Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8761
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張顏暉
dc.contributor.authorHsuan-Yi Chaoen
dc.contributor.author趙軒逸zh_TW
dc.date.accessioned2021-05-20T20:00:49Z-
dc.date.available2010-09-30
dc.date.available2021-05-20T20:00:49Z-
dc.date.copyright2010-02-04
dc.date.issued2010
dc.date.submitted2010-01-27
dc.identifier.citationChapter 1
[1] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science. 295, 2425 (2002).
[2] W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting, and A. P. Alivisatos, Adv. Funct. Mater. 13, 73 (2003).
[3] Y. Kang, N. G. Park, and D. Kim, Appl Phys.Lett. 86, 113101 (2005).
[4] Wang, K., Chen, J., Zhou, W., Zhang, Y., Yan, Y., Pern, J., and Mascarenhas, A., Adv. Mater 20, 3248 (2008).
[5] J. Schrier, D. O. Demchenko, and L.-W. Wang, Nano Lett. 7, 2377 (2007).
[6] W. I. Park, Y. H. Jjun, S. W. Jung and G. C. Yi, Appl. Phys. Lett. 82, 964 (2003).
[7] L. B. K. Law and J. T. L Thong, Appl. Phys. Lett. 88, 133114 (2006).
[8] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, Appl. Phys. Lett. 84, 3654 (2004).
[9] H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton and J. Lin, Appl. Phys. Lett. 86, 243503 (2005).
[10] R. Q. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, J. Suehiro and T. Okada, Appl. Phys. B 90, 539 (2008).
[11] Y. Lin, D. Wang, Q. Zhao, Z. Li, Y. Ma and M. Yang, Nanotechnology 17, 2110
(2006).
[12] J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andre, A. Cirera, A. Romano-Rodriguez and J. R. Morante, Nanotechnology 19, 465501 (2008).
[13] J. Maeng, G. Jo, S.-S. Kwon, S. Song, J. Seo, S.-J. Kang, D.-Y. Kim, and T. Lee.    
  Appl. Phys. Lett. 92, 233120 (2008).
[14] Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay. Appl. Phys. Lett. 94, 023110 (2009).
Chapter 2
[1] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. D. Yang, Adv. Mater. 13,
113 (2001).
[2] M. H. Huang, S. Mao, H. Feick, H. Yun, Y. Wu, H. Kind, E. Weber, R. Russo,
and P. D.Yang. Science 292, 1897 (2001).
[3] Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science. 291, 1947 (2001).
[4] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Mater. 14, 1216 (2002).
[5] J. C. Hulteen, C. R. Martin, and J. Mater. Chem. 7, 1075 (1997).
[6] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000).
[7] R. S. Wagner, and W.C. Ellis, Appl. Phys. Lett., 4, 89(1964).
[8] A. M. Morales and C. M Lieber, Science. 279, 208 (1998).
[9] Y. Wu and P. Yan,. J. Am. Chem. Soc. 123, 3165 (2001).
[10] G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy:Theory and Practice,
2nd ed. Academic Press (1999).
[11] T. H. Gfroerer, in Encyclopedia of Analytical Chemistry, 9209 (2000).
[12] G. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, Scanning electron microscopy and X-ray microanalysis, Plenum Press, New York and London (1981).
[13] R. A. Stradling and P. C. Klipstein, Growth and Characterisation of Semiconductors (Hilger, 1990).
[14] V. K. Zworykin, J. Hiller, and R. L. Snyder, ASTM Bull. 117, 15 (1942).
[15] http://www.eserc.stonybrook.edu/ProjectJava/Bragg/
[16] R. Nana, Taking the confusion out of confocal microscopy. Bio Teach Journal. 1, 75-80 (2003).
[17] L. R. Qiu, X. M. Ding, and J. Liu, Confocal Measurement Approach for enhancing lateral resolution using a phase-only pupil. J. Phys. Conf. Ser. 13, 422-425 (2005).
[18] M. Klosner and K. Jaina, Appl. Phys. Lett. 84, 2880 (2004).
[19] S. Rizvi et al. Handbook of Photomask Manufacturing Technology, (Taylor & Francis Group, (2005).
[20] D. F. Kyser and N. S. Viswanathan, J. Vac. Sci. Technol. B, 12(6), 1305 (1975).
[21] Donald A. Neamen, Semiconductor Physics and Devices. P.327-476
chapter 4
[1] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science. 295, 2425 (2002).
[2] W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting, and A. P. Alivisatos, Adv. Funct. Mater. 13, 73 (2003).
[3] Y. Kang, N. G. Park, D. Kim, Appl. Phys. Lett. 86, 113101 (2005).
[4] M. Law, L. E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
[5] J. B. Baxter, and E. S. Aydil, Appl. Phys. Lett. 86, 053114 (2005).
[6] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science. 295, 2425 (2002).
[7] W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting, and A. P. Alivisatos, Adv. Funct. Mater. 13, 73 (2003).
[8] Y. Kang, N. G. Park, and D. Kim, Appl. Phys. Lett. 86, 113101 (2005).
[9] H. Zhong, Y. Zhou, Y. Yang, C. and Yang, Y. Li, J. Phys. Chem. C 111, 6538 (2007).
Chapter 5
[1] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, Adv. Mater. 13, 113 (2001).
[2] M. J. Zheng, L. D. Zhang, G. H. Li, and W. Z. Shen, Chemical Physics Letters. 363, 123 (2002).
[3] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Mater. 14, 1216 (2002).
[4] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T. Fukuda, J. Cryst. Growth 260, 166 (2004).
[5] H. C. Hsu, H. M. Cheng, C. Y. Wu, H. S. Huang, Y. C. Lee, and W. F. Hsieh, Nanotechnology 17, 1404 (2006).
[6] Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, and C. H. Liang, J. Cryst. Growth 234, 171 (2002).
[7] P. X. Gao, Y. Ding, and Z. L. Wang, Nano. Lett. 3, 1315 (2003).
[8] A. P. Jephcoat, R. J. Hemley, H. K. Mao, R. E. Cohen and M. J. Mehl, Phys. Rev. B. 37, 4727 (1988).
[9] J. M. Calleja and M. Cardona, Phys. Rev. B. 16, 3753 (1977).
[10] S. Bhattacharyya, D. Zitoun, Y. Estrin, O. Moshe, D. H. Rich and A. Gedanken, Chem. Mater. 21, 326 (2009).
[11] Y. Kume, Q. Guo, T. Tanaka, M. Nishio, H. Ogawa and W. Shen, Journal of Crystal Growth. 298, 441 (2007).
[12] F. Iida, K. Kumazaki, I. Tsubono, N. Kimura, K. Suzuki and K. Imai, Phys. Stat. Sol. (b). 183, K75 (1994).
[13] F. Iida, N. Takojima, K. Imai and K. Kumazaki, Phys. Stat. Sol. (a). 139, 531 (1993).
[14] J. Schrier, D. O. Demchenko and L. W. Wang, Nano Lett. 7, 2377 (2007).
[15] K. Sato, T. Asahi, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, O. Oda, Y. Yamada, and T. Taguchi, Phys. Status Solidi (a) 180, 267 (2000).
[16] V. S. John, T. Mahalingam, and J. P. Chu, Solid-State Electron. 49, 3 (2005).
[17] H. B. Huo, L. Dai, C. Liu, L. P. You, W. Q. Yang, R. M. Ma, G. Z. Ran, and G. G. Qin, Nanotechnology 17, 5912 (2006).
[18] J. Zhang, P.-C. Chen, G. Shen, J. He, A. Kumbhar, C. Zhou, and J. Fang, Angew. Chem. Int. Ed. 47, 9469 (2008).
[19] Q. F. Meng, C. B. Jiang, and S. X. Mao, Appl. Phys. Lett. 94, 043111 (2009).
[20] Z.H. Chen, H. Tang, X. Fan, J.S. Jie, C.S. Lee, S.T. Lee, J. Cryst. Growth 310, 165 (2008).
Chapter 6
[1] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, Adv. Mater. 13, 113 (2001).
[2] M. H. Huang, S. Mao, H. Feick, H. Yun, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292, 1897 (2001).
[3] Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science, 291, 1947 (2001).
[4] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Mater. 14, 1216 (2002).
[5] S. B. Qadri, E. F. Skelton, D. Hsu, A. D. Dinsmore, J. Yang, H. F. Gray, and B. R. Ratna, Phys. Rev. B 60, 9191 (1999).
[6] K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, Adv. Mater. 20, 3248 (2008).
[7] A. P. Jephcoat, R. J. Hemley, H. K. Mao, R. E. Cohen, and M. J. Mehl, Phys. Rev. B 37, 4727 (1988).
[8] F. Decremps, J. Pellicer-Porres, A.M. Saitta, J. C. Chervin, and A. Polian, Phys. Rev. B 65, 092101 (2002).
[9] M. Y. Valakh, S. V. Ivanov, N. Mestres, J. Pascual, T. V. Shubina, S. V. Sorokin, V. V. Streltchuk, G. Pozinaand, and B. Monemar, Semicond. Sci. Technol. 17, 173 (2002).
[10] T. Matsumoto, T. Kato, M. Hosoki, and T. Ishida, Jap. J. Appl. Phys. 26, L576 (1987).
[11] S. Adachi, and T. Taguchi, Phys. Rev B 43, 9569 (1991).
[12] B. Langen, H. Leiderer, W. Limmer, W. Gebhardt, M. Ruff, and U. Rössler, J. Cryst. Growth 101, 718 (1990).
[13] K. Maehashi, N. Morota, Y. Murase, and H. Nakashima, J. Appl. Phys. 38, 1339 (1999).
[14] P. J. Dean, Phys. Stat. Sol. (a) 81, 625 (1984).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8761-
dc.description.abstract由於在製作電子和光電元件應用方面有很大的潛力,最近低維度半導體例如奈米線、奈米柱和奈米管已經吸引很多人的注意。在此論文中,我們報告有關於II-VI族奈米線的成長及特性分析和光電性質。在ZnO 奈米線和ZnO/ZnTe核殼奈米線的研究方面,我們使用化學氣相沉積法和有機金屬化學氣相沉積法,成功地製作出ZnO/ZnTe核殼奈米線結構。我們使用多種結構分析儀器也確認樣品具有良好結晶結構。在光學儀器分析下,結果也顯示樣品是具有好的光學性質。然後我們取單根ZnO/ZnTe核殼奈米線製作成單根的電晶體,研究它的電學特性,結果顯示出施加的電壓可以控制它的電流大小。除了在ZnO/ZnTe系統中,我們也成功地成長出ZnO/ZnSe核殼奈米線。這ZnO/ZnSe核殼奈米線也是具有好的結晶結構和光學性質。zh_TW
dc.description.abstractBecause of their potential applications in making electronic and opto-electronic devices, low-dimensional semiconductor systems such as nanowires, nanorods and nanotubes have attracted great attention recently. In this thesis we report our studies on the growth and characterization of II-VI semiconductor nanowires and the opto-electronic properties of these nanowires. ZnO/ZnTe core-shell nanowires were successfully fabricated by first growing the ZnO core then ZnTe shell by CVD and MOCVD, respectively. Structure characterization of the core-shell nanowires were carried out by using X-ray diffraction, transmission electron microscope and scanning electron microscope and the core-shell nanowires were found to have good crystalline quality. Optical properties of nanowires were studies by using Raman scattering, confocal laser scanning microscope and the transmission measurements and the results also indicate the nanowires have good optical properties. The nanowire is then made into a single nanowire transistor and its electric properties were studied and the result indicates that it has proper biasing properties and can be use as a functional transistor. In addition to the ZnO/ZnTe system, the ZnO/ZnSe core-shell nanowires were also grown successfully by using the same growth methods. The ZnO/ZnSe nanowires were also found to have good crystal structure and optical properties.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:00:49Z (GMT). No. of bitstreams: 1
ntu-99-D93222025-1.pdf: 9831386 bytes, checksum: f313b9215a345753e05efcca8c7b9253 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsChapter 1 Introduction
1.1 Growth and characterization of type-II ZnO/ZnTe core-shell nanowire array ...1
1.2 The optical properties of ZnO/ZnTe core-shell nanowire and its device applications …………………………………….…………..……………….….3
1.3 Growth and characterization of ZnO/ZnSe core-shell nanowires…...................7
Chapter 2 Growth methods and measurement techniques
2.1 The growth of ZnO nanowires ……………………………………………........11
2.2 Metal-organic chemical vapor deposition (MOCVD)………………….….…12
2.3 Photoluminescence (PL)………………………………….………………….19
2.4 Scanning electron microscopy (SEM) …………………...….........................20
2.5 X-ray diffraction (XRD)……………………………….….……..…..............26
2.6 Confocal laser scanning microscope (CLSM) ………………….……….......29
2.7 High-resolution transmission electron microscopy (HRTEM) .......................32
2.8 Electron beam lithography (EBL)………..………….............….………........33
2.8.1 Electron energy deposition in matter……………………………………..34
2.9 The Schottky barrier diode………………………………….……........……… 36
2.10 Metal-semiconductor ohmic contacts……………………………..….………...37
2.11 The energy-band diagram of the metal-oxide-semiconductor field-effect transistor………………………………………………..……………..………41
Chapter 3 Sample preparation
3.1 Growth of ZnO nanowires and ZnO/ZnTe core-shell nanowires.......................45
3.2 Fabrication of single ZnO/ZnTe core-shell nanowire field-effect transistor..….48
3.3 Growth of ZnO nanowires and ZnO/ZnSe core-shell nanowires………............51
Chapter 4 Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays
4.1 Introduction .......................................................................................................53
4.2 Experimental details……...................................................................................53
4.3 Results and discussion .......................................................................................54
4.4 Conclusion .........................................................................................................61
Chapter 5 The optical properties of ZnO/ZnTe core-shell
nanowires and single core-shell nanowire field
effect transistor
5.1 Introduction .......................................................................................................63
5.2 Experimental details ..........................................................................................63
5.3 Results and discussion .......................................................................................63
5.4 Conclusion .........................................................................................................74
Chapter 6 Growth and characterizations of the ZnO/ZnSe core-shell nanowires
6.1 Introduction ........................................................................................................78
6.2 Experimental details ...........................................................................................78
6.3 Results and discussion ........................................................................................79
6.4 Conclusion ..........................................................................................................88
Chapter 7 Conclusions...........................................................................93
dc.language.isoen
dc.title低維度二六族半導體核殼奈米線之成長與特性分析zh_TW
dc.titleGrowth and Characterization of Low-dimensional
II-VI Semiconductor Core-shell Nanowires
en
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳永芳,梁啟德,孫允武,林泰源
dc.subject.keyword氧化鋅,鍗化鋅,硒化鋅,核殼奈米線,zh_TW
dc.subject.keywordZnO,ZnTe,ZnSe,core-shell nanowires,en
dc.relation.page94
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-01-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf9.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved