Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8769
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵(Chun-Han Kuo)
dc.contributor.authorChih-Yuan Leeen
dc.contributor.author李智遠zh_TW
dc.date.accessioned2021-05-20T20:00:57Z-
dc.date.available2021-12-31
dc.date.available2021-05-20T20:00:57Z-
dc.date.copyright2011-08-20
dc.date.issued2011
dc.date.submitted2011-08-17
dc.identifier.citationP. Anderson, K. McNeil, K. Watson. High-efficiency carbohydrate fermentation to ethanol at temperatures above 40oC by Kluyveromyces marxianus var. marxianus Isolated from Sugar Mills, Applied and Environmental Microbiology, 51 (1986) 1314.
M. Ballesteros, J. Oliva, M. Negro, P. Manzanares, I. Ballesteros, Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry, 39 (2004) 1843-1848.
C. Cara, E. Ruiz, M. Ballesteros, P. Manzanares, M.J. Negro, E. Castro. Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel, 87 (2008) 692-700.
C. Cardona Alzate, O. Sanchez Toro. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy, 31 (2006) 2447-2459.
A. Demirbas. Calculation of higher heating values of biomass fuels. Fuel, 76 (1997) 431-434.
BEMoEA. 2010, Energy statistical annual report, Bureau of Energy. Ministry of Economic Affairs, Taiwan, ROC.

B.A. Faga, M.R. Wilkins, I.M. Banat. Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D5A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresource Technology, 101 (2010) 2273-2279.
K.A. Gray, L. Zhao, M. Emptage. Bioethanol. Current Opinion in Chemical Biology, 10 (2006) 141-146.
A. Hendriks, G. Zeeman. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100 (2009) 10-18.
M.E. Himmel, J.O. Baker, R.P. Overend, P. American Chemical Society. Cellulose, T. Division, Enzymatic conversion of biomass for fuels production, American Chemical Society Washington, DC, 1994.
F. Kobayashi, H. Take, C. Asada, Y. Nakamura. Methane production from steam-exploded bamboo. Journal of Bioscience and Bioengineering, 97 (2004) 426-428.
N. Lark, Y. Xia, C.G. Qin, C. Gong, G. Tsao. Production of ethanol from recycled paper sludge using cellulase and yeast, Kluveromyces marxianus, Biomass and Bioenergy, 12 (1997) 135-143.
L.R. Lynd, P.J. Weimer, W.H. Van Zyl, I.S. Pretorius. Microbial cellulose utilization: fundamentals and biotechnology, Microbiology and Molecular Biology Reviews, 66 (2002) 506-577.
S. Mani, L.-G., Tabil and S. Sokhansanj. Specific energy requirement for compacting corn stover. Bioresource Technology ,97 ( 2006 ) 1420-1426.
S.D. Mansfield, C. Mooney, J.N. Saddler. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 15 (1999) 804-816.
J.R. Mielenz, J.S. Bardsley, C.E. Wyman. Fermentation of soybean hulls to ethanol while preserving protein value. Bioresource Technology, 100 (2009) 3532-3539.
E. Ruiz, C. Cara, P. Manzanares, M. Ballesteros, E. Castro. Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme and Microbial Technology, 42 (2008) 160-166.
D.A. Salvi, G.M. Aita, D. Robert, V. Bazan. Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation. Applied Biochemistry and Biotechnology, 161 (2010) 67-74.
P.M. Schenk, S.R. Thomas-Hall, E. Stephens, U.C. Marx, J.H. Mussgnug, C. Posten, O. Kruse, B. Hankamer. Second generation biofuels: high-efficiency microalgae for biodiesel production, Bioenergy Research, 1 (2008) 20-43.

L. Segal, J. Creely, A. Martin, C. Conrad. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29 (1959) 786.
H. Shapouri, J.A. Duffield, M. Wang. The energy balance of corn ethanol: an update, Agricultural Economics Reports, (2002).
C. Sheng, J. Azevedo. Estimating the higher heating value of biomass fuels from basic analysis data, Biomass and Bioenergy, 28 (2005) 499-507.
Y. Sun, J. Cheng. Hydrolysis of lignocellulosic materials for ethanol production: a review* 1, Bioresource Technology, 83 (2002) 1-11.
Taiwan Forestry Bureau, The Third Survey of Forest Resources and Land Use in Taiwan, Forestry Bureau of Council of Agriculture Executive Yuan, Taiwan, R.O.C., (1985).
Taiwan Forestry Bureau, The forestry statistics of Forest Resources and Land Use in Taiwan, Forestry Bureau of Council of Agriculture Executive Yuan, Taiwan, R.O.C., (2001).
M. Takagi, S. Abe, S. Suzuki, G. Emert, N. Yata. A method for production of alcohol directly from cellulose using cellulase and yeast. Proceedings of Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein. New Delhi, India, (1977) 551-571.
G. Thomas, C. San Ramon, Overview of Storage Development DOE Hydrogen Program. US DOE Hydrogen Program 2000 Annual Review May (2000) 9-11.
Y.-C., Wang. Estimates of biomass and carbon sequestration in Dendrocalamus latiflorus culms. Forest Products Industries 23, 1 (2004) 13-22.
Y.-C., Wang. Bamboo biomass reviews and forward. 2006 National Conference on Carbon Sequestration, (2006)167-188
C.E. Wyman, N.D. Hinman. Fundamentals of production from renewable feedstocks and use as a transportation fuel. Applied Biochemistry and Biotechnology, 24 (1990) 735-754.
S. Yanase, T. Hasunuma, R. Yamada, T. Tanaka, C. Ogino, H. Fukuda, A. Kondo. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Applied Microbiology and Biotechnology, (2010) 1-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8769-
dc.description.abstract竹林覆蓋台灣152,300 公頃,約佔台灣總森林面積的7.2 %,因此本研究以麻竹(Dendrocalamus latiflorus)為代表,評估竹材作為台灣生質乙醇原料的潛力。竹片經過酸、鹼蒸汽爆碎前處理,酸蒸氣爆碎以190 oC持溫10 min,鹼蒸氣爆碎以180,190及200oC 持溫10至20分鐘,進而以相對於試驗材料乾重比例的2、6、12 % (w/w) 纖維素酶劑量對蒸汽爆碎竹漿進行水解。最高葡萄糖得率:鹼蒸汽爆碎竹漿為 50.4~249.3 mg/g,而酸蒸汽爆碎竹漿為 49.7~209.1 mg/g。此外本研究發現水解效率與試材中的木質素的含量成負相關。本研究並使用菌株Saccharomyces cerevisiae D5A對上述竹漿進行同時糖化與發酵 (SSF),條件為:37.5oC、pH 5、yeast extract 10 g/L及peptone 20 g/L。經96 小時後,酸蒸汽爆碎竹漿從原料至乙醇之轉化率為13.11%,相當於每公斤乾重竹片可產0.16 L乙醇;鹼蒸汽爆碎竹漿從原料至酒精之轉化率為8.8%,相當於每公斤乾重竹片可產0.11 L乙醇。以上發酵後之廢渣,經元素分析証實具有相當之熱值。台灣竹林蓄積量估計範圍為5,020,000~11,640,000 公噸,假設每五年輪伐一次,估計每年約可有1,328,000公噸竹材投入生質乙醇生產,以酸蒸汽爆碎法配合與同時糖化與發酵約可產出220,659公秉酒精,鹼蒸汽爆碎前處理約可產出148,162公秉酒精。本研究結果顯示,以本土竹林蓄積更新生產生質乙醇,具有相當的潛力。zh_TW
dc.description.abstractBamboo covers 152,300 ha in Taiwan, approximately of 7.2 % the total overall forest area. This study evaluated Dendrocalamus latiflorus as a feedstock for bioethanols in Taiwan. Acidic and alkaline steam explosion was employed to prepare pulps from Dendrocalamus latiflorus chips. Alkali-treated samples were prepared at 180, 190 and 200oC from 10 to 20 min. Acid-treated samples were prepared at 190oC for 10 min. For the saccharification of pretreated bamboo biomass, cellulase formulations were applied with three dosages: 2, 6, 12 percent to dried pulp (w/w). The glucose yields were 50.4 ~ 249.3 mg/g alkali steam-exploded pulps, and 49.7~209.1 mg/g acid steam-exploded pulps. The hydrolysis efficiencies were negatively impacted by lignin contents of pretreated bamboo pulps. Simultaneous saccharification and fermentation (SSF) were also conducted using Saccharomyces cerevisiae D5A under 37.5oC and pH 5 with yeast extract 10 g/L and peptone 20 g/L at shake flask level. After 96 hours, the optimal ethanol conversion for acid pretreated pulps was 13.11%, equivalent to 0.16 L ethanol/kg dried chip. And the optimal ethanol conversion for alkaline pretreated pulps exploded was 8.8%, equivalent to 0.11 L/kg dried chip. The post-fermentation residues possessed high heating values, which were verified by elemental analysis. There is estimated 5,020,000~11,640,000 ton storage for in bamboo stands in Taiwan. There could be 1,328,000 ton available as feedstock for bioethanol production annually under 5-year rotation harvesting. SSF could produce 220,659 kL of bioethanols from by acidic steam explosion pulps and 148,162 kL of bioethanols by alkaline steam explosion pretreatment pulps annually. This study demonstrated potentials of the indigenous bamboo storage as a source for bioethanol production.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:00:57Z (GMT). No. of bitstreams: 1
ntu-100-R98625043-1.pdf: 661287 bytes, checksum: d0842f6850c7e5467c91a59c94c324a8 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 i
謝誌 ii
摘要 iii
ABSTRACT iv
CONTENTS vi
FIGURES INDEX viii
TABLES INDEX ix
Chapter 1 Introduction 1
Chapter 2 Literature reviews 3
2.1 Cellulosic ethanol 3
2.2 Steam explosion pretreatments of lignocellulosic materials 5
2.3 Separately hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF) 7
2.4 Simultaneous saccharification and fermentation process (SSF) with Kluyveromyces marxianus or Saccharomyces cerevisiae D5A 8
2.5 Energy estimation of compacting fuel and its high heating value 10
2.6 Energy balance of the ethanol production 11
Chapter 3 Materials and methods 12
3.1 Objectives 12
3.2 Experimental material 13
3.3 Steam-explosion 13
3.4 Kraft pulping and bleaching 13
3.5 Enzyme hydrolysis 14
3.6 Analytical methods 14
3.7 Fiber morphology 15
3.8 Powder and Fiber X-ray Diffraction 15
3.9 Simultaneous saccharification and fermentation (SSF) 16
Chapter 4 Results and discussion 17
4.1 Chemical compositional analysis 17
4.2 Enzyme hydrolysis 18
4.3 Fiber morphology 23
4.4 Crystallinity by XRD (Powder and Fiber X-ray Diffraction) 29
4.5 Effect of simultaneous saccharification and fermentation (SSF) on ethanol yield 31
Chapter 5 Estimated feedstock volume and ethanol production energy balance 34
5.1 Estimated the bamboo annually growth in Taiwan 34
5.2 Steam explosion ethanol energy consumption estimation 36
5.3 Estimated energy consumption of ethanol from kraft pulp 37
5.4 Estimated energy use of compacting the fermented residue 39
5.5 Energy and mass balance 43
Chapter 6 Concluding remark 48
Chapter 7 Conclusions 49
Chapter 8 References 51
dc.language.isoen
dc.title麻竹生產生質乙醇之評估zh_TW
dc.titleEvaluation of Dendrocalamus latiflorus
as a feedstock for bioethanol
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王亞男,陳世銘,林曉洪,藍浩繁
dc.subject.keyword麻竹,生質酒精,蒸汽爆碎,同時糖化與發酵,zh_TW
dc.subject.keywordDendrocalamus latiflorus,Bioethanol,Steam explosion,Simultaneous saccharification and fermentation,en
dc.relation.page55
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf645.79 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved