Once of Simulated Result 29
3.2 Standard Bray–Curtis Result 31
3.3 The Proportion Weighted Bray-Curtis Result 40
3.4 The Standardized Weighted Bray-Curtis Result 40
3.5 Result in the Correction Algorithm 48
Chapter 4 Discussion 55
4.1 The Importance of Weighted Coefficient in Bray-Curtis 55
4.2 The Trade Off with Correction Algorithm in Confusion Matrix 56
4.3 Limitation and Future Work 57
Chapter 5 Conclusion 59
Reference 61
Supplementary 64
-
dc.language.isoen-
dc.subject微生物學zh_TW
dc.subject置换多元變異數分析zh_TW
dc.subject校正演算法zh_TW
dc.subject多樣性zh_TW
dc.subject成對組合zh_TW
dc.subject生物分類等級zh_TW
dc.subjectCorrection algorithmen
dc.subjectMicrobiologyen
dc.subjectTaxonomic ranken
dc.subjectPairwise combinationen
dc.subjectPermutational multivariate analysisen
dc.subjectDiversityen
dc.title利用成對組合方法檢測兩地區之微生物群落差異zh_TW
dc.titleDetecting Differences in Microbial Communities Between Two Regions Using Pairwise Combination Methoden
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉力瑜;陳虹諺;邱春火;高崇峰zh_TW
dc.contributor.oralexamcommitteeLi-Yu Liu;Hung-Yen Chen;Chun-Huo Chiu;Chung-Feng Kaoen
dc.subject.keyword多樣性,微生物學,生物分類等級,成對組合,置换多元變異數分析,校正演算法,zh_TW
dc.subject.keywordDiversity,Microbiology,Taxonomic rank,Pairwise combination,Permutational multivariate analysis,Correction algorithm,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202300722-
dc.rights.note未授權-
dc.date.accepted2023-04-18-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
2.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved