Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87727
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺zh_TW
dc.contributor.advisorPai-Chi Lien
dc.contributor.author林銘哲zh_TW
dc.contributor.authorMing-Che Linen
dc.date.accessioned2023-07-19T16:08:48Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-04-10-
dc.identifier.citation[1] F. B. Ahmad and R. N. Anderson, “The leading causes of death in the US for 2020”, JAMA, vol. 325, no. 18, p. 1829, 2021.
[2] “衛生福利部國民健康署. 109年死因統計結果分析”, 歷年統計, 06-Jul-2021. [Online]. Available: https://dep.mohw.gov.tw/DOS/lp-5069-113-xCat-y109.html. [Accessed: 02-Nov-2022].
[3] R. M. Carey and P. K. Whelton, “Prevention, detection, evaluation, and management of high blood pressure in adults: Synopsis of the 2017 American College of Cardiology/American Heart Association Hypertension Guideline”, Annals of Internal Medicine, vol. 168, no. 5, p. 351, 2018.
[4] M. Marzilli, F. Crea, D. Morrone, R. O. Bonow, D. L. Brown, P. G. Camici, W. M. Chilian, A. DeMaria, G. Guarini, A. Huqi, C. N. Merz, C. Pepine, M. C. Scali, W. S. Weintraub, and W. E. Boden, “Myocardial ischemia: From disease to syndrome”, International Journal of Cardiology, vol. 314, pp. 32–35, 2020.
[5]“Coronary heart disease : Treatment”, NHS choices. [Online]. Available: https://www.nhs.uk/conditions/coronary-heart-disease/treatment/. [Accessed: 15-Jun-2022].
[6] R. Ross, “Atherosclerosis — an inflammatory disease”, New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999.
[7] L. Saba and G. Mallarini, “A comparison between NASCET and ECST methods in the study of carotids”, European Journal of Radiology, vol. 76, no. 1, pp. 42–47, 2010.
[8] J. M. U-King-Im, R. A. Trivedi, J. J. Cross, N. J. P. Higgins, W. Hollingworth, M. Graves, I. Joubert, P. J. Kirkpatrick, N. M. Antoun, and J. H. Gillard, “Measuring carotid stenosis on contrast-enhanced magnetic resonance angiography”, Stroke, vol. 35, no. 9, pp. 2083–2088, 2004.
[9] H. J. M. Barnett, M. Eliasziw, D. O. Wiebers, V. C. Hachinski, R. N. Rankin, A. J. Fox, G. G. Ferguson, S. J. Peerless, D. L. Sackett, R. B. Haynes, and D. W. Taylor, “Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis”, New England Journal of Medicine, vol. 325, no. 7, pp. 445–453, 1991.
[10] R. C. Cury, S. Abbara, S. Achenbach, A. Agatston, D. S. Berman, M. J. Budoff, K. E. Dill, J. E. Jacobs, C. D. Maroules, G. D. Rubin, F. J. Rybicki, U. J. Schoepf, L. J. Shaw, A. E. Stillman, C. S. White, P. K. Woodard, and J. A. Leipsic, “CAD-RADSTM coronary artery disease – reporting and data system. an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). endorsed by the American College of Cardiology”, Journal of Cardiovascular Computed Tomography, vol. 10, no. 4, pp. 269–281, 2016.
[11] S. Ramanathan, M. Al Heidous, and M. Alkuwari, “Coronary artery disease-reporting and Data System (CAD-RADS): Strengths and Limitations”, Clinical Radiology, vol. 74, no. 6, pp. 411–417, 2019.
[12] G. Crystal and L. Klein, “Fractional flow reserve: Physiological basis, advantages and limitations, and potential gender differences”, Current Cardiology Reviews, vol. 11, no. 3, pp. 209–219, 2015.
[13] N. H. J. Pijls, B. Van Gelder, P. Van der Voort, K. Peels, F. A. L. E. Bracke, H. J. R. M. Bonnier, and M. I. H. El Gamal, “Fractional flow reserve”, Circulation, vol. 92, no. 11, pp. 3183–3193, 1995.
[14] S. E. Nissen and J. C. Gurley, “Assessment of the functional significance of coronary stenoses. is digital angiography the answer?”, Circulation, vol. 81, no. 4, pp. 1431–1435, 1990.
[15] “第八十四條附件七 特殊材料給付規定”, [Online]. Available: http://www.capa.org.tw/upfiles/1559190686.pdf. [Accessed: 19-Jun-2022].
[16] H. S. Lim and S. M. Kim, “Design of pullback device in intravascular ultrasound system using longitudinal length variation mechanism for rotating Axis”, International Journal of Precision Engineering and Manufacturing, vol. 17, no. 11, pp. 1569–1573, 2016.
[17] C. Tekes, M. Karaman, and F. Degertekin, “Optimizing circular ring arrays for forward- looking IVUS imaging”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 58, no. 12, pp. 2596–2607, 2011.
[18] G. C. Collins, A. Sarma, Z. L. Bercu, J. P. Desai, and B. D. Lindsey, “A robotically steerable guidewire with forward-viewing ultrasound: Development of Technology for minimally-invasive imaging”, IEEE Transactions on Biomedical Engineering, vol. 68, no. 7, pp. 2222–2232, 2021.
[19] J.A.Jensen,”FIELD: A program for simulating ultrasound systems”,Medical and Biological Engineering and Computing. Vol. 34, no. sup. 1, pp. 351-352, 1997.
[20] J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 39, no. 2, pp. 262–267, 1992.
[21] W. Li, A. F. W. van der Steen, C. T. Lancée, I. Céspedes, and N. Bom, “Blood flow imaging and volume flow quantitation with intravascular ultrasound”, Ultrasound in Medicine & Biology, vol. 24, no. 2, pp. 203–214, 1998.
[22] A. P. Avolio, M. Butlin, and A. Walsh, “Arterial blood pressure measurement and pulse wave analysis-–their role in enhancing cardiovascular assessment”, Physiological Measurement, vol. 31, no. 1, 2009.
[23] K. L. Gould, “Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation”, Circulation Research, vol. 43, no. 2, pp. 242–253, 1978.
[24] B. D. Seeley and D. F. Young, “Effect of geometry on pressure losses across models of arterial stenoses”, Journal of Biomechanics, vol. 9, no. 7, pp. 439–448, 1976.
[25] F. Seike, T. Uetani, K. Nishimura, H. Kawakami, H. Higashi, A. Fujii, J. Aono, T. Nagai, K. Inoue, J. Suzuki, S. Inaba, T. Okura, K. Yasuda, J. Higaki, and S. Ikeda, “Intravascular ultrasound-derived virtual fractional flow reserve for the assessment of myocardial ischemia”, Circulation Journal, vol. 82, no. 3, pp. 815–823, 2018.
[26] Y. Huo, M. Svendsen, J. S. Choy, Z.-D. Zhang, and G. S. Kassab, “A validated predictive model of coronary fractional flow reserve”, Journal of The Royal Society Interface, vol. 9, no. 71, pp. 1325–1338, 2011.
[27] X. Xie, M. Zheng, D. Wen, Y. Li, and S. Xie, “A new CFD based non-invasive method for functional diagnosis of coronary stenosis”, BioMedical Engineering OnLine, vol. 17, no. 1, 2018.
[28] I. Pantos and D. Katritsis, “Fractional flow reserve derived from coronary imaging and computational fluid dynamics”, Interventional Cardiology Review, vol. 9, no. 3, p. 145, Aug. 2014.
[29] C. Kut, Y. Kim, E. Boctor, and A. Viswanathan, “Ultrasound-Compatible Gynecologic Training Phantom for Hydrogel Injection.”
[30] F. K. Schneider, A. Agarwal, Yang Mo Yoo, T. Fukuoka, and Yongmin Kim, “A fully programmable computing architecture for medical ultrasound machines”, IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 2, pp. 538–540, 2010.
[31] J. T. Dodge, B. G. Brown, E. L. Bolson, and H. T. Dodge, “Lumen diameter of normal human coronary arteries. influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation.”, Circulation, vol. 86, no. 1, pp. 232–246, 1992.
[32] I. Gradus-Pizlo, B. Bigelow, Y. Mahomed, S. G. Sawada, K. Rieger, and H. Feigenbaum, “Left anterior descending coronary artery wall thickness measured by high-frequency transthoracic and epicardial echocardiography includes Adventitia”, The American Journal of Cardiology, vol. 91, no. 1, pp. 27–32, 2003.
[33] D. K. Reddy and M.G. Bhotmange, “Viscosity of Starch: A Comparative Study of Indian Rice (Oryza Sativa L.) Varieties”, International Review of Applied Engineering Research., vol. 4, pp. 397–402, 2014.
[34] I. Pantos and D. Katritsis, “Fractional flow reserve derived from coronary imaging and computational fluid dynamics”, Interventional Cardiology Review, vol. 9, no. 3, p. 145, 2014.
[35] C. A. Kousera, S. Nijjer, R. Torii, R. Petraco, S. Sen, N. Foin, A. D. Hughes, D. P. Francis, X. Y. Xu, and J. E. Davies, “Patient-specific coronary stenoses can be modeled using a combination of OCT and flow velocities to accurately predict hyperemic pressure gradients”, IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1902–1913, 2014.
[36] B. L. Nørgaard, J. Leipsic, S. Gaur, S. Seneviratne, B. S. Ko, H. Ito, J. M. Jensen, L. Mauri, B. De Bruyne, H. Bezerra, K. Osawa, M. Marwan, C. Naber, A. Erglis, S.-J. Park, E. H. Christiansen, A. Kaltoft, J. F. Lassen, H. E. Bøtker, and S. Achenbach, “Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease”, Journal of the American College of Cardiology, vol. 63, no. 12, pp. 1145–1155, 2014.
[37] P. A. Baier, J. A. Baier-Saip, K. Schilling, and J. C. Oliveira, “Simulator for minimally invasive vascular interventions: Hardware and software”, Presence: Teleoperators and Virtual Environments, vol. 25, no. 2, pp. 108–128, 2016.
[38] N. H. Pijls, J. A. van Son, R. L. Kirkeeide, B. De Bruyne, and K. L. Gould, “Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty.”, Circulation, vol. 87, no. 4, pp. 1354–1367, 1993.
[39] J. Liu, Z. Yan, Y. Pu, W.-S. Shiu, J. Wu, R. Chen, X. Leng, H. Qin, X. Liu, B. Jia, L. Song, Y. Wang, Z. Miao, Y. Wang, L. Liu, and X.-C. Cai, “Functional assessment of cerebral artery stenosis: A pilot study based on Computational Fluid Dynamics”, Journal of Cerebral Blood Flow & Metabolism, vol. 37, no. 7, pp. 2567–2576, 2016.
[40] X. Liu, H. Zhang, L. Ren, H. Xiong, Z. Gao, P. Xu, W. Huang, and W. Wu, “Functional assessment of the stenotic carotid artery by CFD-based pressure gradient evaluation”, American Journal of Physiology-Heart and Circulatory Physiology, vol. 311, no. 3, 2016.
[41] Lambert CC, Gayzik FS and Stitzel JD, “Characterization of the carotid and adjacent anatomy using non-contrast CT for biomechanical model development”, Biomed Sci Instrum, vol. 43, pp. 330-335, 2007.
[42] P. T. Gamage, P. Dong, J. Lee, Y. Gharaibeh, V. N. Zimin, H. G. Bezerra, D. L. Wilson, and L. Gu, “Fractional Flow Reserve (FFR) estimation from Oct-based CFD simulations: Role of Side Branches”, Applied Sciences, vol. 12, no. 11, p. 5573, 2022.
[43] I. Pantos and D. Katritsis, “Fractional flow reserve derived from coronary imaging and computational fluid dynamics”, Interventional Cardiology Review, vol. 9, no. 3, p. 145, 2014.
[44] M. Götberg, E. H. Christiansen, I. Gudmundsdottir, L. Sandhall, E. Omerovic, S. K. James, D. Erlinge, and O. Fröbert, “Instantaneous wave-free ratio versus fractional flow reserve guided intervention (IFR-SWEDEHEART): Rationale and design of a multicenter, prospective, registry-based randomized clinical trial”, American Heart Journal, vol. 170, no. 5, pp. 945–950, 2015.
[45] M. T. Lu, M. Ferencik, R. S. Roberts, K. L. Lee, A. Ivanov, E. Adami, D. B. Mark, F. A. Jaffer, J. A. Leipsic, P. S. Douglas, and U. Hoffmann, “Noninvasive FFR derived from coronary CT angiography”, JACC: Cardiovascular Imaging, vol. 10, no. 11, pp. 1350–1358, 2017.
[46] A. Sinha Roy, L. H. Back, and R. K. Banerjee, “Guidewire flow obstruction effect on pressure drop-flow relationship in moderate coronary artery stenosis,” Journal of Biomechanics, vol. 39, no. 5, pp. 853–864, 2006.
[47] M. Kastengren, P. Svenarud, G. Källner, M. Settergren, A. Franco-Cereceda, and M. Dalén, “Percutaneous vascular closure device in minimally invasive mitral valve surgery”, The Annals of Thoracic Surgery, vol. 110, no. 1, pp. 85–91, 2020.
[48] J. W. Doucette, P. D. Corl, H. M. Payne, A. E. Flynn, M. Goto, M. Nassi, and J. Segal, “Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity.,” Circulation, vol. 85, no. 5, pp. 1899–1911, 1992.
[49] J. J. Wentzel, A. G. van der Giessen, S. Garg, C. Schultz, F. Mastik, F. J. H. Gijsen, P. W. Serruys, A. F. W. van der Steen, and E. Regar, “In vivo 3D distribution of lipid-core plaque in human coronary artery as assessed by fusion of near infrared spectroscopy–intravascular ultrasound and Multislice Computed Tomography scan”, Circulation: Cardiovascular Imaging, vol. 3, no. 6, 2010.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87727-
dc.description.abstract心血管疾病是現代人常見疾病,在台灣致死率排名第二,其中心肌缺血是此類疾病中相當常見的一種,因冠狀動脈是輸送血液至心臟的關鍵,通常心肌缺血與冠狀動脈疾病關聯性高。會造成心肌缺血的原因眾多,其中冠狀動脈粥狀硬化是常見物理性成因之一,另外成因也可能是低血壓、先天性心臟缺陷、鐮狀細胞性貧血、或因血液異常如癌症引起的血液黏度上升等皆有可能,也因成因眾多,要確認心肌缺血確切原因十分重要但卻困難。血流儲備分數(fraction flow reserve)是目前用來評估心肌缺血是否是由冠狀動脈阻塞造成的黃金指標,然而血流儲備分數測量方式並不方便,傳統的血流儲備分數測量方式需要額外置入血管內壓力感測導絲,不僅需花費額外金錢,且還會因此需要額外手術時間,因此本論文提出利用心血管手術中常使用的血管內超音波系統取代壓力感測導絲進行血流儲備分數測量。為了計算血流儲備分數本論文利用流體力學公式建立壓力損失模型,以白努利(Bernoulli)定律柏達卡諾(Borda-Carnot)方程式與泊肅葉(Poiseuille)定律等公式計算出因阻塞造成的壓力損失,除此之外也利用計算流體力學進行計算,並對利用壓力損失模型與利用計算流體力學兩者進行比較。而為了進行壓力損失模型與計算流體力學需要血管幾何結構與流速,而為了取得這些額外資訊,本論文提出利用訊號處理找出管壁與探頭距離並以此建立血管幾何結構檔案,進行三維幾何重建,並以自相關函數(autocorrelation)取得流速資訊,以進行血流儲備分數計算。本論文以阻塞處出口速度剖面為均勻、為拋物線狀與以入口效應(entrance effect)三種假設建立三種壓力損失模型以及計算流體力學進行壓力損失計算,三種壓力損失模型均方根誤差分別為1.75、2.12與0.72毫米汞柱,而計算流體力學則可以得到0.76毫米汞柱的結果。入口效應模型與計算流體力學備用以血流儲備分數計算,並得到均方根誤差分別為0.033與0.035的結果。最後本論文在血管內超音波仿體實驗中得到均方根誤差3.91毫米汞柱的結果,證明利用血管內超音波搭配流體力學進行血流儲備分數測量的潛力並對其進行探討討論此技術未來改善方向。根據本論文的研究結果,現階段壓力損失模型因含有一難以測得的實驗係數因此難以應用於臨床,但計算流體力學方式則可以提供準確性高且穩定的血流儲備分數計算,在改善血管內超音波的血管幾何結構與血流流速量測準確度後有望代替傳統的壓力導絲量測方式成為新的臨床診斷方式。zh_TW
dc.description.abstractCardiovascular disease is a common illness among modern people and ranks second in Taiwan's mortality rate. Myocardial ischemia is a prevalent type of this disease, and it is often associated with coronary artery disease since the coronary artery is crucial for delivering blood to the heart. Many reasons can cause myocardial ischemia, with coronary artery atherosclerosis being a common physical cause. Other causes may include low blood pressure, congenital heart defects, sickle cell anemia, or abnormalities in the blood, such as an increase in blood viscosity caused by cancer. Due to the numerous possible causes, identifying the exact cause of myocardial ischemia is of crucial importance, but it can also be challenging. Fractional flow reserve (FFR) is currently considered the gold standard for assessing whether myocardial ischemia is caused by coronary artery stenosis. However, the traditional method of FFR measurement could be more convenient, as it requires inserting a pressure-sensing guidewire into the blood vessel. It not only incurs additional costs but also extends the duration of the procedure. Therefore, we propose to use the intravascular ultrasound (IVUS) system commonly used in cardiovascular surgery to replace the pressure sensing guidewire for FFR measurements. To calculate the FFR, we propose to use fluid dynamics formulas to build pressure loss models, including the Bernoulli equation, Borda-Carnot equation, and Poiseuille's law, to calculate the pressure loss caused by stenosis. In addition, computational fluid dynamics (CFD) is also used for calculations and comparisons with pressure loss models. Information on the vascular geometry and flow velocity is required to perform the pressure loss models and CFD calculations. Therefore, we propose signal processing algorithms to find the distance between the vessel wall and the probe and establish a vascular geometry profile for 3D reconstruction. Flow velocity information is obtained using autocorrelation techniques for FFR calculation. Three pressure loss models are established in this study based on three assumptions, including two assuming the flow velocity profile at the outlet of stenosis is uniform and parabolic and the other considering the entrance effect, respectively. The root-mean-square errors for the three pressure loss models are 1.75, 2.12, and 0.72 mmHg, respectively. The CFD results yield a pressure loss of 0.76 mmHg. The entrance effect model and CFD are used for FFR calculation, and the root-mean-square errors obtained are 0.033 and 0.035, respectively. In conclusion, we achieved a root-mean-square error of 3.91 mmHg in the intravascular ultrasound phantom experiments, demonstrating the potential of using intravascular ultrasound combined with fluid dynamics to measure fractional flow reserve and discussing the future direction of improvement for this technique. Based on our research results, the pressure loss model is currently difficult to apply in the clinical setting due to the experimental coefficients that hard to measure, but the computational fluid dynamics method can provide a high level of accuracy and stability in calculating the FFR. After improving the accuracy of vascular geometry reconstruction and flow velocity measurement in intravascular ultrasound, it is expected that CFD method will replace traditional measurement method with pressure guidewire as a new clinical diagnostic method.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:08:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-19T16:08:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xii
Chapter 1 緒論 1
1.1 心肌缺血 1
1.2 心肌缺血診斷 1
1.3 心肌缺血治療 2
1.4 動脈粥狀硬化 3
1.5 動脈阻塞評估方式 5
1.6 血流儲備分數 6
1.7 研究動機與目標 7
1.8 論文架構 8
Chapter 2 研究方法 10
2.1 血管內超音波 10
2.2 血管內超音波訊號模擬 12
2.3 血管內超音波影像 13
2.4 流速量測 17
2.5 血管壁偵測 19
2.6 血管3D幾何結構重建 21
2.7 血流儲備分數流體力學推導 23
2.8 計算流體力學 28
Chapter 3 實驗設計 30
3.1 Field II模擬實驗 30
3.2 仿體製作 33
3.3 血液幫浦系統 36
3.4 血液壓力量測系統 37
3.5 超音波影像系統 38
3.5.1 超音波影像系統 38
3.5.2 高頻超音波影像系統 40
3.6 血管仿體實驗設計 43
3.6.1 體外超音波影像系統實驗設計 43
3.6.2 血管內超音波影像系統實驗設計 46
3.7 體外超音波系統實驗血管仿體幾何重建 46
3.8 計算流體力學計算參數設計 50
Chapter 4 實驗結果 53
4.1 模擬實驗:血管壁位置偵測 53
4.2 仿體實驗 55
4.2.1 體外超音波影像系統實驗結果 55
4.2.2 血管內超音波影像系統實驗結果 61
Chapter 5 分析與討論 67
5.1 超音波模擬 67
5.2 血管阻塞與血壓 69
5.3 實驗系統架構造成的誤差 70
5.4 壓力損失模型差異探討 71
5.5 計算流體力學與壓力損失模型方式比較 75
5.6 血管幾何結構誤差對血壓損失測量結果的影響 77
5.7 臨床應用可行性 80
Chapter 6 結論與未來工作 84
6.1 結論 84
6.2 未來工作 86
Chapter 7 參考資料 89
-
dc.language.isozh_TW-
dc.subject血管內超音波zh_TW
dc.subject心肌缺血zh_TW
dc.subject冠狀動脈阻塞zh_TW
dc.subject血流儲備分數zh_TW
dc.subject血管三維重建zh_TW
dc.subject計算流體力學zh_TW
dc.subjectVessels three-dimensional reconstructionen
dc.subjectMyocardial ischemiaen
dc.subjectIntravascular ultrasounden
dc.subjectComputational fluid dynamicsen
dc.subjectCoronary artery stenosisen
dc.subjectFractional flow reserveen
dc.title基於前視型血管內超音波系統的血流儲備分數量測:兩種方式比較zh_TW
dc.titleFFR Estimation by IVUS with a Forward-Looking Transducer: Comparison of Two Approachesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉瑋文;鄭耿璽;沈哲州;林隆君zh_TW
dc.contributor.oralexamcommitteeWei-Wen Liu;Geng-Shi Jeng;Che-Chou Shen;Lung-Chun Linen
dc.subject.keyword心肌缺血,冠狀動脈阻塞,血流儲備分數,血管三維重建,計算流體力學,血管內超音波,zh_TW
dc.subject.keywordMyocardial ischemia,Coronary artery stenosis,Fractional flow reserve,Vessels three-dimensional reconstruction,Computational fluid dynamics,Intravascular ultrasound,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202300718-
dc.rights.note未授權-
dc.date.accepted2023-04-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
6.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved