Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87663
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘zh_TW
dc.contributor.advisorDa-Ming Wangen
dc.contributor.author王芝淇zh_TW
dc.contributor.authorChih-Chi Wangen
dc.date.accessioned2023-07-11T16:11:50Z-
dc.date.available2023-07-12-
dc.date.copyright2023-07-11-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Mulder, J., Basic principles of membrane technology. 2012: Springer Science & Business Media.
2. Baker, R.W., Membrane technology and applications. 2012: John Wiley & Sons.
3. W. McGowan, Water Processing Third Edition (Residential, Commercial, Light- Industrial).
4. Ismail, A.F., Khulbe, K.C., Matsuura, T. (2015). Membrane Fabrication/Manufacturing Techniques. In: Gas Separation Membranes. Springer, Cham.
5. Pinnau, I. and B. Freeman, Formation and modification of polymeric membranes: overview. 2000.
6. Roxana A. Milescu, C. Robert McElroy, Thomas J. Farmer, Paul M. Williams, Matthew J. Walters, James H. Clark, "Fabrication of PES/PVP Water Filtration Membranes Using Cyrene®, a Safer Bio-Based Polar Aprotic Solvent", Advances in Polymer Technology, vol. 2019, Article ID 9692859, 15 pages, 2019.
7. Jun Tae Jung, Jeong F. Kim, Ho Hyun Wang, Emanuele di Nicolo, Enrico Drioli, Young Moo Lee,Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS),Journal of Membrane Science,Volume 514, 2016, Pages 250-263,
8. Alexandre C. Dimian, Costin S. Bildea, Anton A. Kiss,Chapter 12 - Chemical Product Design, Editor(s): Alexandre C. Dimian, Costin S. Bildea, Anton A. Kiss, Computer Aided Chemical Engineering, Elsevier, Volume 35, 2014, Pages 489-523,
9. G. ten Brinke,1.11 - Phase Segregation/Polymer Blends/Microphase Separation, Editor(s): Krzysztof Matyjaszewski, Martin Möller, Polymer Science: A Comprehensive Reference, Elsevier, 2012, Pages 287-313,
10. Karimi, Mohammad. (2011). Diffusion in Polymer Solids and Solutions.
11. D. Kuckling, A. Doering, F. Krahl, K.-F. Arndt, 8.15 - Stimuli-Responsive Polymer Systems, Editor(s): Krzysztof Matyjaszewski, Martin Möller, Polymer Science: A Comprehensive Reference, Elsevier, 2012, Pages 377-413,
12. Ishigami T, Nii Y, Ohmukai Y, Rajabzadeh S, Matsuyama H. Solidification Behavior of Polymer Solution during Membrane Preparation by Thermally Induced Phase Separation. Membranes. 2014; 4(1):113-122.
13. Alert, R., Tierno, P. & Casademunt, J. Formation of metastable phases by spinodal decomposition. Nat Commun 7, 13067 (2016).
14. Pekcan, Önder & Kara, Selim. (2012). Gelation Mechanisms. Modern Physics Letters B.
15. Yadav, Upendra & Mahto, Vikas. (2014). In Situ Gelation Study of Organically Crosslinked Polymer Gel System for Profile Modification Jobs. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING.
16. Collini H, Mohr M, Luckham P, Shan J, Russell A. The effects of polymer concentration, shear rate and temperature on the gelation time of aqueous Silica-Poly(ethylene-oxide) "Shake-gels". J Colloid Interface Sci. 2018 May 1;517:1-8.
17. Zeman, L. and Fraser, T., Formation of air-cast cellulose acetate membranes. Part I. Study of macrovoid formation. Journal of membrane science, 1993. 84(1-2): p. 93-106.
18. Park, Soo-Jin & Seo, Min-Kang & Lee, Jae‐Rock. (2001). Relationship between viscoelastic properties and gelation in the epoxy/phenol‐novolac blend system with N‐benzylpyrazinium salt as a latent thermal catalyst. Journal of Applied Polymer Science. 79. 2299 - 2308.
19. N. Kononenko, V. Nikonenko, D. Grande, C. Larchet, L. Dammak, M. Fomenko, Yu. Volfkovich, Porous structure of ion exchange membranes investigated by various techniques, Advances in Colloid and Interface Science, Volume 246, 2017, Pages 196-216
20. Stropnik, Č.; Musil, V.; Brumen, M., Polymeric membrane formation by wet-phase separation; turbidity and shrinkage phenomena as evidence for the elementary processes. Polymer 2000, 41 (26), 9227-9237.
21. Muhammad Irfan, Ani Idris, Overview of PES biocompatible/hemodialysis membranes: PES–blood interactions and modification techniques, Materials Science and Engineering: C, Volume 56, 2015, Pages 574-592
22. Kahrs, C., Gühlstorf, T., and Schwellenbach, J., Influences of different preparation variables on polymeric membrane formation via nonsolvent induced phase separation. Journal of Applied Polymer Science, 2020. 137(28): p. 48852.
23. Catharina Kahrs, Jan Schwellenbach, Membrane formation via non-solvent induced phase separation using sustainable solvents: A comparative study, Polymer, Volume 186, 2020, 122071
24. 蔡榮贊, 蒸氣誘導式相分離過程之蕾絲結構生成與合併探討. 臺灣大學化學工程學研究所學位論文, 2010: p. 1-207.
25. 洪偉倫, 非溶劑誘導式相分離過程之膜結構生成探討. 台灣大學化學工程學研究所博士論文, 2016.
26. 蘇詩芸, 利用傅立葉轉換紅外光顯微鏡探討聚醚碸薄膜之成膜機制. 台灣大學化學工程研究所碩士論文, 2020.
27. 莊雨潔, 聚醯亞胺薄膜的製備與其過濾機制和效能之探討. 台灣大學化學工程研究所碩士論文, 2021.
28. Otitoju, Tunmise & Ahmad, Abdul Latif & Ooi, Boon. (2018). Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending. RSC Advances.
29. Chao-Chuan Ho, Jenn Fang Su, Boosting permeation and separation characteristics of polyethersulfone ultrafiltration membranes by structure modification via dual-PVP pore formers, Polymer, Volume 241, 2022, 124560.
30. Güneş Durak, Sevgi & Ormanci Acar, Turkan & Tufekci, Nese. (2018). Effect of PVP content and polymer concentration on PEI and PAN based ultrafiltration membrane fabrication and characterization. Water Science and Technology. 2017.
31. A. Vázquez, A. J. Rojas, H.E. Adabbo, J. Borrajo, R. J. J. Williams, Rubber-modified thermosets: Prediction of the particle size distribution of dispersed domains Polymer, 28(1987) 1156-1164.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87663-
dc.description.abstract在製膜實務上,除了高分子、溶劑、非溶劑三成分外,常會加入添加劑以調整薄膜結構與分離效能,在添加量不多的情況下,濾膜結構與分離效能卻有很明顯的變化。此四成分的系統十分複雜,故文獻上對於添加劑所扮演之角色及其功能尚未有深入且全面的了解。本研究將聚醚碸、聚碸以DMAc及2P兩種溶解力不同的溶劑溶解,並加入不同濃度之PVP添加劑,以濕式法製膜,透過建立與分析系統釐清了添加劑對製膜參數、薄膜結構、過濾效能的影響。
加入PVP會使鑄膜液黏度提高,也會對薄膜結構之皮層厚度造成影響,皮層隨著添加量增加而增厚,但在低黏度與高黏度系統呈現不同的趨勢,在高黏度系統由於高分子鏈糾纏劇烈,系統穩定度升高至足以抵擋非溶劑直接流入,皮層增厚幅度大。此外,在低黏度系統,PVP可以發揮造孔劑的功能,增加薄膜連通性,讓純水透過率大幅提升,然而,在高黏度系統,皮層增厚帶來的阻力遠超越連通性變化的影響,純水透過率反而降低。根據蛋白質之截留率實驗結果,顯示添加PVP對於薄膜結構的影響主要在截面而非表面,仍維持優秀阻擋物質的能力。
綜合比較與評估各系統,本研究發現高純水透過率薄膜的製備是與孔洞連通性提升、皮層增厚的競爭關係高度相關,此準則可望適用於不同高分子/溶劑/添加劑系統,作為配方設計的參考。
zh_TW
dc.description.abstractIn the practice of membrane fabrication, in addition to the basic three components which are polymer, solvent and non-solvent, additives are often added to modify the structure and separation efficiency of the membrane. Even only with small amount of addition, the membrane structure and separation efficiency can have obvious changes. The four-component-system is quite complex, so there are no thorough understandings of the functions of the additives and what role they play in the literature. In this study, polyethersulfone and polysulfone are dissolved in DMAc and 2P, which are two kinds of solvent with different solvency, and different concentrations of PVP are added to the system to fabricate membranes via wet immersion method. By establishing and analyzing the systems, we clarify the additive effects on casting conditions, membrane structure and filtration performance.
The addition of PVP would make the casting solution viscosity higher and also affect the skin thickness of the membrane. The more PVP is added, the thicker the skin becomes. But there shows a different trend in the low viscosity system and the high viscosity system. Due to the strong entanglement of polymer chains in the high viscosity system, the stability of the system is high enough to resist the direct inflow of non-solvent, so the skin thickness increases significantly. Furthermore, PVP can play the role of pore-forming agent in the low viscosity system, which enhances the connectivity and boosts the water permeability. However, in the high viscosity system, the resistance caused by skin thickening far exceeds the positive effect on connectivity, which makes water permeability decrease. According to the experimental results of protein retention, it is shown that the influence of PVP addition on the structure of the membrane is mainly for the cross-section area rather than the top surface, which maintains the outstanding capability to block particles.
After comparing and normalizing each system, our research finds that fabricating membrane of high permeability is highly related to the competitive relationship between pore connectivity enhancement and skin thickening. This principle is potentially applicable to different polymer/solvent/additive systems, as a reference for formulation design.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-11T16:11:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-11T16:11:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1. 薄膜簡介 1
1-2. 高分子薄膜製備方式 2
1-2-1. 熱誘導式相分離法(Thermal-Induced Phase Separation, TIPS) 3
1-2-2. 乾式法(Dry Method) 4
1-2-3. 濕式法(Wet Method) 4
1-2-4. 蒸氣誘導式相分離法(Vapor-Induced Phase Separation, VIPS) 5
1-3. 非溶劑誘導式相分離成膜步驟 5
1-4. 非溶劑誘導式相分離法成膜理論 9
1-4-1. 熱力學 9
1-4-1-1. 單相區(homogeneous region) 9
1-4-1-2. 液-液相分離(liquid-liquid demixing) 10
1-4-1-3. 膠化 (gelation) 10
1-4-2. 質傳動力學 10
1-5. 聚碸(Polysulfone)、聚醚碸 (Polyethersulfone)性質介紹 13
1-6. 文獻回顧 14
1-7. 研究動機與目的 25
第二章 實驗材料與研究方法 26
2-1. 實驗材料 26
2-2. 實驗儀器 26
2-3. 實驗方法 27
2-3-1. 鑄膜液配製 27
2-3-2. 濕式法成膜 27
2-3-3. 薄膜結構分析 27
2-3-3-1. 巨型孔洞結構與皮層結構判定 28
2-3-3-2. 雙連續結構判定 29
2-3-3-3. 細胞狀結構判定 30
2-3-4. 高分子溶液流變性質量測 31
2-3-5. 薄膜透過率與截留率的量測 31
2-3-5-1. 純水透過率 32
2-3-5-2.溶菌酶(Lysozyme)截留率 34
第三章 結果與討論 36
3-1. 高分子溶液之流變性質 36
3-2. 聚醚碸、聚碸之薄膜結構 38
3-3. 添加劑對聚醚碸、聚碸薄膜Skin層厚度之影響 65
3-4. 聚醚碸、聚碸薄膜過濾效能 67
3-4-1. 添加劑對純水透過率之影響 67
3-4-2. 添加劑對溶菌酶截留率之影響 70
第四章 結論與未來展望 73
4-1. 結論 73
4-2. 未來展望 74
參考文獻 75
-
dc.language.isozh_TW-
dc.subject過濾效能zh_TW
dc.subject添加劑zh_TW
dc.subject聚碸zh_TW
dc.subject聚醚碸zh_TW
dc.subject濕式法zh_TW
dc.subjectPolyethersulfoneen
dc.subjectWet immersion methoden
dc.subjectFiltration performanceen
dc.subjectPolysulfoneen
dc.subjectAdditiveen
dc.title添加劑對聚醚碸/聚碸薄膜結構與過濾效能的影響zh_TW
dc.titleEffects of Additives on the Morphology and Filtration Performance of PES/PSF Membraneen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李魁然zh_TW
dc.contributor.oralexamcommitteeJuin-Yih Lai;Yung Chang;Kueir-Rarn Leeen
dc.subject.keyword聚醚碸,聚碸,添加劑,濕式法,過濾效能,zh_TW
dc.subject.keywordPolyethersulfone,Polysulfone,Additive,Wet immersion method,Filtration performance,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202204105-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2025-10-01-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf6.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved