Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87714
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中平zh_TW
dc.contributor.advisorChung-Ping Chenen
dc.contributor.author陳炤光zh_TW
dc.contributor.authorChao-Kuang Chenen
dc.date.accessioned2023-07-18T16:04:17Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-18-
dc.date.issued2023-
dc.date.submitted2023-06-27-
dc.identifier.citation[1] Hasegawa, Junichi. (2021). Abnormal Findings in Ultrasound Examination. 10.1007/978-981-15-8171-7_2.
[2] Monti, Martin & Schnakers, Caroline & Korb, Alexander & Bystritsky, Alexander & Vespa, Paul. (2016). Non-Invasive Ultrasonic Thalamic Stimulation in Disorders of Consciousness after Severe Brain Injury: A First-in-Man Report. Brain Stimulation. 9. 10.1016/j.brs.2016.07.008
[3] Cruza, Jorge & Perez, M. & Moreno Llamas, José Miguel & Fritsch, Carlos. (2015). Real Time Fast Ultrasound Imaging Technology and Possible Applications. Physics Procedia. 63. 10.1016/j.phpro.2015.03.013
[4] Baran, Jonathan & Webster, John. (2009). Design of Low-Cost Portable Ultrasound Systems: Review. Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference. 2009. 792-5. 10.1109/IEMBS.2009.5332754.
[5] Ijaiya, munir'deen & Aboyeji, Abiodun & Braimoh, K & Abubakar, D. (2010). The role of ultrasound in obstetrics. Nigerian journal of medicine: journal of the National Association of Resident Doctors of Nigeria. 11. 50-5.
[6] McDonald, Shelley & Fredericson, Michael & Roh, Eugene & Smuck, Matthew. (2010). Basic Appearance of Ultrasound Structures and Pitfalls. Physical medicine and rehabilitation clinics of North America. 21. 461-79. 10.1016/j.pmr.2010.04.002.
[7] Asiedu, Mercy & Singh, Vivek Kumar & Benjamin, Alex & Samir, Anthony & Kumar, Viksit. (2021). Improving Ultrasound Penetration Using an Adversarial Machine Learning Framework: An in Vivo Case Study.
[8] Checa, Angel. (2018). Ultrasonography, an operator-dependent modality versus dual-energy computed tomography (DECT) in the detection of chondrocalcinosis: With regard to Tanikawa et al.'s study. Journal of Orthopaedic Surgery and Research. 13. 10.1186/s13018-018-0953-4.
[9] Hemmsen, Martin & Petersen, Mads & Nikolov, S.I. & Nielsen, Michael Bachmann & Jensen, Jørgen. (2010). Ultrasound Image Quality Assessment: A framework for evaluation of clinical image quality. Proc SPIE. 7629. 10.1117/12.840664.
[10] Rikkert, Linda & Nieuwland, Rienk & Terstappen, Leon & Coumans, Frank. (2019). Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. Journal of Extracellular Vesicles. 8. 1555419. 10.1080/20013078.2018.1555419

[11] Stickles, Sean & Carpenter, Christopher & Gekle, Robert & Kraus, Chadd & Scoville, Caryn & Theodoro, Daniel & Tran, Vu & Ubiñas, George & Raio, Christopher. (2019). The diagnostic accuracy of a point-of-care ultrasound protocol for shock etiology: A systematic review and meta-analysis. CJEM. 21. 1-12. 10.1017/cem.2018.498.
[12] W. Wang et al., "Visualization Enhancement of Arthrosis Tissues Structure in Ultrasound Image Based on Improved Diffusion," 2008 International Conference on BioMedical Engineering and Informatics, Sanya, China, 2008, pp. 290-294, doi: 10.1109/BMEI.2008.147.
[13] C. A. Duarte-Salazar, A. E. Castro-Ospina, M. A. Becerra and E. Delgado-Trejos, "Speckle Noise Reduction in Ultrasound Images for Improving the Metrological Evaluation of Biomedical Applications: An Overview," in IEEE Access, vol. 8, pp. 15983-15999, 2020, doi: 10.1109/ACCESS.2020.2967178.
[14] Lavania, Krishan & Kumar, Rajiv. (2012). Image Enhancement using Filtering Techniques. International Journal on Computer Science and Engineering. 4.
[15] Mahmoudi, Linda & El-Zaart, Ali. (2012). A survey of entropy image thresholding techniques. 204-209. 10.1109/ICTEA.2012.6462867.
[16] Kollem, Sreedhar Reddy & Panlal, B.. (2012). Enhancement of Images Using Morphological Transformations. International Journal of Computer Science and Information Technology. 4. 10.5121/ijcsit.2012.4103.
[17] Mikołajczyk, Agnieszka & Grochowski, Michał. (2018). Data augmentation for improving deep learning in image classification problem. 117-122. 10.1109/IIPHDW.2018.8388338.
[18] Gilroy, Shane & O'Dwyer, John & Bortoleto, Lucas. (2020). Characterisation of CMOS Image Sensor Performance in Low Light Automotive Applications.
[19] A. Horé and D. Ziou, "Image Quality Metrics: PSNR vs. SSIM," 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010, pp. 2366-2369, doi: 10.1109/ICPR.2010.579.
[20] Ng, Alexander & Swanevelder, J.. (2011). Resolution in ultrasound imaging. Continuing Education in Anaesthesia, Critical Care & Pain. 11. 186-192. 10.1093/bjaceaccp/mkr030.
[21] Lee, Yeonhwa & Kang, Jinbum & Yoo, Yangmo. (2014). Automatic dynamic range adjustment for ultrasound B-mode imaging. Ultrasonics. 56. 10.1016/j.ultras.2014.09.012.
[22] K. Gu, G. Zhai, W. Lin and M. Liu, "The Analysis of Image Contrast: From Quality Assessment to Automatic Enhancement," in IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 284-297, Jan. 2016, doi: 10.1109/TCYB.2015.2401732.
[23] Mallet, Alexandre & Datcu, Mihai. (2008). Rate Distortion Based Detection of Artifacts in Earth Observation Images. IEEE Geoscience and Remote Sensing Letters. 5. 354-358. 10.1109/LGRS.2008.915938.
[24] Garg, Saruchi & Lal, Madan. (2003). Comparative Study of Different Image Enhancement Techniques. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY. 2. 131-133. 10.24297/ijct.v2i3c.2711.
[25] Ward, Peter. (2016). Humerus. 10.1002/9781118430309.ch9.
[26] Shahinfar, Saleh & Meek, Paul & Falzon, Gregory. (2020). “How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring.
[27] https://hdl.handle.net/11296/wr3462
[28] https://www.meditegic.com/wp-content/uploads/pdfs/Toshiba-Aplio.pdf
[29] Contreras-Ortiz, Sonia & Chiu, Tsuicheng & Fox, Martin. (2012). Ultrasound image enhancement: A review. Biomedical Signal Processing and Control. 7. 419–428. 10.1016/j.bspc.2012.02.002.
[30] Niu, Zuodong & Li, Handong. (2019). Research and analysis of threshold segmentation algorithms in image processing. Journal of Physics: Conference Series. 1237. 022122. 10.1088/1742-6596/1237/2/022122
[31] Bradski, G. (2000). The OpenCV Library. Dr. Dobb' s Journal of Software Tools.
[32] Riad, Rana & Al-Taie, Rana & Basma, Jumaa & Saleh, Basma & Abu-Alsaad, Hiba. (2021). A REVIEW PAPER: DIGITAL IMAGE FILTERING PROCESSING. 8. 252-257. 10.47577/techniumv3i9.
[33] Shipitko, Oleg & Grigoryev, Anton. (2018). Gaussian filtering for FPGA based image processing with High-Level Synthesis tools.
[34] (知乎網站) https://zhuanlan.zhihu.com/p/61330712, accessed on 2023/4/20
[35] Li, Lizong (2019) Compulsory course for AI professionals with professional background: OpenCV image processing using python. Taiwan: Shenzhi Digital Co., Ltd.
[36] https://towardsdatascience.com/understanding-morphological-image-processing-and-its-operations-7bcf1ed1175, accessed on 2023/4/20
[37] Rohani, Mohsen & Avanaki, Alireza. (2009). A watermarking method based on optimizing SSIM index by using PSO in DCT domain. 10.1109/CSICC.2009.5349616.
[38] Bentz, Christopher & Baudzus, Lars & Krummrich, Peter. (2014). Signal to Noise Ratio (SNR) Enhancement Comparison of Impulse-, Coding- and Novel Linear-Frequency-Chirp-Based Optical Time Domain Reflectometry (OTDR) for Passive Optical Network (PON) Monitoring Based on Unique Combinations of Wavelength Selective Mirrors. Photonics. 1. 33-46. 10.3390/photonics1010033.
