請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87737完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊東霖 | zh_TW |
| dc.contributor.advisor | Tony Yang | en |
| dc.contributor.author | 王建邦 | zh_TW |
| dc.contributor.author | Chien-Pang Wang | en |
| dc.date.accessioned | 2023-07-19T16:12:18Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-19 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-05-30 | - |
| dc.identifier.citation | Van De Weghe, J.C., A. Gomez, and D. Doherty, The Joubert-Meckel-Nephronophthisis Spectrum of Ciliopathies. Annu Rev Genomics Hum Genet, 2022. 23: p. 301-329.
Reiter, J.F. and M.R. Leroux, Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol, 2017. 18(9): p. 533-547. Malicki, J.J. and C.A. Johnson, The Cilium: Cellular Antenna and Central Processing Unit. Trends Cell Biol, 2017. 27(2): p. 126-140. Goetz, S.C. and K.V. Anderson, The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet, 2010. 11(5): p. 331-44. Avasthi, P., R.L. Maser, and P.V. Tran, Primary Cilia in Cystic Kidney Disease. Results Probl Cell Differ, 2017. 60: p. 281-321. Reiter, J.F., O.E. Blacque, and M.R. Leroux, The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep, 2012. 13(7): p. 608-18. Kobayashi, T. and B.D. Dynlacht, Regulating the transition from centriole to basal body. J Cell Biol, 2011. 193(3): p. 435-44. Zhao, H., Z. Khan, and C.J. Westlake, Ciliogenesis membrane dynamics and organization. Semin Cell Dev Biol, 2023. 133: p. 20-31. Garcia-Gonzalo, F.R. and J.F. Reiter, Open Sesame: How Transition Fibers and the Transition Zone Control Ciliary Composition. Cold Spring Harb Perspect Biol, 2017. 9(2). Liang, Y., et al., Mechanism of ciliary disassembly. Cell Mol Life Sci, 2016. 73(9): p. 1787-802. Kumar, D. and J. Reiter, How the centriole builds its cilium: of mothers, daughters, and the acquisition of appendages. Curr Opin Struct Biol, 2021. 66: p. 41-48. Chong, W.M., et al., Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages. Elife, 2020. 9. Spalluto, C., D.I. Wilson, and T. Hearn, Evidence for reciliation of RPE1 cells in late G1 phase, and ciliary localisation of cyclin B1. FEBS Open Bio, 2013. 3: p. 334-40. Plotnikova, O.V., E.N. Pugacheva, and E.A. Golemis, Primary cilia and the cell cycle. Methods Cell Biol, 2009. 94: p. 137-60. Kumar, D., et al., A ciliopathy complex builds distal appendages to initiate ciliogenesis. J Cell Biol, 2021. 220(9). Shakya, S. and C.J. Westlake, Recent advances in understanding assembly of the primary cilium membrane. Fac Rev, 2021. 10: p. 16. Molla-Herman, A., et al., The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci, 2010. 123(Pt 10): p. 1785-95. Wang, L. and B.D. Dynlacht, The regulation of cilium assembly and disassembly in development and disease. Development, 2018. 145(18). Yee, L.E. and J.F. Reiter, Ciliary vesicle formation: a prelude to ciliogenesis. Dev Cell, 2015. 32(6): p. 665-6. Chen, H.Y., et al., Primary cilia biogenesis and associated retinal ciliopathies. Semin Cell Dev Biol, 2021. 110: p. 70-88. McConnachie, D.J., J.L. Stow, and A.J. Mallett, Ciliopathies and the Kidney: A Review. Am J Kidney Dis, 2021. 77(3): p. 410-419. Knopp, C., et al., Syndromic ciliopathies: From single gene to multi gene analysis by SNP arrays and next generation sequencing. Mol Cell Probes, 2015. 29(5): p. 299-307. Sang, L., et al., Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell, 2011. 145(4): p. 513-28. Aksu Uzunhan, T., et al., Clinical and genetic spectrum from a prototype of ciliopathy: Joubert syndrome. Clin Neurol Neurosurg, 2022. 224: p. 107560. Parisi, M. and I. Glass, Joubert Syndrome, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993, University of Washington, Seattle. Copyright 1993-2023, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.: Seattle (WA). Hildebrandt, F. and W. Zhou, Nephronophthisis-associated ciliopathies. J Am Soc Nephrol, 2007. 18(6): p. 1855-71. Gana, S., V. Serpieri, and E.M. Valente, Genotype-phenotype correlates in Joubert syndrome: A review. Am J Med Genet C Semin Med Genet, 2022. 190(1): p. 72-88. Huang, L., et al., TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am J Hum Genet, 2011. 89(6): p. 713-30. Huynh, J.M., M. Galindo, and C.M. Laukaitis, Missense variants in TMEM67 in a patient with Joubert syndrome. Clin Case Rep, 2018. 6(11): p. 2189-2192. Valente, E.M., F. Brancati, and B. Dallapiccola, Genotypes and phenotypes of Joubert syndrome and related disorders. Eur J Med Genet, 2008. 51(1): p. 1-23. Salomon, R., S. Saunier, and P. Niaudet, Nephronophthisis. Pediatr Nephrol, 2009. 24(12): p. 2333-44. Weng, R.R., et al., Super-Resolution Imaging Reveals TCTN2 Depletion-Induced IFT88 Lumen Leakage and Ciliary Weakening. Biophys J, 2018. 115(2): p. 263-275. Shi, X., et al., Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat Cell Biol, 2017. 19(10): p. 1178-1188. Yang, T.T., et al., Superresolution Pattern Recognition Reveals the Architectural Map of the Ciliary Transition Zone. Sci Rep, 2015. 5: p. 14096. Lambacher, N.J., et al., TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat Cell Biol, 2016. 18(1): p. 122-31. Schouteden, C., et al., The ciliary transition zone functions in cell adhesion but is dispensable for axoneme assembly in C. elegans. J Cell Biol, 2015. 210(1): p. 35-44. Garcia, G., 3rd, D.R. Raleigh, and J.F. Reiter, How the Ciliary Membrane Is Organized Inside-Out to Communicate Outside-In. Curr Biol, 2018. 28(8): p. R421-r434. Park, K. and M.R. Leroux, Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep, 2022. 23(12): p. e55420. Wu, Z., et al., CEP290 is essential for the initiation of ciliary transition zone assembly. PLoS Biol, 2020. 18(12). Andreu-Cervera, A., M. Catala, and S. Schneider-Maunoury, Cilia, ciliopathies and hedgehog-related forebrain developmental disorders. Neurobiol Dis, 2021. 150: p. 105236. Lapart, J.A., et al., Role of DZIP1-CBY-FAM92 transition zone complex in the basal body to membrane attachment and ciliary budding. Biochem Soc Trans, 2020. 48(3): p. 1067-1075. Okazaki, M., et al., Formation of the B9-domain protein complex MKS1-B9D2-B9D1 is essential as a diffusion barrier for ciliary membrane proteins. Mol Biol Cell, 2020. 31(20): p. 2259-2268. Garcia-Gonzalo, F.R. and J.F. Reiter, Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J Cell Biol, 2012. 197(6): p. 697-709. Gonçalves, J. and L. Pelletier, The Ciliary Transition Zone: Finding the Pieces and Assembling the Gate. Mol Cells, 2017. 40(4): p. 243-253. Conkar, D., et al., The centriolar satellite protein CCDC66 interacts with CEP290 and functions in cilium formation and trafficking. J Cell Sci, 2017. 130(8): p. 1450-1462. Dean, S., et al., Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes. Proc Natl Acad Sci U S A, 2016. 113(35): p. E5135-43. Pratt, M.B., et al., Drosophila sensory cilia lacking MKS proteins exhibit striking defects in development but only subtle defects in adults. J Cell Sci, 2016. 129(20): p. 3732-3743. Wang, W.J., et al., CEP162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base. Nat Cell Biol, 2013. 15(6): p. 591-601. Fürstenberg, A. and M. Heilemann, Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. Phys Chem Chem Phys, 2013. 15(36): p. 14919-30. Gogendeau, D., et al., MKS-NPHP module proteins control ciliary shedding at the transition zone. PLoS Biol, 2020. 18(3): p. e3000640. He, R., et al., Structure of the N-terminal coiled-coil domains of the ciliary protein Rpgrip1l. iScience, 2023. 26(3): p. 106249. Liu, D., et al., Structure of the human Meckel-Gruber protein Meckelin. Sci Adv, 2021. 7(45): p. eabj9748. Li, C., et al., MKS5 and CEP290 Dependent Assembly Pathway of the Ciliary Transition Zone. PLoS Biol, 2016. 14(3): p. e1002416. Lelek, M., et al., Single-molecule localization microscopy. Nat Rev Methods Primers, 2021. 1. Nathwani, B.B., T.T. Yang, and J.-C. Liao, Towards a Subdiffraction View of Motor-Mediated Transport in Primary Cilia. Cellular and Molecular Bioengineering, 2013. 6(1): p. 82-97. van de Linde, S., et al., Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem Photobiol Sci, 2011. 10(4): p. 499-506. Wassie, A.T., Y. Zhao, and E.S. Boyden, Expansion microscopy: principles and uses in biological research. Nat Methods, 2019. 16(1): p. 33-41. Gambarotto, D., et al., Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods, 2019. 16(1): p. 71-74. Chang, T.B., J.C. Hsu, and T.T. Yang, Single-molecule localization microscopy reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles. Nat Commun, 2023. 14(1): p. 1688. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87737 | - |
| dc.description.abstract | 過渡區(TZ)位於初級纖毛基部(basal body)的特化區域,為控制和纖毛生成相關蛋白進出胞器的擴散屏障。到目前為止,在TZ中招募的許多蛋白質在空間排列上仍然不明確。單分子定位顯微技術(SMLM)之發展使生物學家能夠在奈米尺度下研究大分子結構。通過有效減少點擴散函數間的重疊使得定位精確度提升,單分子定位顯微技術突破光學顯微鏡的繞射極限並實現十至二十奈米的解析度。近年問世的擴展顯微技術使得超解析顯微的解析度獲得更進一步的提升。
本研究使用結合dSTORM(direct stochastic optical reconstruction microscopy)及U-ExM(ultra-expansion microscopy)的Ex-dSTORM同時在光學上及樣本上提升解析度,來建立哺乳類過渡區五種蛋白在軸向及徑向上的分布。我們發現CEP290在Ex-STORM的解析度下顯示了兩層在以前它被認為是厚的單層結構,而這可能與纖毛的生長狀態高度相關。基底層皆存在於纖毛生長之前的母中心粒和子中心粒上,遠端層伴隨著纖毛生長出現和其他TZ蛋白募集。在這裡,我們使用位於DAP的CEP164作為空間上的參考基準,描述了五個TZ蛋白的縱向和橫向分佈的覆蓋範圍。 | zh_TW |
| dc.description.abstract | As a specialized region located at the root of the cilium, transition zone serves as a diffusion barrier that regulates proteins associated with ciliopathy entry and exit from the organelle. So far, there are numerous proteins recruited in TZ remain ambiguous in the spatial arrangement. The development of single-molecule localization microscopy (SMLM) has enabled biologists to investigate substructures at the nanoscale. By effectively reducing the overlap between point spread functions to improve positioning accuracy, single-molecule localization microscopy surpasses the diffraction limit of conventional optical microscopy, enabling a resolution of ten to twenty nanometers. The expansion microscopy that came out in recent years has further improved the resolution of super-resolution microscopy.
In this research, Ex-STORM, which is combined with dSTORM (direct stochastic optical reconstruction microscopy) and U-ExM (ultra-expansion microscopy), was utilized to improve the resolution optically and on the sample simultaneously. We found that CEP290 shows two layers under the resolution of Ex-STORM while it is thought to be one thick layer before. It could be highly related to the growing state of cilium. The basal layer exists on both mother and daughter centrioles before ciliogenesis, and the distal layer appears with the cilium growth and TZ proteins recruitment. Here, we depicted the coverage of five TZ proteins with CEP164, which belongs to the DAPs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:12:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-19T16:12:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 i 致謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Cilium 1 1.2 Ciliogenesis 3 1.3 Ciliopathy 8 1.4 Transition Zone (TZ) 13 1.5 Diffraction limit and resolution 24 1.6 Single-Molecular Localization Microscopy (SMLM) 26 1.7 Expansion Microscopy (ExM) 29 Chapter 2 Materials and Methods 32 2.1 Reagent 32 2.2 Antibodies 32 2.3 Workflow 33 2.4 Cell culture 34 2.5 Sample preparation 34 2.6 Ultra-Expansion Microscopy (U-ExM) 35 Chapter 3 Results 41 3.1 Results of U-ExM 41 3.2 Results of Ex-dSTORM 46 3.3 Difficulties on imaging TZ proteins at top view 50 3.4 Probability distribution images based on the side views of TZ proteins 51 3.5 Quantification analysis 53 3.6 Axial analysis 55 3.7 Lateral analysis and the two-dimensional probability distribution model 57 Chapter 4 Discussion 61 REFERENCE 64 | - |
| dc.language.iso | en | - |
| dc.subject | 超解析技術 | zh_TW |
| dc.subject | 纖毛疾病 | zh_TW |
| dc.subject | 初級纖毛過渡區 | zh_TW |
| dc.subject | 擴展顯微技術 | zh_TW |
| dc.subject | 單分子定位 | zh_TW |
| dc.subject | direct stochastic reconstruction microscopy (dSTORM) | en |
| dc.subject | primary cilium | en |
| dc.subject | ciliary transition zone | en |
| dc.subject | ultra-expansion microscopy (U-ExM) | en |
| dc.subject | single-molecular localization microscopy (SMLM) | en |
| dc.subject | super-resolution | en |
| dc.subject | ciliopathy | en |
| dc.title | 單分子定位顯微鏡揭示哺乳動物過渡區蛋白在分子解析度下的空間排列 | zh_TW |
| dc.title | Single-molecule localization microscopy reveals the spatial arrangement of the mammalian transition zone proteins at molecular resolution | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃念祖;王婉菁 | zh_TW |
| dc.contributor.oralexamcommittee | Nien-Tsu Huang;Won-Jing Wang | en |
| dc.subject.keyword | 超解析技術,單分子定位,擴展顯微技術,初級纖毛過渡區,纖毛疾病, | zh_TW |
| dc.subject.keyword | super-resolution,single-molecular localization microscopy (SMLM),direct stochastic reconstruction microscopy (dSTORM),ultra-expansion microscopy (U-ExM),primary cilium,ciliary transition zone,ciliopathy, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202300903 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-05-31 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
