請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87616完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韓玉山 | zh_TW |
| dc.contributor.advisor | Yu-San Han | en |
| dc.contributor.author | 侯二仁 | zh_TW |
| dc.contributor.author | Erh-Jen Hou | en |
| dc.date.accessioned | 2023-06-20T16:23:05Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-06-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-01-16 | - |
| dc.identifier.citation | AATCC. (2012). AATCC 135-Test Method for Dimensional Changes of Fabrics after Home Laundering. In AATCC 135.
Abdul-Bari, M. M., McQueen, R. H., Nguyen, H., Wismer, W. v., de la Mata, A. P., & Harynuk, J. J. (2018). Synthetic Clothing and the Problem With Odor: Comparison of Nylon and Polyester Fabrics. Clothing and Textiles Research Journal, 36(4). https://doi.org/10.1177/0887302X18772099 Alenezi, H., Cam, M. E., & Edirisinghe, M. (2021). A novel reusable anti-COVID-19 transparent face respirator with optimized airflow. Bio-Design and Manufacturing, 4(1), 1–9. https://doi.org/10.1007/s42242-020-00097-1 Alfarisi, S., Sholihah, M., Mitake, Y., Tsutsui, Y., Wang, H., & Shimomura, Y. (2022). A Sustainable Approach towards Disposable Face Mask Production Amidst Pandemic Outbreaks. Sustainability 2022, Vol. 14, Page 3849, 14(7), 3849. https://doi.org/10.3390/SU14073849 Allison, A. L., Ambrose-Dempster, E., Bawn, M., Arredondo, M. C., Chau, C., Chandler, K., Dobrijevic, D., Aparasi, T. D., Hailes, H. C., Lettieri, P., Liu, C., Medda, F., Michie, S., Miodownik, M., Munro, B., Purkiss, D., & Ward, J. M. (2021). The impact and effectiveness of the general public wearing masks to reduce the spread of pandemics in the UK: a multidisciplinary comparison of single-use masks versus reusable face masks. UCL Open Environment, 3. https://doi.org/10.14324/111.444/ucloe.000022 Almulhim, A. I., Ahmad, I., Sarkar, S., & Chavali, M. (2021). Consequences of COVID-19 pandemic on solid waste management: Scenarios pertaining to developing countries. Remediation (New York, N.Y.), 31(4), 111–121. https://doi.org/10.1002/rem.21692 Andrejko, K. L., Pry, J. M., Myers, J. F., Fukui, ; Nozomi, Deguzman, J. L., Openshaw, J., Watt, J. P., Lewnard, J. A., & Jain, S. (n.d.). Morbidity and Mortality Weekly Report Effectiveness of Face Mask or Respirator Use in Indoor Public Settings for Prevention of SARS-CoV-2 Infection-California, February-December 2021. https://doi.org/10.1093/cid/ciab640/6324500#supplementary-data ASTM. (2012). D2495-07 Standard Test Method for Moisture in Cotton by Oven-Drying. In D2495-07. Atılgan Türkmen, B. (2022). Life cycle environmental impacts of disposable medical masks. Environmental Science and Pollution Research, 29(17), 25496–25506. https://doi.org/10.1007/S11356-021-17430-5/FIGURES/3 Benson, N. U., Bassey, D. E., & Palanisami, T. (2021). COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint. Heliyon, 7(2), e06343. https://doi.org/10.1016/j.heliyon.2021.e06343 Bhagwat, P. K., & Dandge, P. B. (2016). Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries. Biocatalysis and Agricultural Biotechnology, 7, 234–240. https://doi.org/https://doi.org/10.1016/j.bcab.2016.06.010 Boix Rodríguez, N., Marconi, M., Favi, C., & Formentini, G. (2021). Eco-design actions to improve life cycle environmental performance of face masks in the pandemic era. Proceedings of the Design Society, 1. https://doi.org/10.1017/pds.2021.133 Brown, A. E., & Reinhart, K. A. (1971). Polyester Fiber: From Its Invention to Its Present Position. Science, 173(3994), 287–293. https://doi.org/10.1126/SCIENCE.173.3994.287 Carbon Footprint Calculation Platform-EPA, Taiwan. (n.d.). https://cfp-calculate.tw/eng Cecen, V., Seki, Y., Sarikanat, M., & Tavman, I. H. (2008). FTIR and SEM analysis of polyester- and epoxy-based composites manufactured by VARTM process. Journal of Applied Polymer Science, 108(4), 2163–2170. https://doi.org/10.1002/app.27857 Çeven, E. K., & Günaydın, G. K. (2021). Evaluation of Some Comfort and Mechanical Properties of Knitted Fabrics Made of Different Regenerated Cellulosic Fibres. Fibers and Polymers, 22(2). https://doi.org/10.1007/s12221-021-0246-0 Chou, R., Dana, T., Jungbauer, R., Weeks, C., & McDonagh, M. S. (2020). Masks for prevention of respiratory virus infections, including SARS-CoV-2, in health care and community settings: A living rapid review. In Annals of Internal Medicine (Vol. 173, Issue 7). https://doi.org/10.7326/M20-3213 Chowdhury, H., Chowdhury, T., & Sait, S. M. (2021). Estimating marine plastic pollution from COVID-19 face masks in coastal regions. Marine Pollution Bulletin, 168. https://doi.org/10.1016/j.marpolbul.2021.112419 Colgrave, M. L., Allingham, P. G., & Jones, A. (2008). Hydroxyproline quantification for the estimation of collagen in tissue using multiple reaction monitoring mass spectrometry. Journal of Chromatography A, 1212(1), 150–153. https://doi.org/https://doi.org/10.1016/j.chroma.2008.10.011 Collagen Bionic Yarn Collection. (n.d.). https://www.inooknitshoes.com/pages/collagen-bionic-yarn-collection Collagen printed cropped trousers. (n.d.). http://www.zmo.com.tw/SalePage/Index/3113629 Collagen-infused fabric . (n.d.). https://www.betabrand.com/collagen-infused-tunic Cool-Touch Tunic (Poppy). (n.d.). https://www.betabrand.com/collagen-infused-tunic de Felice, B., Antenucci, S., Ortenzi, M. A., & Parolini, M. (2022). Laundering of face masks represents an additional source of synthetic and natural microfibers to aquatic ecosystems. The Science of the Total Environment, 806(Pt 1). https://doi.org/10.1016/J.SCITOTENV.2021.150495 Dharmaraj, S., Ashokkumar, V., Hariharan, S., Manibharathi, A., Show, P. L., Chong, C. T., & Ngamcharussrivichai, C. (2021). The COVID-19 pandemic face mask waste: A blooming threat to the marine environment. Chemosphere, 272. https://doi.org/10.1016/j.chemosphere.2021.129601 Du, H., Huang, S., & Wang, J. (2022). Environmental risks of polymer materials from disposable face masks linked to the COVID-19 pandemic. The Science of the Total Environment, 815. https://doi.org/10.1016/J.SCITOTENV.2022.152980 Ennaas, N., Hammami, R., Gomaa, A., Bedard, F., Biron, E., Subirade, M., Beaulieu, L., & Fliss, I. (2016). Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane. Biochem Biophys Res Commun, 473(2), 642–647. https://doi.org/10.1016/j.bbrc.2016.03.121 Face, T. N. (2022). Hikesteller Shirt Women agave green. https://www.sport-bittl.com/en/the-north-face-r-hikesteller-shirt-women-agave-green::184703.html Fadare, O. O., & Okoffo, E. D. (2020a). Covid-19 face masks: A potential source of microplastic fibers in the environment. Science of the Total Environment, 737. https://doi.org/10.1016/j.scitotenv.2020.140279 Fadare, O. O., & Okoffo, E. D. (2020b). Covid-19 face masks: A potential source of microplastic fibers in the environment. Science of the Total Environment, 737. https://doi.org/10.1016/j.scitotenv.2020.140279 FAO. (2018). The State of Fisheries and Aquaculture in the world 2018. In Fao. FAO. (2020). SAVE FOOD: Global Initiative on Food Loss and Waste Reduction. http://www.fao.org/save-food/resources/keyfindings/infographics/fish/en/ Ford, N., Holmer, H. K., Chou, R., Villeneuve, P. J., Baller, A., van Kerkhove, M., & Allegranzi, B. (2021). Mask use in community settings in the context of COVID-19: A systematic review of ecological data. EClinicalMedicine, 38. https://doi.org/10.1016/j.eclinm.2021.101024 Giungato, P., Rana, R. L., Nitti, N., Cavallari, C., & Tricase, C. (2021). Carbon Footprint of Surgical Masks Made in Taranto to Prevent SARS-CoV-2 Diffusion: A Preliminary Assessment. Sustainability 2021, Vol. 13, Page 6296, 13(11), 6296. https://doi.org/10.3390/SU13116296 Guo, S., Li, X., Zhao, R., & Gong, Y. (2021). Comparison of life cycle assessment between lyocell fiber and viscose fiber in China. The International Journal of Life Cycle Assessment 2021 26:8, 26(8), 1545–1555. https://doi.org/10.1007/S11367-021-01916-Y Hatch, K. L. (2002). American standards for UV-protective textiles. In Recent results in cancer research. Fortschritte der Krebsforschung. Progrès dans les recherches sur le cancer (Vol. 160). https://doi.org/10.1007/978-3-642-59410-6_6 Hou, E. J., Huang, C. S., Lee, Y. C., & Chu, H. T. (2022). Upcycled aquaculture waste as textile ingredient for promoting circular economy. Sustainable Materials and Technologies, 31. https://doi.org/10.1016/j.susmat.2021.e00336 Hou, E. J., Huang, C. S., Lee, Y. C., Han, Y. S., & Chu, H. T. (2022). A method for the process of collagen modified polyester from fish scales waste. MethodsX, 9. https://doi.org/10.1016/J.MEX.2022.101636 Hou, E.-J., Hsieh, Y.-Y., Hsu, T.-W., Huang, C.-S., Lee, Y.-C., Han, Y.-S., & Chu, H.-T. (2022). Using the concept of circular economy to reduce the environmental impact of COVID-19 face mask waste. Sustainable Materials and Technologies, 33, e00475. https://doi.org/10.1016/J.SUSMAT.2022.E00475 Howard, J., Huang, A., Li, Z., Tufekci, Z., Zdimal, V., van der Westhuizen, H. M., von Delft, A., Price, A., Fridman, L., Tang, L. H., Tang, V., Watson, G. L., Bax, C. E., Shaikh, R., Questier, F., Hernandez, D., Chu, L. F., Ramirez, C. M., & Rimoin, A. W. (2021). An evidence review of face masks against COVID-19. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 118, Issue 4). https://doi.org/10.1073/pnas.2014564118 Hu, S., Tian, H., Zhang, S., Wang, D., Gong, G., Yue, W., Liu, K., Hong, S., Wang, R., Yuan, Q., Lu, Y., Wang, D., Zhang, L., & Chen, J. (2021). Fabrication of a High-Performance and Reusable Planar Face Mask in Response to the COVID-19 Pandemic. Engineering. https://doi.org/10.1016/j.eng.2021.07.022 Islam, S. M. D.-U., Mondal, P. K., Ojong, N., Bodrud-Doza, M., Siddique, M. A. B., Hossain, M., & Mamun, M. A. (2021). Water, sanitation, hygiene and waste disposal practices as COVID-19 response strategy: insights from Bangladesh. Environment, Development and Sustainability, 23(8), 11953–11974. https://doi.org/10.1007/s10668-020-01151-9 Islam, S., Tasnim, N., & Islam, T. (2019). Investigation of the change of the shrinkage properties in contradiction to the change of the composition of cotton polyester spandex denim fabrics. Journal of Textile Engineering & Fashion Technology, 5(3). https://doi.org/10.15406/jteft.2019.05.00197 ISO. (2010). ISO 10993-10 Biological evaluation of medical devices — Part 10: Tests for irritation and skin sensitization. ISO. (2014). ISO 17299-2 Textiles --Determination of deodorant property. In ISO 17299-2. J, N. C., Ravi, R., U, A. K., & Venu, D. (2021). LIFE CYCLE ASSESSMENT OF COTTON Vs SURGICAL FACE MASK USING OPEN-LCA SOFTWARE. International Research Journal of Engineering and Technology. Jalal Uddin, A. (2010). 5 - Coatings for technical textile yarns. In R. Alagirusamy & A. Das (Eds.), Technical Textile Yarns (pp. 140–184). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9781845699475.1.140 JIS. (2012). JIS L 1030-2 Textiles moisture content and moisture regain of textile Oven-dring method. In JIS L 1030-2. Kausar, A. (2018). Review of fundamentals and applications of polyester nanocomposites filled with carbonaceous nanofillers. Journal of Plastic Film & Sheeting, 35(1), 22–44. https://doi.org/10.1177/8756087918783827 Kim, A. H. J., & Nakamura, M. C. (2021). COVID-19 Breakthrough Infection Among Immunocompromised Persons. https://doi.org/10.1001/jamainternmed.2021.7033 Kimura, N., Kim, H. K., Kim, B. S., Lee, K. H., & Kim, I. S. (2010). Molecular orientation and crystalline structure of aligned electrospun nylon-6 nanofibers: Effect of gap size. Macromolecular Materials and Engineering, 295(12), 1090–1096. https://doi.org/10.1002/mame.201000235 Kipershlak, E. Z., & Pakshver, A. B. (1978). New developments in viscose research — a review. Fibre Chemistry 1978 9:5, 9(5), 458–467. https://doi.org/10.1007/BF00546443 Kırcı, F., Karamanlargil, E., Duru, S. C., Nergis, B., & Candan, C. (2021). Comfort Properties of Medical Compression Stockings from Biodesigned and Cotton Fibers. Fibers and Polymers, 22(10). https://doi.org/10.1007/s12221-021-0615-8 Kumar, B., & Rani, S. (2017). Technical note on the isolation and characterization of collagen from fish waste material. Journal of Food Science and Technology, 54(1), 276–278. https://doi.org/10.1007/s13197-016-2443-1 Kumar, H., Azad, A., Gupta, A., Sharma, J., Bherwani, H., Labhsetwar, N. K., & Kumar, R. (2021). COVID-19 Creating another problem? Sustainable solution for PPE disposal through LCA approach. Environment, Development and Sustainability, 23(6), 9418–9432. https://doi.org/10.1007/s10668-020-01033-0 Lee, A. W. L., Neo, E. R. K., Khoo, Z.-Y., Yeo, Z., Tan, Y. S., Chng, S., Yan, W., Lok, B. K., & Low, J. S. C. (2021). Life cycle assessment of single-use surgical and embedded filtration layer (EFL) reusable face mask. Resources, Conservation, and Recycling, 170, 105580. https://doi.org/10.1016/j.resconrec.2021.105580 Li, Y., Liang, M., Gao, L., Ayaz Ahmed, M., Uy, J. P., Cheng, C., Zhou, Q., & Sun, C. (2021). Face masks to prevent transmission of COVID-19: A systematic review and meta-analysis. American Journal of Infection Control, 49(7), 900–906. https://doi.org/10.1016/J.AJIC.2020.12.007 Lin, C. A. (2008). 3 - Manufacture of polyester fibres. In B. L. Deopura, R. Alagirusamy, M. Joshi, & B. Gupta (Eds.), Polyesters and Polyamides (pp. 62–96). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9781845694609.1.62 Miki, T., Tokutake, S., & Ishizawa, H. (2010). Infrared spectroscopy of fiber composition of textile products. Journal of the Illuminating Engineering Institute of Japan (Shomei Gakkai Shi), 94(8 A). https://doi.org/10.2150/jieij.94.436 Patrício Silva, A. L., Prata, J. C., Walker, T. R., Duarte, A. C., Ouyang, W., Barcelò, D., & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. In Chemical Engineering Journal (Vol. 405). https://doi.org/10.1016/j.cej.2020.126683 Perkas, N., Amirian, G., Dubinsky, S., Gazit, S., & Gedanken, A. (2007). Ultrasound-assisted coating of nylon 6,6 with silver nanoparticles and its antibacterial activity. Journal of Applied Polymer Science, 104(3). https://doi.org/10.1002/app.24728 Phan, T. L., & Ching, C. T. S. (2020). A Reusable Mask for Coronavirus Disease 2019 (COVID-19). Archives of Medical Research, 51(5), 455–457. https://doi.org/10.1016/j.arcmed.2020.04.001 Rodríguez, N. B., Formentini, G., Favi, C., & Marconi, M. (2021a). Environmental implication of personal protection equipment in the pandemic era: LCA comparison of face masks typologies. Procedia CIRP, 98, 306–311. https://doi.org/10.1016/j.procir.2021.01.108 Rodríguez, N. B., Formentini, G., Favi, C., & Marconi, M. (2021b). Engineering Design Process of Face Masks Based on Circularity and Life Cycle Assessment in the Constraint of the COVID-19 Pandemic. Sustainability 2021, Vol. 13, Page 4948, 13(9), 4948. https://doi.org/10.3390/SU13094948 Saadat, S., Rawtani, D., & Hussain, C. M. (2020). Environmental perspective of COVID-19. In Science of the Total Environment (Vol. 728). https://doi.org/10.1016/j.scitotenv.2020.138870 Schlede, E., & Eppler, R. (1995). Testing for skin sensitization according to the notification procedure for new chemicals: the Magnusson and Kligman test. Contact Dermatitis, 32(1), 1–4. Schmutz, M., Hischier, R., Batt, T., Wick, P., Nowack, B., Wäger, P., & Som, C. (2020). Cotton and Surgical Masks—What Ecological Factors Are Relevant for Their Sustainability? Sustainability 2020, Vol. 12, Page 10245, 12(24), 10245. https://doi.org/10.3390/SU122410245 Selvaranjan, K., Navaratnam, S., Rajeev, P., & Ravintherakumaran, N. (2021). Environmental challenges induced by extensive use of face masks during COVID-19: A review and potential solutions. In Environmental Challenges (Vol. 3). https://doi.org/10.1016/j.envc.2021.100039 Stawski, D., & Nowak, A. (2019). Thermal properties of poly(N,N-dimethylaminoethyl methacrylate). PloS One, 14(6), e0217441–e0217441. https://doi.org/10.1371/journal.pone.0217441 Swain, I. D. (2020). Why the mask? The effectiveness of face masks in preventing the spread of respiratory infections such as COVID-19–a home testing protocol. In Journal of Medical Engineering and Technology (Vol. 44, Issue 6). https://doi.org/10.1080/03091902.2020.1797198 Tilmaciu, C., & Morris, M. (2015). Carbon Nanotube Biosensors. Frontiers in Chemistry, 3. https://doi.org/10.3389/fchem.2015.00059 Use and Care of Masks | CDC. (n.d.). Retrieved July 4, 2022, from https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/about-face-coverings.html van Straten, B., Ligtelijn, S., Droog, L., Putman, E., Dankelman, J., Weiland, N. H. S., & Horeman, T. (2021). A life cycle assessment of reprocessing face masks during the Covid-19 pandemic. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-97188-5 Viswanathan, A. (2010). Wallace Carothers: More than the inventor of Nylon and Neoprene. World Patent Information, 32(4), 300–305. https://doi.org/10.1016/J.WPI.2009.09.004 Wang, J., Pan, L., Tang, S., Ji, J. S., & Shi, X. (2020). Mask use during COVID-19: A risk adjusted strategy. In Environmental Pollution (Vol. 266). https://doi.org/10.1016/j.envpol.2020.115099 Wang, L., Wang, Q. Q., Davis, P. B., Volkow, N. D., & Xu, R. (2022). Increased risk for COVID-19 breakthrough infection in fully vaccinated patients with substance use disorders in the United States between December 2020 and August 2021. World Psychiatry, 21(1). https://doi.org/10.1002/wps.20921 Wu, J., Zhou, H., Zhou, J., Zhu, X., Zhang, B., Feng, S., Zhong, Z., Kong, L., & Xing, W. (2021). Meltblown fabric vs nanofiber membrane, which is better for fabricating personal protective equipments. Chinese Journal of Chemical Engineering, 36. https://doi.org/10.1016/j.cjche.2020.10.022 Yamamoto, S., Maeda, K., Matsuda, K., Tanaka, A., Horii, K., Okudera, K., Takeuchi, J. S., Mizoue, T., Konishi, M., Ozeki, M., Sugiyama, H., Aoyanagi, N., Mitsuya, H., Sugiura, W., & Ohmagari, N. (n.d.). COVID-19 breakthrough infection and post-vaccination neutralizing antibody among healthcare workers in a referral hospital in Tokyo: a case-control matching study. https://doi.org/10.1093/cid/ciab1048/6482345 Yang, Y., Yu, X., Wang, X., Sun, Y., Zhang, P., & Liu, X. (2020). Effect of jade nanoparticle content and twist of cool-touch polyester filaments on comfort performance of knitted fabrics. Textile Research Journal, 0040517520920950. https://doi.org/10.1177/0040517520920950 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87616 | - |
| dc.description.abstract | 水產品是人類重要食物的來源,根據調查,水產品約有35%是廢棄物,因此水產品的廢棄物管理是永續漁業的重要課題。隨著人口增加,人類對於資源的應用日益增加,以紡織業為例,天然纖維與人造纖維使用量亦逐年增長,對於環境負荷越來越重。
本研究希望透過升級再造的概念,利用魚鱗萃取膠原蛋白胜肽改質紡織原料,使改質的人造纖維具有如羊毛、蠶絲等天然動物性纖維的高親膚性與功能性,同時能降低環境污染。 本研究面對的最大挑戰來自於如何設計新的人造纖維製程,讓回收魚鱗膠原蛋白可以和原本的紡織纖維進行有效聚合。本研究都做了大量的實驗,對製程的多次分析改進,成功產出三種含膠原蛋白的改良人造纖維產物:膠原蛋白聚酯、膠原蛋白嫘縈、膠原蛋白尼龍。在功能性方面,針對三種新人造纖維進行回潮率檢測、除臭檢測、上色率測試、手感測試、抗紫外線、抗靜電測試等測試結果都顯示具有較好的表現。生物相容性測試結果也顯示改良的膠原蛋白紡織纖維不會產生對人體皮膚造成不良反應。 本研究為紡織材料開闢了新方向,可以保護生態減少環境污染,為紡織工業的永續發展提供優質價值。各種來自於水產品廢棄物回收升級的新型仿生紡織材料可以為聯合國第14項永續發展目標的永續利用海洋資源,做出貢獻。 | zh_TW |
| dc.description.abstract | Aquatic products are an important source of human food. According to a survey, about 35% of aquatic products are waste. Therefore, the waste management of aquatic product is an important issue for sustainable fisheries.
As population increase, the resources be increase used annually. In textile industry, the natural fiber and man-made fiber increasing produce annually also caused big environmental problem. This study used upcycle concept which extracted the collagen peptide from fish scale and combine with textile material and expect these new textile materials can shows higher skin friendly and multifunction features like natural animal fiber such as silk and wool and can reduce environment problem at the same time. The biggest challenge faced by this study comes from how to design a new process to combine the collagen peptide with man-made fiber. After a lot of study and development, this study finally developed three new materials: collagen modified polyester, collagen modified viscose and collagen modified polyamide. Regarding the functional features, this study did the several tests of three collagen modified fibers including moisture regain, deodorant, dye uptake, UV protection, antistatic test and the test results show nice performance. Biocompatibility test results also show that the collagen modified fibers product won’t cause harmful reactions to skin. This study opens a new direction for textile materials, which can protect the ecology and reduce environmental pollution, and provide high-quality value for the sustainable development of the textile industry. Various new biomimetic textile materials from the recycling and upgrading of aquatic product waste can contribute to the sustainable use of marine resources in the 14th Sustainable Development Goal of the United Nations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:23:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-06-20T16:23:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 xi 第一章前言 1 1-1研究背景與動機 1 1-2紡織材料的演變 2 1-3 研究目的 ……………………………………………………………………………4 1-4章節安排說明 4 第二章材料和方法 6 2-1魚鱗膠原蛋白材料的製備 6 2-2開發膠原蛋白聚酯的材料和方法 7 2-3開發膠原蛋白嫘縈的材料和方法 9 2-4開發膠原蛋白尼龍的材料和方法 10 2-5掃描電子顯微鏡分析 11 2-6元素分析 …………………………………………………………………………..11 2-7液相層析質譜/質譜儀(LC MS/MS)分析 11 2-8回潮率測試(Moisture regain test) 12 2-9消臭測試(Deodorization test) 12 2-10生物相容性試驗(Biocompatibility test) 13 2-11紫外線防護係數測試(UPF test) 15 2-12上色率測試(Dye uptake test) 15 2-13手感測試(Hand-feel test) 16 第三章膠原蛋白聚酯纖維的特性及應用 17 3-1膠原蛋白聚酯的特性 17 3-2膠原蛋白聚酯的性質 18 3-3膠原蛋白聚酯的生物相容性 19 3-4 膠原蛋白聚酯纖維的手感 19 3-5目前紡織品市場上的膠原蛋白聚酯應用 20 第四章膠原蛋白嫘縈的特性及應用 27 4-1膠原蛋白嫘縈纖維的回潮率及消臭測試 27 4-2膠原蛋白嫘縈纖維的生物相容性 30 4-3 膠原蛋白嫘縈纖維應用在可重覆使用的COVID-19口罩 33 4-4 使用生命週期評估比較一次性和可重複使用的口罩 40 4-5 目前膠原蛋白嫘縈的應用產品 42 第五章膠原蛋白尼龍纖維的特性及應用 43 5-1 膠原蛋白尼龍的特性 43 5-2膠原蛋白尼龍的生物相容性 48 5-3 膠原蛋白尼龍的功能性 51 5-3 目前膠原蛋白尼龍的應用產品 56 第六章結論 58 參考文獻 59 發表論文清單 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 膠原蛋白紡織纖維 | zh_TW |
| dc.subject | 廢棄物管理 | zh_TW |
| dc.subject | 永續漁業 | zh_TW |
| dc.subject | 升級再造 | zh_TW |
| dc.subject | 仿生 | zh_TW |
| dc.subject | upcycle | en |
| dc.subject | biomimetic | en |
| dc.subject | collagen modified fiber | en |
| dc.subject | sustainable fishery | en |
| dc.subject | waste management | en |
| dc.title | 升級循環水產養殖廢棄物以開發新型紡織材料和應用 | zh_TW |
| dc.title | Upgrading recycled aquaculture waste to develop novel textile materials and applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 李英周 | zh_TW |
| dc.contributor.coadvisor | Ying-Chou Lee | en |
| dc.contributor.oralexamcommittee | 高成炎;陳達仁;李宗徽;朱學亭;施君翰 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Yan Kao;Dar-Zen Chen;Tzong-huei Lee;Hsueh-Ting Chu;Chun-Han Shih | en |
| dc.subject.keyword | 廢棄物管理,永續漁業,升級再造,膠原蛋白紡織纖維,仿生, | zh_TW |
| dc.subject.keyword | waste management,sustainable fishery,upcycle,collagen modified fiber,biomimetic, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202300088 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-01-17 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 3.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