[39] Meng, Xi & Yuan, Yingchun & Teng, Guifa & Liu, Tianzhen. (2021). Deep learning for fine-grained classification of jujube fruit in the natural environment. Journal of Food Measurement and Characterization. 15. 10.1007/s11694-021-00990-y.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87714-
dc.description.abstract圖片的品質是醫學相關應用中超音波影像的關鍵組成部分,但它可能會受到人為操作和可用圖片數量限制的影響。我們的研究旨在比較相對較少圖片的手肘肱骨超音波影像在12種不同的圖像增強方法中,在圖片閾值處理、圖片過濾和圖片形態學三個組別下的圖片品質。我們使用了三種常用的圖片品質評估指標,包括峰值信噪比(PSNR)、結構相似性指數(SSIM)和信噪比(SNR)來評估這些方法。
在這12種圖像增強方法中,圖片過濾組中的雙邊濾波器(BILATERALFILTER)和高斯模糊(GAUSSIANBLUR)在PSNR、SSIM和SNR這三個指標上優於其他方法。無論是3、5還是9的內核大小,這兩種方法在性能上始終表現良好。這表明我們的研究成功地找到了基於這些指標確保圖片品質的方法。此外,雙邊濾波器和高斯模糊方法在數據增強和深度學習方法中也顯示出潛力,可以解決特定器官和組織的超音波影像數量不足的問題。
zh_TW
dc.description.abstractImage quality is a critical component of ultrasound images for medical related application, but it can be affected by human operation and the limited number of available images. Our research aims to compare the quality of ultrasound images of humerus in the elbow, which has relatively few images, between 12 different image enhancement methods under three groups of image thresholding, image filtering and image morphology. We evaluate these methods using three commonly used three metrics for image quality such as PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index), and SNR (Signal-to-Noise Ratio).
Among the 12 image enhancement methods, the BILATERALFILTER and GAUSSIANBLUR under the image filtering group outperform the other methods across all three metrics of PSNR, SSIM, and SNR. Regardless of the kernel size of 3, 5, or 9, the two methods also consistently exhibit better performance than other methods. This demonstrates that our research has successfully identified methods that ensure image quality based on these metrics. Furthermore, the BILATERALFILTER and GAUSSIANBLUR methods show potential for use in data augmentation for deep learning approaches to resolve the insufficiently available ultrasound images for specific organs and tissues.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-18T16:04:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-18T16:04:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
Table of Contents v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Contribution 6
Chapter 2 Dataset 7
Chapter 3 Method 9
3.1 Extraction of the Valid Image 9
3.2 Image Thresholding 10
3.2.1 THRESH_BINARY 10
3.2.2 THRESH_BINARY_INV 11
3.2.3 THRESH_TRUNC 11
3.2.4 THRESH_TOZERO_INV 12
3.2.5 THRESH_TOZERO 13
3.3 Image Filtering 13
3.3.1 BLUR 13
3.3.2 BOXFILTER 14
3.3.3 GAUSSIANBLUR 14
3.3.4 MEDIANBLUR 15
3.5 BILATERALFILTER 16
3.4 Image Morphology 17
3.5 Evaluation Metrics 18
3.5.1 PSNR 18
3.5.2 SSIM 18
3.5.3 SNR 19
Chapter 4 Experiment Result 20
4.1 Image Thresholding 20
4.2 Image Filtering 26
4.3 Image Morphology 32
4.4 Comparison Between Top-performing Methods 35
Chapter 5 Conclusion and Future Work 37
References 38
-
dc.language.isoen-
dc.subject結構相似性指數zh_TW
dc.subject信噪比zh_TW
dc.subject圖片過濾zh_TW
dc.subject超音波影像zh_TW
dc.subject數據增強zh_TW
dc.subject圖像增強方法zh_TW
dc.subject峰值信噪比zh_TW
dc.subjectdata augmentationen
dc.subjectultrasound imagesen
dc.subjectimage enhancement methodsen
dc.subjectPSNRen
dc.subjectSSIMen
dc.subjectSNRen
dc.subjectimage filteringen
dc.title手肘超音波圖像增強方法之比較zh_TW
dc.titleComparison of Image Enhancement Methods on Ultrasound Images of Elbowen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor魏安祺zh_TW
dc.contributor.coadvisorAn-Chi Weien
dc.contributor.oralexamcommittee陳文翔;楊東霖zh_TW
dc.contributor.oralexamcommitteeWei-Shiang Chen;Dong-Lin Yangen
dc.subject.keyword超音波影像,圖像增強方法,峰值信噪比,結構相似性指數,信噪比,圖片過濾,數據增強,zh_TW
dc.subject.keywordultrasound images,image enhancement methods,PSNR,SSIM,SNR,image filtering,data augmentation,en
dc.relation.page40-
dc.identifier.doi10.6342/NTU202301186-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-06-28-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2028-06-27-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
1.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved