Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87728
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫啟光zh_TW
dc.contributor.advisorChi-Kuang Sunen
dc.contributor.author王鵬瑞zh_TW
dc.contributor.authorPeng-Jui Wangen
dc.date.accessioned2023-07-19T16:09:09Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-04-22-
dc.identifier.citation[1] I. Tamm, Über die Quantentheorie der molekularen Lichtzerstreuung in festen Körpern, Zeitschrift für Physik 60(5) (1930) 345-363.
[2] T.H. Maiman, Stimulated Optical Radiation in Ruby, Nature 187(4736) (1960) 493-494.
[3] P.F. Moulton, Spectroscopic and laser characteristics of Ti:Al2O3, J. Opt. Soc. Am. B 3(1) (1986) 125-133.
[4] C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Surface generation and detection of phonons by picosecond light pulses, Phys Rev B Condens Matter 34(6) (1986) 4129-4138.
[5] P.-J. Wang, C.-C. Shen, K.-Y. Chou, M.-H. Ho, J.-K. Sheu, C.-K. Sun, Studying time-dependent contribution of hot-electron versus lattice-induced thermal-expansion response in ultra-thin Au-nanofilms, Applied Physics Letters 117(15) (2020).
[6] K.-Y. Chou, C.-L. Wu, C.-C. Shen, J.-K. Sheu, C.-K. Sun, Terahertz Photoacoustic Generation Using Ultrathin Nickel Nanofilms, The Journal of Physical Chemistry C 125(5) (2021) 3134-3142.
[7] H.J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus, M.S. Dresselhaus, Theory for displacive excitation of coherent phonons, Phys Rev B Condens Matter 45(2) (1992) 768-778.
[8] C.-K. Sun, Y.-K. Huang, J.-C. Liang, A. Abare, S.P. DenBaars, Coherent optical control of acoustic phonon oscillations in InGaN/GaN multiple quantum wells, Applied Physics Letters 78(9) (2001) 1201-1203.
[9] I.J. Chen, P.A. Mante, C.K. Chang, S.C. Yang, H.Y. Chen, Y.R. Huang, L.C. Chen, K.H. Chen, V. Gusev, C.K. Sun, Graphene-to-substrate energy transfer through out-of-plane longitudinal acoustic phonons, Nano Lett 14(3) (2014) 1317-23.
[10] T.Y. Jeong, B.M. Jin, S.H. Rhim, L. Debbichi, J. Park, Y.D. Jang, H.R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, K.J. Yee, Coherent Lattice Vibrations in Mono- and Few-Layer WSe2, ACS Nano 10(5) (2016) 5560-5566.
[11] C.-L. Wu, V. Gusev, L.-H. Peng, J.-K. Sheu, C.-K. Sun, Ultra-short photoacoustic pulse generation through hot electron pressure in two-dimensional electron gas, Opt. Express 28(23) (2020) 34045-34053.
[12] O. Matsuda, M.C. Larciprete, R. Li Voti, O.B. Wright, Fundamentals of picosecond laser ultrasonics, Ultrasonics 56 (2015) 3-20.
[13] J. Pupeikis, B. Willenberg, F. Bruno, M. Hettich, A. Nussbaum-Lapping, M. Golling, C.P. Bauer, S.L. Camenzind, A. Benayad, P. Camy, B. Audoin, C.R. Phillips, U. Keller, Picosecond ultrasonics with a free-running dual-comb laser, Opt Express 29(22) (2021) 35735-35754.
[14] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, science 306(5696) (2004) 666-669.
[15] M.J. Molaei, M. Younas, M. Rezakazemi, A Comprehensive Review on Recent Advances in Two-Dimensional (2D) Hexagonal Boron Nitride, ACS Applied Electronic Materials 3(12) (2021) 5165-5187.
[16] C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics, Nat Nanotechnol 5(10) (2010) 722-6.
[17] P. Ares, T. Cea, M. Holwill, Y.B. Wang, R. Roldan, F. Guinea, D.V. Andreeva, L. Fumagalli, K.S. Novoselov, C.R. Woods, Piezoelectricity in Monolayer Hexagonal Boron Nitride, Adv Mater 32(1) (2020) e1905504.
[18] K.-A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic Piezoelectricity in Two-Dimensional Materials, The Journal of Physical Chemistry Letters 3(19) (2012) 2871-2876.
[19] C. Li, J.E. Fröch, M. Nonahal, T.N. Tran, M. Toth, S. Kim, I. Aharonovich, Integration of hBN Quantum Emitters in Monolithically Fabricated Waveguides, ACS Photonics 8(10) (2021) 2966-2972.
[20] A. Chaves, J.G. Azadani, H. Alsalman, D.R. da Costa, R. Frisenda, A.J. Chaves, S.H. Song, Y.D. Kim, D. He, J. Zhou, A. Castellanos-Gomez, F.M. Peeters, Z. Liu, C.L. Hinkle, S.-H. Oh, P.D. Ye, S.J. Koester, Y.H. Lee, P. Avouris, X. Wang, T. Low, Bandgap engineering of two-dimensional semiconductor materials, npj 2D Materials and Applications 4(1) (2020).
[21] P.-J. Wang, C.-J. Chang, S.-Y. Lin, J.-K. Sheu, C.-K. Sun, Temporally probing the thermal phonon and charge transfer induced out-of-plane acoustical displacement of monolayer and bi-layer MoS2/GaN heterojunction, Photoacoustics 30 (2023) 100477.
[22] C. Sun, F. Vallee, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Femtosecond-tunable measurement of electron thermalization in gold, Phys Rev B Condens Matter 50(20) (1994) 15337-15348.
[23] J.K. Chen, D.Y. Tzou, J.E. Beraun, A semiclassical two-temperature model for ultrafast laser heating, International Journal of Heat and Mass Transfer 49(1-2) (2006) 307-316.
[24] K.-H. Lin, C.-T. Yu, Y.-C. Wen, C.-K. Sun, Generation of picosecond acoustic pulses using a p‐n junction with piezoelectric effects, Applied Physics Letters 86(9) (2005).
[25] C.-K. Sun, J.-C. Liang, X.-Y. Yu, Coherent Acoustic Phonon Oscillations in Semiconductor Multiple Quantum Wells with Piezoelectric Fields, Physical Review Letters 84(1) (2000) 179-182.
[26] D. Royer, E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation, Springer, Berlin Heidelberg, 1999.
[27] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor, Physical Review Letters 105(13) (2010) 136805.
[28] H. Wang, L. Yu, Y.H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.J. Li, M. Dubey, J. Kong, T. Palacios, Integrated circuits based on bilayer MoS(2) transistors, Nano Lett 12(9) (2012) 4674-80.
[29] W. Bao, X. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects, Applied Physics Letters 102(4) (2013).
[30] S. Kim, A. Konar, W.S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.B. Yoo, J.Y. Choi, Y.W. Jin, S.Y. Lee, D. Jena, W. Choi, K. Kim, High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals, Nat Commun 3 (2012) 1011.
[31] S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, D. Sun, Coherent Longitudinal Acoustic Phonon Approaching THz Frequency in Multilayer Molybdenum Disulphide, Scientific Reports 4(1) (2014) 5722.
[32] S. Jayabal, J. Wu, J. Chen, D. Geng, X. Meng, Metallic 1T-MoS2 nanosheets and their composite materials: Preparation, properties and emerging applications, Materials Today Energy 10 (2018) 264-279.
[33] K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun, J. Suh, D. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J.B. Neaton, J. Wu, Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures, Nano Lett 14(9) (2014) 5097-103.
[34] S. Bertolazzi, J. Brivio, A. Kis, Stretching and Breaking of Ultrathin MoS2, ACS Nano 5(12) (2011) 9703-9709.
[35] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 321(5887) (2008) 385-388.
[36] A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfideTS2, Physical Review B 83(24) (2011).
[37] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett 10(4) (2010) 1271-5.
[38] H. Peng, Z.-H. Yang, J.P. Perdew, J. Sun, Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation, Physical Review X 6(4) (2016).
[39] J.B. Wu, M.L. Lin, X. Cong, H.N. Liu, P.H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices, Chem Soc Rev 47(5) (2018) 1822-1873.
[40] Y. Li, C. Yu, Y. Gan, P. Jiang, J. Yu, Y. Ou, D.-F. Zou, C. Huang, J. Wang, T. Jia, Q. Luo, X.-F. Yu, H. Zhao, C.-F. Gao, J. Li, Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation, npj Computational Materials 4(1) (2018).
[41] H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From Bulk to Monolayer MoS2: Evolution of Raman Scattering, Advanced Functional Materials 22(7) (2012) 1385-1390.
[42] P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, A.C. Ferrari, The shear mode of multilayer graphene, Nat Mater 11(4) (2012) 294-300.
[43] X. Zhang, X.F. Qiao, W. Shi, J.B. Wu, D.S. Jiang, P.H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material, Chem Soc Rev 44(9) (2015) 2757-85.
[44] Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, M.S. Dresselhaus, Q. Xiong, Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2, Nano Lett 13(3) (2013) 1007-15.
[45] J.L. Verble, T.J. Wieting, Lattice Mode Degeneracy in MoS2and Other Layer Compounds, Physical Review Letters 25(6) (1970) 362-365.
[46] X. Zhang, Q.H. Tan, J.B. Wu, W. Shi, P.H. Tan, Review on the Raman spectroscopy of different types of layered materials, Nanoscale 8(12) (2016) 6435-50.
[47] T. Mishina, K. Nitta, Y. Masumoto, Coherent lattice vibration of interlayer shearing mode of graphite, Physical Review B 62(4) (2000) 2908-2911.
[48] I.J. Chen, P.-A. Mante, C.-K. Chang, S.-C. Yang, H.-Y. Chen, Y.-R. Huang, L.-C. Chen, K.-H. Chen, V. Gusev, C.-K. Sun, Graphene-to-Substrate Energy Transfer through Out-of-Plane Longitudinal Acoustic Phonons, Nano Letters 14(3) (2014) 1317-1323.
[49] L. Liang, J. Zhang, B.G. Sumpter, Q.H. Tan, P.H. Tan, V. Meunier, Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials, ACS Nano 11(12) (2017) 11777-11802.
[50] X. Chen, S. Zhang, L. Wang, Y.-F. Huang, H. Liu, J. Huang, N. Dong, W. Liu, I.M. Kislyakov, J.M. Nunzi, L. Zhang, J. Wang, Direct observation of interlayer coherent acoustic phonon dynamics in bilayer and few-layer PtSe2, Photonics Research 7(12) (2019).
[51] P. Soubelet, A.A. Reynoso, A. Fainstein, K. Nogajewski, M. Potemski, C. Faugeras, A.E. Bruchhausen, The lifetime of interlayer breathing modes of few-layer 2H-MoSe2 membranes, Nanoscale 11(21) (2019) 10446-10453.
[52] J.D.G. Greener, A.V. Akimov, V.E. Gusev, Z.R. Kudrynskyi, P.H. Beton, Z.D. Kovalyuk, T. Taniguchi, K. Watanabe, A.J. Kent, A. Patanè, Coherent acoustic phonons in van der Waals nanolayers and heterostructures, Physical Review B 98(7) (2018).
[53] J.D.G. Greener, E. de Lima Savi, A.V. Akimov, S. Raetz, Z. Kudrynskyi, Z.D. Kovalyuk, N. Chigarev, A. Kent, A. Patane, V. Gusev, High-Frequency Elastic Coupling at the Interface of van der Waals Nanolayers Imaged by Picosecond Ultrasonics, ACS Nano 13(10) (2019) 11530-11537.
[54] A.Y. Klokov, N.Y. Frolov, A.I. Sharkov, S.N. Nikolaev, M.A. Chernopitssky, S.I. Chentsov, M.V. Pugachev, A.I. Duleba, A.V. Shupletsov, V.S. Krivobok, A.Y. Kuntsevich, 3D Hypersound Microscopy of van der Waals Heterostructures, Nano Lett 22(5) (2022) 2070-2076.
[55] W. Yan, A.V. Akimov, J.A. Page, M.T. Greenaway, A.G. Balanov, A. Patanè, A.J. Kent, Nondestructive Picosecond Ultrasonic Probing of Intralayer and van der Waals Interlayer Bonding in α‐ and β‐In2Se3, Advanced Functional Materials 31(50) (2021).
[56] P.-J. Wang, P.-C. Tsai, Z.-S. Yang, S.-Y. Lin, C.-K. Sun, Revealing the interlayer van der Waals coupling of bi-layer and tri-layer MoS2 using terahertz coherent phonon spectroscopy, Photoacoustics 28 (2022).
[57] W. Wu, D. De, S.-C. Chang, Y. Wang, H. Peng, J. Bao, S.-S. Pei, High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains, Applied Physics Letters 102(14) (2013).
[58] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nature Nanotechnology 6(3) (2011) 147-150.
[59] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat Nanotechnol 7(11) (2012) 699-712.
[60] W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett 13(6) (2013) 2615-22.
[61] J. Brivio, D.T. Alexander, A. Kis, Ripples and layers in ultrathin MoS2 membranes, Nano Lett 11(12) (2011) 5148-53.
[62] K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S.G. Louie, F. Wang, Evolution of interlayer coupling in twisted molybdenum disulfide bilayers, Nat Commun 5 (2014) 4966.
[63] S. Tongay, J. Zhou, C. Ataca, J. Liu, J.S. Kang, T.S. Matthews, L. You, J. Li, J.C. Grossman, J. Wu, Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating, Nano Lett 13(6) (2013) 2831-6.
[64] S.M. Hus, R. Ge, P.A. Chen, L. Liang, G.E. Donnelly, W. Ko, F. Huang, M.H. Chiang, A.P. Li, D. Akinwande, Observation of single-defect memristor in an MoS2 atomic sheet, Nat Nanotechnol 16(1) (2021) 58-62.
[65] C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous Lattice Vibrations of Single- and Few-Layer MoS2, ACS Nano 4(5) (2010) 2695-2700.
[66] T.J. Wieting, Long-wavelength lattice vibrations of MoS2 and GaSe, Solid State Communications 12(9) (1973) 931-935.
[67] Y.X. Yan, E.B.G. Jr., K.A. Nelson, Impulsive stimulated scattering: General importance in femtosecond laser pulse interactions with matter, and spectroscopic applications, The Journal of Chemical Physics 83(11) (1985) 5391-5399.
[68] C.H. Lui, A.J. Frenzel, D.V. Pilon, Y.H. Lee, X. Ling, G.M. Akselrod, J. Kong, N. Gedik, Trion-Induced Negative Photoconductivity in Monolayer ${\mathrm{MoS}}_{2}$, Physical Review Letters 113(16) (2014) 166801.
[69] H. Shan, Y. Yu, X. Wang, Y. Luo, S. Zu, B. Du, T. Han, B. Li, Y. Li, J. Wu, F. Lin, K. Shi, B.K. Tay, Z. Liu, X. Zhu, Z. Fang, Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime, Light: Science & Applications 8(1) (2019) 9.
[70] F. Vialla, N. Del Fatti, Time-Domain Investigations of Coherent Phonons in van der Waals Thin Films, Nanomaterials (Basel) 10(12) (2020).
[71] C.R. Wu, X.R. Chang, C.H. Wu, S.Y. Lin, The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment, Sci Rep 7 (2017) 42146.
[72] C.-R. Wu, X.-R. Chang, T.-W. Chu, H.-A. Chen, C.-H. Wu, S.-Y. Lin, Establishment of 2D Crystal Heterostructures by Sulfurization of Sequential Transition Metal Depositions: Preparation, Characterization, and Selective Growth, Nano Letters 16(11) (2016) 7093-7097.
[73] H.A. Chen, H. Sun, C.R. Wu, Y.X. Wang, P.H. Lee, C.W. Pao, S.Y. Lin, Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure, ACS Appl Mater Interfaces 10(17) (2018) 15058-15064.
[74] G.Y. Jia, Y. Liu, J.Y. Gong, D.Y. Lei, D.L. Wang, Z.X. Huang, Excitonic quantum confinement modified optical conductivity of monolayer and few-layered MoS2, Journal of Materials Chemistry C 4(37) (2016) 8822-8828.
[75] S. Golovynskyi, I. Irfan, M. Bosi, L. Seravalli, O.I. Datsenko, I. Golovynska, B. Li, D. Lin, J. Qu, Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence, Applied Surface Science 515 (2020).
[76] A. Kostyukov, M. Baronskiy, A. Rastorguev, V. Snytnikov, V. Snytnikov, A. Zhuzhgov, A. Ishchenko, Photoluminescence of Cr3+ in nanostructured Al2O3 synthesized by evaporation using a continuous wave CO2 laser, RSC Advances 6(3) (2016) 2072-2078.
[77] P.-A. Mante, C.-C. Chen, Y.-C. Wen, H.-Y. Chen, S.-C. Yang, Y.-R. Huang, I. Ju Chen, Y.-W. Chen, V. Gusev, M.-J. Chen, J.-L. Kuo, J.-K. Sheu, C.-K. Sun, Probing Hydrophilic Interface of Solid/Liquid-Water by Nanoultrasonics, Scientific Reports 4(1) (2014) 6249.
[78] H.S. Tsai, Y.H. Huang, P.C. Tsai, Y.J. Chen, H. Ahn, S.Y. Lin, Y.J. Lu, Ultrafast Exciton Dynamics in Scalable Monolayer MoS2 Synthesized by Metal Sulfurization, ACS Omega 5(19) (2020) 10725-10730.
[79] P.D. Cunningham, K.M. McCreary, A.T. Hanbicki, M. Currie, B.T. Jonker, L.M. Hayden, Charge Trapping and Exciton Dynamics in Large-Area CVD Grown MoS2, The Journal of Physical Chemistry C 120(10) (2016) 5819-5826.
[80] H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H.G. Xing, L. Huang, Exciton Dynamics in Suspended Monolayer and Few-Layer MoS2 2D Crystals, ACS Nano 7(2) (2013) 1072-1080.
[81] A. Singh, G. Sharma, B.P. Singh, P. Vasa, Charge-Induced Lattice Compression in Monolayer MoS2, The Journal of Physical Chemistry C 123(29) (2019) 17943-17950.
[82] X. Guan, G. Zhu, X. Wei, J. Cao, Tuning the electronic properties of monolayer MoS2, MoSe2 and MoSSe by applying z-axial strain, Chemical Physics Letters 730 (2019) 191-197.
[83] J. Xiao, M. Long, X. Li, Q. Zhang, H. Xu, K.S. Chan, Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS2, J Phys Condens Matter 26(40) (2014) 405302.
[84] M. Li, J. Shi, L. Liu, P. Yu, N. Xi, Y. Wang, Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orientations of MoS2, Science and Technology of Advanced Materials 17(1) (2016) 189-199.
[85] M. O'Brien, N. Scheuschner, J. Maultzsch, G.S. Duesberg, N. McEvoy, Raman Spectroscopy of Suspended MoS2, physica status solidi (b) 254(11) (2017).
[86] J.-B. Wu, Z.-X. Hu, X. Zhang, W.-P. Han, Y. Lu, W. Shi, X.-F. Qiao, M. Ijiäs, S. Milana, W. Ji, A.C. Ferrari, P.-H. Tan, Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes, ACS Nano 9(7) (2015) 7440-7449.
[87] F.P. Novais Antunes, V.S. Vaiss, S.R. Tavares, R.B. Capaz, A.A. Leitão, Van der Waals interactions and the properties of graphite and 2H-, 3R- and 1T-MoS2: A comparative study, Computational Materials Science 152 (2018) 146-150.
[88] X. Zhang, W.P. Han, J.B. Wu, S. Milana, Y. Lu, Q.Q. Li, A.C. Ferrari, P.H. Tan, Raman spectroscopy of shear and layer breathing modes in multilayer MoS2, Physical Review B 87(11) (2013).
[89] R. Gao, H. Liu, H. Liu, J. Yang, F. Yang, T. Wang, Two-dimensional MoS2/GaN van der Waals heterostructures: tunable direct band alignments and excitonic optical properties for photovoltaic applications, Journal of Physics D: Applied Physics 53(9) (2020).
[90] W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications, Materials Today 20(3) (2017) 116-130.
[91] D. Costanzo, S. Jo, H. Berger, A.F. Morpurgo, Gate-induced superconductivity in atomically thin MoS2 crystals, Nat Nanotechnol 11(4) (2016) 339-44.
[92] Q. Wang, L. Zhang, X. Liu, S. Li, Two-Dimensional Semiconductor Heterojunctions for Optoelectronics and Electronics, Frontiers in Energy Research 9 (2021).
[93] S.K. Jain, M.X. Low, P.D. Taylor, S.A. Tawfik, M.J.S. Spencer, S. Kuriakose, A. Arash, C. Xu, S. Sriram, G. Gupta, M. Bhaskaran, S. Walia, 2D/3D Hybrid of MoS2/GaN for a High-Performance Broadband Photodetector, ACS Applied Electronic Materials 3(5) (2021) 2407-2414.
[94] E.W. Lee, C.H. Lee, P.K. Paul, L. Ma, W.D. McCulloch, S. Krishnamoorthy, Y. Wu, A.R. Arehart, S. Rajan, Layer-transferred MoS2/GaN PN diodes, Applied Physics Letters 107(10) (2015).
[95] Z. Zhang, Q. Qian, B. Li, K.J. Chen, Interface Engineering of Monolayer MoS(2)/GaN Hybrid Heterostructure: Modified Band Alignment for Photocatalytic Water Splitting Application by Nitridation Treatment, ACS Appl Mater Interfaces 10(20) (2018) 17419-17426.
[96] Y. Jiang, S. Chen, W. Zheng, B. Zheng, A. Pan, Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures, Light Sci Appl 10(1) (2021) 72.
[97] W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, R.S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett 10(5) (2010) 1645-51.
[98] R. Wang, H. Zobeiri, Y. Xie, X. Wang, X. Zhang, Y. Yue, Distinguishing Optical and Acoustic Phonon Temperatures and Their Energy Coupling Factor under Photon Excitation in nm 2D Materials, Adv Sci (Weinh) 7(13) (2020) 2000097.
[99] R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A.R. Hight Walker, H.G. Xing, Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy, ACS Nano 8(1) (2014) 986-993.
[100] T.L. Britt, Q. Li, L.P. Rene de Cotret, N. Olsen, M. Otto, S.A. Hassan, M. Zacharias, F. Caruso, X. Zhu, B.J. Siwick, Direct View of Phonon Dynamics in Atomically Thin MoS(2), Nano Lett 22(12) (2022) 4718-4724.
[101] T. Zheng, P. Valencia-Acuna, P. Zereshki, K.M. Beech, L. Deng, Z. Ni, H. Zhao, Thickness-Dependent Interlayer Charge Transfer in MoSe(2)/MoS(2) Heterostructures Studied by Femtosecond Transient Absorption Measurements, ACS Appl Mater Interfaces 13(5) (2021) 6489-6495.
[102] P.A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M.G. Spencer, Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene, Nano Letters 8(12) (2008) 4248-4251.
[103] J.C.W. Song, K.J. Tielrooij, F.H.L. Koppens, L.S. Levitov, Photoexcited carrier dynamics and impact-excitation cascade in graphene, Physical Review B 87(15) (2013) 155429.
[104] D. Luo, J. Tang, X. Shen, F. Ji, J. Yang, S. Weathersby, M.E. Kozina, Z. Chen, J. Xiao, Y. Ye, T. Cao, G. Zhang, X. Wang, A.M. Lindenberg, Twist-Angle-Dependent Ultrafast Charge Transfer in MoS(2)-Graphene van der Waals Heterostructures, Nano Lett 21(19) (2021) 8051-8057.
[105] K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J.N. Coleman, L. Zhang, W.J. Blau, Ultrafast Saturable Absorption of Two-Dimensional MoS2 Nanosheets, ACS Nano 7(10) (2013) 9260-9267.
[106] N. Bonini, J. Garg, N. Marzari, Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene, Nano Lett 12(6) (2012) 2673-8.
[107] Q. Sun, D. Mazumdar, L. Yadgarov, R. Rosentsveig, R. Tenne, J.L. Musfeldt, Spectroscopic determination of phonon lifetimes in rhenium-doped MoS2 nanoparticles, Nano Lett 13(6) (2013) 2803-8.
[108] Y. Cai, J. Lan, G. Zhang, Y.-W. Zhang, Lattice vibrational modes and phonon thermal conductivity of monolayer MoS${}_{2}$, Physical Review B 89(3) (2014) 035438.
[109] X. Gu, R. Yang, Phonon transport in single-layer transition metal dichalcogenides: A first-principles study, Applied Physics Letters 105(13) (2014).
[110] K. Kaasbjerg, K.S. Bhargavi, S.S. Kubakaddi, Hot-electron cooling by acoustic and optical phonons in monolayers ofMoS2and other transition-metal dichalcogenides, Physical Review B 90(16) (2014).
[111] J. Su, Z.-t. Liu, L.-p. Feng, N. Li, Effect of temperature on thermal properties of monolayer MoS2 sheet, Journal of Alloys and Compounds 622 (2015) 777-782.
[112] D. Saha, S. Mahapatra, Analytical insight into the lattice thermal conductivity and heat capacity of monolayer MoS 2, Physica E: Low-dimensional Systems and Nanostructures 83 (2016) 455-460.
[113] S.V. Suryavanshi, A.J. Gabourie, A. Barati Farimani, E. Pop, Thermal boundary conductance of two-dimensional MoS2 interfaces, Journal of Applied Physics 126(5) (2019).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87728-
dc.description.abstract聲學現象是普遍存在的,而根據聲音的傳遞介質與震盪頻率的不同,許多應用也隨之而生。受惠於超快雷射技術的發明,操控兆赫頻段聲子的技術得以實現,人們稱其為皮秒超聲波技術。在其發展的這四十年間,該技術已幫助人們探明了許多新興材料的物理謎團。而在石墨烯單原子層薄膜首次被分離出來後,二維系統的獨特性質很快就吸引了全世界研究者的目光,如今新穎二維材料相關的研究風潮方興未艾,我們將利用皮秒超聲波技術探索一種備受關注的二維堆疊之過渡金屬硫化物──單層與數層的二硫化鉬。本論文的目標是揭露二硫化鉬的關鍵參數,並且實現其作為光聲換能器的潛力。
本論文從介紹皮秒超聲波的實驗技術出發,回顧了這十年間,人們在二維材料的兆赫聲學與載子動力學領域,利用該技術所達成的許多重要貢獻。其中,二維材料層與層之間的凡德瓦力耦合現象,影響了二維元件的諸多光電特性。藉由兆赫同調聲子頻譜學實驗,我們精確地測量了雙層與三層的二硫化鉬的所有呼吸模態。下一步,我們將線性彈簧連接模型,引入基板的凡德瓦力耦合效應與次近鄰交互作用,以計算二硫化鉬介面之間的凡德瓦力強度。最後,我們進一步考慮了二維材料的強共價鍵結與介面間的弱凡德瓦力的彈性串聯,以提供更加精確的修正模型。在該研究中我們發現,隨著二維堆疊的層數的增加,介面的凡德瓦作用力也隨之提升。藉由這項技術,我們提供了模型中所有彈性耦合強度的定量分析。
由於在半導體材料中,聲學聲子是熱的主要傳導媒介,因此聲學特性不只可以反映凡德瓦介面的品質,它更決定了二維電子元件與光電元件運作時不可避免的熱傳遞的行為。在第五章節,我們探討由二硫化鉬與氮化鎵基板形成的第二型異質接面,該特殊的異質結構在近年因為其在寬頻光偵測與光伏應用而受到重點關注。我們在載子動力學訊號中發現了布里淵震盪,這證實了該異質接面受到飛秒雷射的激發,往基板的面外方向發出了聲學脈衝。藉由具壓電效應的量子阱的幫助,我們在時域上量測了該介面產生的兆赫聲波的完整波形,其形似一個非對稱的雙極波形。為了解釋該音波的形成機制,我們建立了一系列的理論,並藉由擬合實驗數據與理論模擬,我們不只瞭解了該凡德瓦異質接面的聲學響應之特性,更提供了如電子-聲子耦合與電荷轉移等關鍵參數。我們相信下一代基於二維材料的元件開發將會受惠於本研究成果。
zh_TW
dc.description.abstractAcoustic phenomena are ubiquitous and show various applications highlighted by its frequency and medium. Benefited by the invention of the ultrafast laser, the picosecond ultrasonics has been developed nearly forty years. The technology of manipulating the terahertz phonon has helped people to unravel numerous physical mysteries of novel materials, such as 2D materials. When the first isolation of graphene was achieved, the uniqueness of the 2D system was brought into the spotlight, and since then, the research on 2D materials has experienced a vigorous upsurge. Here, we have used picosecond ultrasonics to investigate layered 2D molybdenum disulfide (MoS2), one of the most famous transition metal dichalcogenides. The aim of this thesis is to reveal some of the critical parameters and to discover the potential of converting the optical excitation into acoustic energy.
The thesis starts with an overview of the experimental details of picosecond ultrasonics and reviews the important findings of THz acoustics and carrier dynamics for the 2D materials in the last decade. The 2D van der Waals interlayer coupling is considered crucial in determining the discrepancy for the properties of the 2D-based device. Our results demonstrated that all layer breathing modes can be excited and monitored by THz coherent phonon spectroscopy, and thus the interlayer vdWs elastic constants could be deduced using the linear chain model considering the substrate effect and the next nearest neighbor effect. Furthermore, we obtained a more accurate quantification for the actual vdWs bonding by considering the interplay of the strong intralayer covalent bonding as a correction term. We conclude that the vdWs coupling becomes stronger as the layer number increases, and we provide all the elastic coupling strengths included in the models.
The acoustical behavior of the 2D materials not only reflects the quality of the vdWs interface, but it also determines the heat transfer pathway, which is also critical to the performance of the electronics and optoelectronics. In the following chapter, we studied a type-II heterojunction formed by MoS2 and GaN substrate, which stands out for the broadband photo-detection and photovoltaic applications. We successfully generated acoustic waves in the out-of-plane direction into the substrate, as evidenced by the Brillouin oscillation. In addition, we temporally retrieved the waveform of the THz acoustic wave generated by the vdWs heterojunction, and an asymmetric bipolar acoustic strain wave was observed. A theory explaining the generation and coupling of the strain wave was given. Our results provided a clear picture that also helped to determine critical parameters such as electron-phonon coupling and charge transfer time. We believed that this work would eventually facilitate the design of the next generation of 2D-based devices.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:09:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-19T16:09:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
致謝 II
摘要 IV
Abstract VI
Content VIII
List of Abbreviations X
List of Symbols XII
List of Figures XIV
List of Tables XVIII
Chapter 1 Introduction 1
1.1 Picosecond Ultrasonics 2
1.2 Two-dimensional Materials 4
1.3 Motivation and Thesis Organization 7
Chapter 2 Experimental Principles of Picosecond Ultrasonics 9
2.1 Optical Pump-probe Technique 10
2.2 Generation and Detection of Coherent Phonons 12
2.2.1 Generation of Acoustic Phonons – Metals and Semiconductors 12
2.2.2 Detection of Acoustic Phonons 14
2.3 Transport of Coherent Phonons 17
2.3.1 Propagation of Acoustic Phonons 17
2.3.2 Reflection and Transmission at Interfaces 18
Chapter 3 Reviewing the van der Waals Coupling of Transition Metal Dichalcogenides 19
3.1 Overview of monolayer and few-layer MoS2 19
3.1.1 Polymorphism and Mechanical Properties 20
3.1.2 Layer Dependency of Electronic Properties 22
3.2 Raman Spectroscopy Investigation 24
3.2.1 Intralayer High-frequency Raman Modes 25
3.2.2 Interlayer Low-frequency Raman Modes 26
3.3 Picosecond Ultrasonics and Pump-probe Investigation 28
Chapter 4 Interlayer van der Waals Coupling of Few-layer MoS2 Revealed by Layer Breathing Modes 31
4.1 Optical Methods for Monitoring the vdWs Interfacial Quality 32
4.2 Materials and Methods 34
4.2.1 Epitaxial Growth of Few-layer MoS2 and Characterization 34
4.2.2 Experimental Setup 36
4.3 Carrier Dynamics Background Removal for Revealing Resonance of Few-layer MoS2 37
4.4 Spectroscopy Study for the Layer Breathing Modes and the Deduced vdWs Force Constants 40
4.5 vdWs Force Constants Correction by Considering the Substrate’s Mechanical Coupling and Next Nearest Neighbor Effect 44
4.6 Intralayer Stiffness Effect on the Net vdWs Force Constants 48
4.7 Conclusion 50
Chapter 5 Temporally Probing the Thermal Phonon and Charge Transfer Induced Out-of-plane Acoustical Displacement of MoS2/GaN heterojunction 51
5.1 Introduction 52
5.2 Materials and Methods 54
5.2.1 Growth and Transfer Methods for Monolayer and Bi-layer MoS2 Samples 54
5.2.2 GaN Substrate for Transfer and InGaN Single Quantum Well as THz Photoacoustic Transducer 55
5.2.1 Ultrafast Pump-probe System 57
5.3 Measured Brillouin Oscillation Confirmed the Acoustic Phonon Coupling from MoS2 vdWHs to GaN Substrate 57
5.4 Background Signal Removal and the Revealed Coherent Acoustic Waves 60
5.5 Analysis and Attribution of the Acoustic Coupling Strength and the Effective Acoustic Detection Area 64
5.6 Derivation for the Impulse Response of an Elastic vdWHs under Driving Stress 67
5.7 Governing Equation of the Carrier Dynamics under Laser Irradiation for Simulating the Driving Stress 71
5.8 The Fitted Carrier Parameters for Acoustic Strain Wave Simulation 75
5.9 Conclusion 77
Chapter 6 Conclusion 78
Reference 81
Appendix –Publication List 92
-
dc.language.isoen-
dc.subject呼吸模態zh_TW
dc.subject金屬再硫化zh_TW
dc.subject晶格振動zh_TW
dc.subject凡德瓦zh_TW
dc.subject氮化鎵zh_TW
dc.subject二硫化鉬zh_TW
dc.subject兆赫同調聲學聲子zh_TW
dc.subject熱聲子zh_TW
dc.subject兆赫光聲頻譜學zh_TW
dc.subject基板效應zh_TW
dc.subjectTHz photoacoustic spectroscopyen
dc.subjectTerahertz coherent acoustic phononen
dc.subjectMoS2en
dc.subjectGaNen
dc.subjectvan der Waalsen
dc.subjectLattice vibrationen
dc.subjectSubstrate effecten
dc.subjectThermal phononen
dc.subjectMetal sulfurizationen
dc.subjectBreathing modeen
dc.title以同調聲子探討二維二硫化鉬介面之凡德瓦力彈性耦合與光聲換能器之應用zh_TW
dc.titleCoherent Phonon Investigation for van der Waals Coupling and Photoacoustic Energy Transduction of 2D MoS2 Interfacesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee周必泰;林時彥;呂宥蓉;林宮玄zh_TW
dc.contributor.oralexamcommitteePi-Tai Chou;Shih-Yen Lin;Yu-Jung Lu;Kung-Hsuan Linen
dc.subject.keyword兆赫同調聲學聲子,二硫化鉬,氮化鎵,凡德瓦,晶格振動,基板效應,熱聲子,金屬再硫化,呼吸模態,兆赫光聲頻譜學,zh_TW
dc.subject.keywordTerahertz coherent acoustic phonon,MoS2,GaN,van der Waals,Lattice vibration,Substrate effect,Thermal phonon,Metal sulfurization,Breathing mode,THz photoacoustic spectroscopy,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202300731-
dc.rights.note未授權-
dc.date.accepted2023-04-24-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved