Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87607
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志zh_TW
dc.contributor.advisorShinn-Chih Wuen
dc.contributor.author宋家蓁zh_TW
dc.contributor.authorChia-Chen Sungen
dc.date.accessioned2023-06-20T16:20:04Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2023-
dc.date.submitted2023-02-14-
dc.identifier.citationArpino, V., Brock, M., & Gill, S. E. (2015). The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biology, 44-46, 247–254.
Azadeh, N., Limper, A. H., Carmona, E. M., & Ryu, J. H. (2017). The Role of Infection in Interstitial Lung Diseases: A Review. Chest, 152(4), 842–852.
Baghaban Eslaminejad, M., Jahangir, S., & Aghdami, N. (2011). Mesenchymal stem cells from murine amniotic fluid as a model for preclinical investigation. Archives of Iranian Medicine, 14(2), 96–103.
Barkauskas, C. E., Cronce, M. J., Rackley, C. R., Bowie, E. J., Keene, D. R., Stripp, B. R., Randell, S. H., Noble, P. W., & Hogan, B. L. (2013). Type 2 alveolar cells are stem cells in adult lung. The Journal of Clinical Investigation, 123(7), 3025–3036.
Barratt, S. L., Creamer, A., Hayton, C., & Chaudhuri, N. (2018). Idiopathic Pulmonary Fibrosis (IPF): An Overview. Journal of Clinical Medicine, 7(8), 201.
Bertin, E., Piccoli, M., Franzin, C., Spiro, G., Donà, S., Dedja, A., … Pozzobon, M. (2016). First steps to define murine amniotic fluid stem cell microenvironment. Scientific Reports, 6, 37080.
Bissonnette, E. Y., Lauzon-Joset, J. F., Debley, J. S., & Ziegler, S. F. (2020). Cross-Talk Between Alveolar Macrophages and Lung Epithelial Cells is Essential to Maintain Lung Homeostasis. Frontiers in Immunology, 11, 583042.
Caminati, A., Madotto, F., Cesana, G., Conti, S., & Harari, S. (2015). Epidemiological studies in idiopathic pulmonary fibrosis: pitfalls in methodologies and data interpretation. European respiratory review: an official journal of the European Respiratory Society, 24(137), 436–444.
Carraro, G., Perin, L., Sedrakyan, S., Giuliani, S., Tiozzo, C., Lee, J., ... Warburton, D. (2008). Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells, 26(11), 2902–2911.
Carreras, A., Almendros, I., Montserrat, J. M., Navajas, D., & Farré, R. (2010). Mesenchymal stem cells reduce inflammation in a rat model of obstructive sleep apnea. Respiratory Physiology & Neurobiology, 172(3), 210–212.
Castelli, V., Antonucci, I., d'Angelo, M., Tessitore, A., Zelli, V., Benedetti, E., … Cimini, A. (2021). Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusion model. Stem Cells Translational Medicine, 10(2), 251–266.
Chu, K. A., Wang, S. Y., Yeh, C. C., Fu, T. W., Fu, Y. Y., Ko, T. L., … Fu, Y. S. (2019). Reversal of bleomycin-induced rat pulmonary fibrosis by a xenograft of human umbilical mesenchymal stem cells from Wharton's jelly. Theranostics, 9(22), 6646–6664.
Cottin, V., Wollin, L., Fischer, A., Quaresma, M., Stowasser, S., & Harari, S. (2019). Fibrosing interstitial lung diseases: knowns and unknowns. European Respiratory Review, 28(151), 180100.
Craig, V. J., Zhang, L., Hagood, J. S., & Owen, C. A. (2015). Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 53(5), 585–600.
Cruwys, S., Hein, P., Humphries, B., & Black, D. (2020). Drug discovery and development in idiopathic pulmonary fibrosis: challenges and opportunities. Drug Discovery Today, 25(12), 2277–2283.
D'Arrigo, D., Roffi, A., Cucchiarini, M., Moretti, M., Candrian, C., & Filardo, G. (2019). Secretome and Extracellular Vesicles as New Biological Therapies for Knee Osteoarthritis: A Systematic Review. Journal of Clinical Medicine, 8(11), 1867.
De Coppi, P., Bartsch, G., Jr, Siddiqui, M. M., Xu, T., Santos, C. C., Perin, L., … Atala, A. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25(1), 100–106.
Degryse, A. L., Tanjore, H., Xu, X. C., Polosukhin, V. V., Jones, B. R., McMahon, F. B., Gleaves, L. A., Blackwell, T. S., & Lawson, W. E. (2010). Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. American journal of physiology. Lung Cellular and Molecular Physiology, 299(4), L442–L452.
Della Latta, V., Cecchettini, A., Del Ry, S., & Morales, M. A. (2015). Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions. Pharmacological Research, 97, 122–130.
Drakopanagiotakis, F., Wujak, L., Wygrecka, M., & Markart, P. (2018). Biomarkers in idiopathic pulmonary fibrosis. Matrix Biology, 68-69, 404–421.
Dziadosz, M., Basch, R. S., & Young, B. K. (2016). Human amniotic fluid: a source of stem cells for possible therapeutic use. American Journal of Obstetrics and Gynecology, 214(3), 321–327.
Felix, R. G., Bovolato, A. L. C., Cotrim, O. S., Leão, P. D. S., Batah, S. S., Golim, M. A., … Capelozzi, V. L. (2020). Adipose-derived stem cells and adipose-derived stem cell-conditioned medium modulate in situ imbalance between collagen I- and collagen V-mediated IL-17 immune response recovering bleomycin pulmonary fibrosis. Histology and Histopathology, 35(3), 289–301.
Filidou, E., Kandilogiannakis, L., Tarapatzi, G., Su, C., Po, E. N. F., Paspaliaris, V., & Kolios, G. (2021). Conditioned medium from a human adipose-derived stem cell line ameliorates inflammation and fibrosis in a lung experimental model of idiopathic pulmonary fibrosis. Life Sciences, 287, 120123.
Finnerty, J. P., Ponnuswamy, A., Dutta, P., Abdelaziz, A., & Kamil, H. (2021). Efficacy of antifibrotic drugs, nintedanib and pirfenidone, in treatment of progressive pulmonary fibrosis in both idiopathic pulmonary fibrosis (IPF) and non-IPF: a systematic review and meta-analysis. BMC Pulmonary Medicine, 21(1), 411.
Fischer, U. M., Harting, M. T., Jimenez, F., Monzon-Posadas, W. O., Xue, H., Savitz, S. I., Laine, G. A., & Cox, C. S., Jr (2009). Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells and Development, 18(5), 683–692.
Gaggi, G., Izzicupo, P., Di Credico, A., Sancilio, S., Di Baldassarre, A., & Ghinassi, B. (2019). Spare Parts from Discarded Materials: Fetal Annexes in Regenerative Medicine. International Journal of Molecular Sciences, 20(7), 1573.
Garcia, O., Carraro, G., Turcatel, G., Hall, M., Sedrakyan, S., Roche, T., Buckley, S., Driscoll, B., Perin, L., & Warburton, D. (2013). Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage. PloS One, 8(8), e71679.
Gehr, P., Bachofen, M., & Weibel, E. R. (1978). The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respiration Physiology, 32(2), 121–140.
George, P. M., Patterson, C. M., Reed, A. K., & Thillai, M. (2019). Lung transplantation for idiopathic pulmonary fibrosis. The Lancet. Respiratory Medicine, 7(3), 271–282.
Gholizadeh-Ghaleh Aziz, S., Fathi, E., Rahmati-Yamchi, M., Akbarzadeh, A., Fardyazar, Z., & Pashaiasl, M. (2017). An update clinical application of amniotic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering. Artificial Cells, Nanomedicine, and Biotechnology, 45(4), 765–774.
Glass, D. S., Grossfeld, D., Renna, H. A., Agarwala, P., Spiegler, P., DeLeon, J., & Reiss, A. B. (2022). Idiopathic pulmonary fibrosis: Current and future treatment. The Clinical Respiratory Journal, 16(2), 84–96.
Glasser, S. W., Hagood, J. S., Wong, S., Taype, C. A., Madala, S. K., & Hardie, W. D. (2016). Mechanisms of Lung Fibrosis Resolution. The American Journal of Pathology, 186(5), 1066–1077.
Goemaere, N. N., Grijm, K., van Hal, P. T., & den Bakker, M. A. (2008). Nitrofurantoin-induced pulmonary fibrosis: a case report. Journal of Medical Case Reports, 2, 169.
Guillot, L., Nathan, N., Tabary, O., Thouvenin, G., Le Rouzic, P., Corvol, H., Amselem, S., & Clement, A. (2013). Alveolar epithelial cells: master regulators of lung homeostasis. The International Journal of Biochemistry & Cell Biology, 45(11), 2568–2573.
Gulati, S., & Thannickal, V. J. (2019). The Aging Lung and Idiopathic Pulmonary Fibrosis. The American Journal of the Medical Sciences, 357(5), 384–389.
Hadjicharalambous, M. R., & Lindsay, M. A. (2020). Idiopathic Pulmonary Fibrosis: Pathogenesis and the Emerging Role of Long Non-Coding RNAs. International Journal of Molecular Sciences, 21(2), 524.
Hama Amin, B. J., Kakamad, F. H., Ahmed, G. S., Ahmed, S. F., Abdulla, B. A., Mohammed, S. H., … Hussein, D. A. (2022). Post COVID-19 pulmonary fibrosis; a meta-analysis study. Annals of Medicine and Surgery, 77, 103590.
Hanania, A. N., Mainwaring, W., Ghebre, Y. T., Hanania, N. A., & Ludwig, M. (2019). Radiation-Induced Lung Injury: Assessment and Management. Chest, 156(1), 150–162.
How, C. K., Chien, Y., Yang, K. Y., Shih, H. C., Juan, C. C., Yang, Y. P., … Lee, C. H. (2013). Induced pluripotent stem cells mediate the release of interferon gamma-induced protein 10 and alleviate bleomycin-induced lung inflammation and fibrosis. Shock, 39(3), 261–270.
Hsia, C. C., Hyde, D. M., & Weibel, E. R. (2016). Lung Structure and the Intrinsic Challenges of Gas Exchange. Comprehensive Physiology, 6(2), 827–895.
Hu, J., Chen, X., Li, P., Lu, X., Yan, J., Tan, H., & Zhang, C. (2021). Exosomes derived from human amniotic fluid mesenchymal stem cells alleviate cardiac fibrosis via enhancing angiogenesis in vivo and in vitro. Cardiovascular Diagnosis and Therapy, 11(2), 348–361.
Hussell, T., & Bell, T. J. (2014). Alveolar macrophages: plasticity in a tissue-specific context. Nature reviews. Immunology, 14(2), 81–93.
Jenkins, R. G., Moore, B. B., Chambers, R. C., Eickelberg, O., Königshoff, M., Kolb, M., … ATS Assembly on Respiratory Cell and Molecular Biology (2017). An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 56(5), 667–679.
Joseph, D., Puttaswamy, R. K., Krovvidi, H. (2013). Non-respiratory functions of the lung. Continuing Education in Anaesthesia Critical Care & Pain, 13(3), 98–102,
Kolambkar, Y. M., Peister, A., Soker, S., Atala, A., & Guldberg, R. E. (2007). Chondrogenic differentiation of amniotic fluid-derived stem cells. Journal of Molecular Histology, 38(5), 405–413.
Kostopanagiotou, K., Schuurmans, M. M., Inci, I., & Hage, R. (2022). COVID-19-related end stage lung disease: two distinct phenotypes. Annals of Medicine, 54(1), 588–590.
Lan, Y. W., Yang, J. C., Yen, C. C., Huang, T. T., Chen, Y. C., Chen, H. L., Chong, K. Y., & Chen, C. M. (2019). Predifferentiated amniotic fluid mesenchymal stem cells enhance lung alveolar epithelium regeneration and reverse elastase-induced pulmonary emphysema. Stem Cell Research & Therapy, 10(1), 163.
Lederer, D. J., & Martinez, F. J. (2018). Idiopathic Pulmonary Fibrosis. The New England Journal of Medicine, 378(19), 1811–1823.
Lefrançais, E., & Looney, M. R. (2019). Platelet Biogenesis in the Lung Circulation. Physiology, 34(6), 392–401.
Lefrançais, E., Ortiz-Muñoz, G., Caudrillier, A., Mallavia, B., Liu, F., Sayah, D. M., … Looney, M. R. (2017). The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 544(7648), 105–109.
Leuschner, G., Klotsche, J., Kreuter, M., Prasse, A., Wirtz, H., Pittrow, D., Frankenberger, M., Behr, J., Kneidinger, N., & INSIGHTS-IPF Registry Group (2020). Idiopathic Pulmonary Fibrosis in Elderly Patients: Analysis of the INSIGHTS-IPF Observational Study. Frontiers in Medicine, 7, 601279.
Li, Y., Liu, J., Liao, G., Zhang, J., Chen, Y., Li, L., … Lu, Y. (2018). Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment. International Journal of Molecular Medicine, 41(5), 2629–2639.
Li, Y., Xu, W., Yan, J., Xia, Y., Gu, C., Ma, Y., & Tao, H. (2014). Differentiation of human amniotic fluid-derived mesenchymal stem cells into type II alveolar epithelial cells in vitro. International Journal of Molecular Medicine, 33(6), 1507–1513.
Liang, J., Zhang, Y., Xie, T., Liu, N., Chen, H., Geng, Y., … Noble, P. W. (2016). Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nature Medicine, 22(11), 1285–1293.
Loukogeorgakis, S. P., & De Coppi, P. (2016). Stem cells from amniotic fluid--Potential for regenerative medicine. Best Practice & Research. Clinical Obstetrics & Gynaecology, 31, 45–57.
Loukogeorgakis, S. P., & De Coppi, P. (2017). Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications. Stem Cells, 35(7), 1663–1673.
Madani, Y., & Mann, B. (2012). Nitrofurantoin-induced lung disease and prophylaxis of urinary tract infections. Primary care respiratory journal : journal of the General Practice Airways Group, 21(3), 337–341.
Maher, T. M., Bendstrup, E., Dron, L., Langley, J., Smith, G., Khalid, J. M., Patel, H., & Kreuter, M. (2021). Global incidence and prevalence of idiopathic pulmonary fibrosis. Respiratory Research, 22(1), 197.
Majewski, S., & Piotrowski, W. J. (2020). Air Pollution-An Overlooked Risk Factor for Idiopathic Pulmonary Fibrosis. Journal of Clinical Medicine, 10(1), 77.
Mansouri, N., Willis, G. R., Fernandez-Gonzalez, A., Reis, M., Nassiri, S., Mitsialis, S. A., & Kourembanas, S. (2019). Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight, 4(21), e128060.
Maraldi, T., Bertoni, L., Riccio, M., Zavatti, M., Carnevale, G., Resca, E., Guida, M., Beretti, F., La Sala, G. B., & De Pol, A. (2014). Human amniotic fluid stem cells: neural differentiation in vitro and in vivo. Cell and Tissue Research, 357(1), 1–13.
Martin-Rendon, E., Sweeney, D., Lu, F., Girdlestone, J., Navarrete, C., & Watt, S. M. (2008). 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sanguinis, 95(2), 137–148.
Mason, R. J., & Williams, M. C. (1977). Type II alveolar cell. Defender of the alveolus. The American Review of Respiratory Disease, 115(6 Pt 2), 81–91.
Miles, T., Hoyne, G. F., Knight, D. A., Fear, M. W., Mutsaers, S. E., & Prêle, C. M. (2020). The contribution of animal models to understanding the role of the immune system in human idiopathic pulmonary fibrosis. Clinical & Translational Immunology, 9(7), e1153.
Moeller, A., Ask, K., Warburton, D., Gauldie, J., & Kolb, M. (2008). The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis?. The International Journal of Biochemistry & Cell Biology, 40(3), 362–382.
Moore, B. B., & Hogaboam, C. M. (2008). Murine models of pulmonary fibrosis. American journal of physiology. Lung Cellular and Molecular Physiology, 294(2), L152–L160.
Morrison, S. J., & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441(7097), 1068–1074.
Moschidou, D., Mukherjee, S., Blundell, M. P., Jones, G. N., Atala, A. J., Thrasher, A. J., Fisk, N. M., De Coppi, P., & Guillot, P. V. (2013). Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cells and Development, 22(3), 444–458.
Mouratis, M. A., & Aidinis, V. (2011). Modeling pulmonary fibrosis with bleomycin. Current Opinion in Pulmonary Medicine, 17(5), 355–361.
Mylvaganam, R. J., Bailey, J. I., Sznajder, J. I., Sala, M. A., & Northwestern Comprehensive COVID Center Consortium (2021). Recovering from a pandemic: pulmonary fibrosis after SARS-CoV-2 infection. European Respiratory Review, 30(162), 210194.
Novus Biologicals. (n.d.). What are Stem Cells? Novus Biologicals. https://www.novusbio.com/research-areas/stem-cells
Ochs, M., Nyengaard, J. R., Jung, A., Knudsen, L., Voigt, M., Wahlers, T., Richter, J., & Gundersen, H. J. (2004). The number of alveoli in the human lung. American Journal of Respiratory and Critical Care Medicine, 169(1), 120–124.
OpenStax. (2016, Feb 26). Anatomy & Physiology. OpenStax CNX. http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.24.
Pardo, A., & Selman, M. (2016b). Lung Fibroblasts, Aging, and Idiopathic Pulmonary Fibrosis. Annals of the American Thoracic Society, 13 Suppl 5, S417–S421.
Pardo, A., Cabrera, S., Maldonado, M., & Selman, M. (2016a). Role of matrix metalloproteinases in the pathogenesis of idiopathic pulmonary fibrosis. Respiratory Research, 17, 23.
Paris, A. J., Guo, L., Dai, N., Katzen, J. B., Patel, P. N., Worthen, G. S., & Brenner, J. S. (2019). Using selective lung injury to improve murine models of spatially heterogeneous lung diseases. PloS One, 14(4), e0202456.
Pariser, D. N., Hilt, Z. T., Ture, S. K., Blick-Nitko, S. K., Looney, M. R., Cleary, S. J., … Morrell, C. N. (2021). Lung megakaryocytes are immune modulatory cells. The Journal of Clinical Investigation, 131(1), e137377.
Pawitan, J. A. (2014). Prospect of stem cell conditioned medium in regenerative medicine. BioMed Research International, 2014, 965849.
Peng, S. Y., Chou, C. J., Cheng, P. J., Ko, I. C., Kao, Y. J., Chen, Y. H., Cheng, W. T., Shaw, S. W., & Wu, S. C. (2014). Therapeutic potential of amniotic-fluid-derived stem cells on liver fibrosis model in mice. Taiwanese Journal of Obstetrics & Gynecology, 53(2), 151–157.
Perin, L., Sedrakyan, S., Giuliani, S., Da Sacco, S., Carraro, G., Shiri, L., … De Filippo, R. E. (2010). Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PloS One, 5(2), e9357.
Pipino, C., Pierdomenico, L., Di Tomo, P., Di Giuseppe, F., Cianci, E., D'Alimonte, I., … Pandolfi, A. (2015). Molecular and phenotypic characterization of human amniotic fluid-derived cells: a morphological and proteomic approach. Stem Cells and Development, 24(12), 1415–1428.
Pozzobon, M., Piccoli, M., & De Coppi, P. (2014). Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell and Tissue Banking, 15(2), 199–211.
Prusa, A. R., Marton, E., Rosner, M., Bernaschek, G., & Hengstschläger, M. (2003). Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research?. Human Reproduction, 18(7), 1489–1493.
Pulmonary alveolus. (2020, March 21). In Wikipedia. https://en.wikipedia.org/wiki/Pulmonary_alveolus
Raghu, G., Collard, H. R., Egan, J. J., Martinez, F. J., Behr, J., Brown, K. K., … ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis (2011). An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. American Journal of Respiratory and Critical Care Medicine, 183(6), 788–824.
Raghu, G., Rochwerg, B., Zhang, Y., Garcia, C. A., Azuma, A., Behr, J., … Latin American Thoracic Association (2015). An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 192(2), e3–e19.
Ramasamy, T. S., Velaithan, V., Yeow, Y., & Sarkar, F. H. (2018). Stem Cells Derived from Amniotic Fluid: A Potential Pluripotent-Like Cell Source for Cellular Therapy?. Current Stem cell Research & Therapy, 13(4), 252–264.
Rehni, A. K., Singh, N., Jaggi, A. S., & Singh, M. (2007). Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behavioural Brain Research, 183(1), 95–100.
Richeldi, L., Collard, H. R., & Jones, M. G. (2017). Idiopathic pulmonary fibrosis. The Lancet, 389(10082), 1941–1952.
Roubelakis, M. G., Trohatou, O., & Anagnou, N. P. (2012). Amniotic fluid and amniotic membrane stem cells: marker discovery. Stem Cells International, 2012, 107836.
Ruaro, B., Salton, F., Braga, L., Wade, B., Confalonieri, P., Volpe, M. C., Baratella, E., Maiocchi, S., & Confalonieri, M. (2021). The History and Mystery of Alveolar Epithelial Type II Cells: Focus on Their Physiologic and Pathologic Role in Lung. International Journal of Molecular Sciences, 22(5), 2566.
Ryan, J. M., Barry, F. P., Murphy, J. M., & Mahon, B. P. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation, 2, 8.
Sabin, K., & Kikyo, N. (2014). Microvesicles as mediators of tissue regeneration. Translational Research, 163(4), 286–295.
Savickiene, J., Treigyte, G., Baronaite, S., Valiuliene, G., Kaupinis, A., Valius, M., Arlauskiene, A., & Navakauskiene, R. (2015). Human Amniotic Fluid Mesenchymal Stem Cells from Second- and Third-Trimester Amniocentesis: Differentiation Potential, Molecular Signature, and Proteome Analysis. Stem Cells International, 2015, 319238.
Schwaiblmair, M., Berghaus, T., Haeckel, T., Wagner, T., & von Scheidt, W. (2010). Amiodarone-induced pulmonary toxicity: an under-recognized and severe adverse effect?. Clinical Research in Cardiology, 99(11), 693–700.
Sedrakyan, S., Da Sacco, S., Milanesi, A., Shiri, L., Petrosyan, A., Varimezova, R., Warburton, D., Lemley, K. V., De Filippo, R. E., & Perin, L. (2012). Injection of amniotic fluid stem cells delays progression of renal fibrosis. Journal of the American Society of Nephrology, 23(4), 661–673.
Stainer, A., Faverio, P., Busnelli, S., Catalano, M., Della Zoppa, M., Marruchella, A., Pesci, A., & Luppi, F. (2021). Molecular Biomarkers in Idiopathic Pulmonary Fibrosis: State of the Art and Future Directions. International Journal of Molecular Sciences, 22(12), 6255.
Sun, D., Bu, L., Liu, C., Yin, Z., Zhou, X., Li, X., & Xiao, A. (2013). Therapeutic effects of human amniotic fluid-derived stem cells on renal interstitial fibrosis in a murine model of unilateral ureteral obstruction. PloS One, 8(5), e65042.
Türkkan, G., Willems, Y., Hendriks, L. E. L., Mostard, R., Conemans, L., Gietema, H. A., Mitea, C., Peeters, S., & De Ruysscher, D. (2021). Idiopathic pulmonary fibrosis: Current knowledge, future perspectives and its importance in radiation oncology. Radiotherapy and Oncology, 155, 269–277.
Underwood, M. A., Gilbert, W. M., & Sherman, M. P. (2005). Amniotic fluid: not just fetal urine anymore. Journal of Perinatology, 25(5), 341–348.
Vianello, A., Guarnieri, G., Braccioni, F., Lococo, S., Molena, B., Cecchetto, A., Giraudo, C., Bertagna De Marchi, L., Caminati, M., & Senna, G. (2021). The pathogenesis, epidemiology and biomarkers of susceptibility of pulmonary fibrosis in COVID-19 survivors. Clinical Chemistry and Laboratory Medicine, 60(3), 307–316.
Wakwaya, Y., & Brown, K. K. (2019). Idiopathic Pulmonary Fibrosis: Epidemiology, Diagnosis andOutcomes. The American journal of the Medical Sciences, 357(5), 359–369.
Walters, D. M., & Kleeberger, S. R. (2008). Mouse models of bleomycin-induced pulmonary fibrosis. Current protocols in Pharmacology, Chapter 5, Unit 5.46.
Wang, F. (2022, April 13). IPF: Stubborn Scars in Stiff Lungs. MiSciWriters. https://misciwriters.com/2022/04/13/ipf-stubborn-scars-in-stiff-lungs/
Weibel E. R. (2015). On the tricks alveolar epithelial cells play to make a good lung. American Journal of Respiratory and Critical Care Medicine, 191(5), 504–513.
Wen, S. T., Chen, W., Chen, H. L., Lai, C. W., Yen, C. C., Lee, K. H., Wu, S. C., & Chen, C. M. (2013). Amniotic fluid stem cells from EGFP transgenic mice attenuate hyperoxia-induced acute lung injury. PloS One, 8(9), e75383.
Wilson, M. S., & Wynn, T. A. (2009). Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunology, 2(2), 103–121.
Woo, Y. D., Jeong, D., & Chung, D. H. (2021). Development and Functions of Alveolar Macrophages. Molecules and Cells, 44(5), 292–300.
Wuyts, W. A., Agostini, C., Antoniou, K. M., Bouros, D., Chambers, R. C., Cottin, V., … Verleden, G. M. (2013). The pathogenesis of pulmonary fibrosis: a moving target. The European Respiratory Journal, 41(5), 1207–1218.
Xie, L., & Zeng, Y. (2020). Therapeutic Potential of Exosomes in Pulmonary Fibrosis. Frontiers in Pharmacology, 11, 590972.
Yang, S. N., Perng, D. W., Ko, H. K., Chang, Y. L., Hsu, C. C., Huang, H. Y., & Chung, M. I. (2020). Epidemiologic Analysis of Taiwanese Patients with Idiopathic Pulmonary Fibrosis. Healthcare, 8(4), 580.
Zacharias, W. J., Frank, D. B., Zepp, J. A., Morley, M. P., Alkhaleel, F. A., Kong, J., Zhou, S., Cantu, E., & Morrisey, E. E. (2018). Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature, 555(7695), 251–255.
Zhang, D., & Newton, C. A. (2021). Familial Pulmonary Fibrosis: Genetic Features and Clinical Implications. Chest, 160(5), 1764–1773.
Zhao, F., Zhang, Y. F., Liu, Y. G., Zhou, J. J., Li, Z. K., Wu, C. G., & Qi, H. W. (2008). Therapeutic effects of bone marrow-derived mesenchymal stem cells engraftment on bleomycin-induced lung injury in rats. Transplantation Proceedings, 40(5), 1700–1705.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87607-
dc.description.abstract肺纖維化之疾病歷程緩慢、漸進且不可逆,其特徵為肺泡結構被破壞和過度之細胞外基質沉積,肺功能將持續下降,最終呼吸衰竭甚至死亡。肺纖維化之死亡率很高,且肺纖維化的發生率與盛行率正逐年增加,惟目前仍未有可行之治療方法可以阻止或逆轉肺纖維化之進展。已有許多研究指出羊水幹細胞 (amniotic fluid stem cells, AFSCs) 對於多種疾病治療模式具修復損傷組織之特點,且尚未發現其有不利影響,故對於治療肺纖維化具有極大優勢。然而目前尚不清楚 AFSCs 對於不可逆之肺纖維化是否具有療效,且尚未證明 AFSCs 是否可透過旁分泌釋放之分子改善肺纖維化。此外,以傳統方式誘導之肺纖維化動物模式可能有纖維化自發性消退之侷限性,並不符合人類疾病進展,故此建立方法仍有待改善。有鑑於此,本研究擬探討 AFSCs 及其條件培養液 (AFSCs derived-conditioned medium, AFSCs-CdM) 治療博來黴素 (bleomycin, BLM) 誘發之大鼠單側左肺不可逆纖維化之功效。
本研究主要分為三個試驗。試驗一為建立綠色螢光大鼠之 AFSCs:自胚胎 (E12.5~E13.5) 之羊水中分離出 AFSCs,其外型呈現近似於纖維母細胞之紡錘狀,且經由螢光顯微鏡觀察與流式細胞儀分析後確認其可表現綠色螢光蛋白質 (green fluorescent proteins, GFP);以流式細胞儀分析細胞表面抗原之結果顯示 AFSCs 會表現 CD90、CD29 及 MHC class I,但不表現 CD45、CD11b 及 MHC class II;AFSCs 於體外誘導分化試驗中顯示可分化為脂肪、硬骨和軟骨細胞;以上結果顯示本試驗成功建立可表現 GFP 之大鼠 AFSCs。試驗二為建立大鼠單側左肺纖維化模式:將大鼠分為正常組 (Normal group)、假手術組 (Sham group)、BLM 損傷第14天組 (BLM D14 group)、BLM 損傷第21天組 (BLM D21 group)、BLM 損傷第28天組 (BLM D28 group) 及 BLM 損傷第49天組 (BLM D49 group),共6組;以自製軟管插入 8~9 週齡雄性 SD 大鼠之左支氣管,以適當角度注入 BLM 或 DPBS;Hematoxylin and eosin (H&E) staining 結果顯示 BLM 損傷組有細胞浸潤情形、肺泡間隔明顯增厚及肺泡結構被破壞;Masson’s trichrome staining 結果顯示以 BLM 損傷之大鼠左肺自第 14 天開始即有極顯著纖維化現象 (p < 0.001),且損傷後第 21 天開始即維持更為嚴重但穩定之纖維化至損傷後第 49 天,沒有顯著差異 (p > 0.05);以上結果顯示本試驗成功建立不可逆轉之大鼠單側左肺纖維化模式。試驗三為利用 AFSCs 及 AFSCs-CdM 治療左肺纖維化大鼠:將大鼠分成正常組 (Normal group)、DPBS 注射組 (BLM × DPBS group)、非條件培養液注射組 (BLM × non-CdM group)、AFSCs 移植組 (BLM × AFSCs group) 和 AFSCs-CdM 移植組 (BLM × AFSCs-CdM group),共 5 組;於 BLM 損傷後第21天,經尾靜脈注射 DPBS、non-CdM、AFSCs 或 AFSCs-CdM 以進行治療;H&E staining 結果顯示 AFSCs 和 AFSCs-CdM 移植組減輕肺泡間隔增厚情形,此外發現其具有較完整之肺泡結構;Masson’s trichrome staining 結果顯示 AFSCs 和 AFSCs-CdM 移植組雖較正常組有極顯著纖維化情形 (p < 0.001),但對於 DPBS 和 non-CdM 注射組仍極顯著降低膠原蛋白沉積量 (p < 0.001);以上結果顯示 AFSCs 和 AFSCs-CdM 可改善不可逆轉之大鼠肺纖維化,減輕膠原蛋白沉積,甚至觀察到肺泡結構。
綜觀所述,本研究之結果有助於了解 AFSCs 和 AFSCs-CdM 治療不可逆肺纖維化之潛能,未來可再進一步探討 AFSCs 和 AFSCs-CdM 之治療劑量、路徑和修復機制,期望能對臨床試驗及相關研究提供參考依據。
zh_TW
dc.description.abstractPulmonary fibrosis (PF) is a chronic, progressive and irreversible lung disease, which leads to damage of alveolar structures and excessive deposition of extracellular matrix. These consequences result in a gradual declining in lung function, respiratory failure and even death; moreover, the mortality rate of PF is very high, and worldwide incidence and prevalence of PF has increased over time. Worse still, there is no effective therapy to inhibit or reverse the progression of PF. Many studies have demonstrated that amniotic fluid stem cells (AFSCs) can repair damaged tissues, and they have not shown deleterious effects in a variety of disease models, thus AFSCs may have the great therapeutic potential for PF. However, it is unclear whether AFSCs are effective in irreversible PF, and it has not been proven whether AFSCs can improve PF by paracrine released molecules. In addition, the animal model of PF induced by traditional methods may have the limitation of spontaneous resolution of fibrosis, which is not consistent with the progression in human PF. Thus, the establishment method still needs to be improved. In view of this, this study intends to investigate the efficacy of AFSCs and its conditioned medium (AFSCs-CdM) in the bleomycin (BLM)-induced irreversible fibrosis of the left lung in rats.
This research is mainly divided into three trials. The trial one is to establish AFSCs derived from the amniotic fluid of green fluorescent proteins (GFP) bearing rat embryos (E12.5~E13.5). Morphology of AFSCs were similar to fibroblasts, and these cells could show GFP by fluorescence microscopy and flow cytometry analysis. The cell surface antigen analysis showed that AFSCs expressed CD90, CD29, and MHC class I, but did not express MHC class II, CD45, and CD11b. Furthermore, AFSCs had the capacity to differentiate into adipocytes, osteoblasts and chondrocytes in vitro. The results above show the successful establishment of rat AFSCs which can express GFP. The second trial is to establish a one-sided left lung fibrosis model in rats. Rats were randomly divided into Normal group, Sham group, BLM D14 group, BLM D21 group, BLM D28 group, and BLM D49 group, a total of 6 groups. A handmade tube was inserted into the left bronchi of 8~9-week-old male SD rats, and then BLM or DPBS was injected at an appropriate angle. The Hematoxylin and eosin (H&E) staining results showed that the BLM injury groups had cell infiltration, thickened alveolar septa and alveolar structures destruction. Masson's trichrome staining results showed that the left lung of rats injured with BLM had significant fibrosis from day 14 after injury (p < 0.001), and fibrosis was more severe from day 21 after injury which was no significant difference between day 21 to day 49 after injury (p > 0.05). The results above show that the irreversible and one-sided left PF rat model is successfully established. The last trial is to treat PF rats with AFSCs and AFSCs-CdM. Rats were randomly divided into Normal group, DPBS injection group (BLM × DPBS group), non-CdM injection group (BLM × non-CdM group), AFSCs transplantation group (BLM × AFSCs group), AFSCs-CdM transplantation group (BLM × AFSCs-CdM group), a total of 5 groups. On day 21 of BLM injury, DPBS, non-CdM, AFSCs, or AFSCs-CdM were injected through tail vein for treatment; H&E staining results showed that AFSCs and AFSCs-CdM transplantation groups had less thickened alveolar septa, and more intact alveolar structures were found in both groups. Masson's trichrome staining results showed that although AFSCs and AFSCs-CdM transplantation groups had a very significantly fibrosis (p < 0.001) compared with Normal group, the collagen deposition was still significantly reduced compared with the DPBS and non-CdM injection groups (p < 0.001). The results above show that AFSCs and AFSCs-CdM can improve irreversible PF in rats by reducing collagen deposition; in addition, alveolar structures are even observed.
In summary, this study helps us to understand the potential of AFSCs and AFSCs-CdM in the treatment of irreversible PF rats. In the future, we can further investigate the therapeutic dose, route and mechanisms of AFSCs and AFSCs-CdM, which can be provided as a reference for clinical trials and related studies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:20:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:20:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書
誌謝 i
摘要 ii
Abstract iv
目錄 vii
圖目錄 ix
表目錄 x
縮寫表 xi
第一章 文獻探討 1
1.1 肺臟介紹 1
1.2 肺纖維化 6
1.2.1 肺纖維化簡介 6
1.2.2 肺纖維化成因 7
1.2.3 肺纖維化之致病機轉 8
1.2.4 肺纖維化之流行病學 12
1.2.5 肺纖維化之治療策略 12
1.2.6 肺纖維化之動物模式 14
1.3 幹細胞 17
1.3.1 幹細胞介紹 17
1.3.2 羊水幹細胞 20
1.3.3 條件培養液 22
1.3.4 羊水幹細胞及其條件培養液於肺纖維化之研究 23
第二章 試驗研究 24
2.1 綠色螢光大鼠羊水幹細胞之分離與培養 24
2.1.1 前言 24
2.1.2 材料與方法 24
2.1.3 結果與討論 33
2.2 單側左肺纖維化大鼠模式之建立 39
2.2.1 前言 39
2.2.2 材料與方法 40
2.2.3 結果與討論 44
2.3 綠色螢光大鼠羊水幹細胞及其條件培養液治療肺纖維化大鼠之潛能 49
2.3.1 前言 49
2.3.2 材料與方法 50
2.3.3 結果與討論 53
第三章 綜合討論 58
第四章 結論與未來展望 60
參考文獻 61
-
dc.language.isozh_TW-
dc.title羊水幹細胞及其條件培養液治療肺纖維化大鼠之潛能zh_TW
dc.titleThe potential of amniotic fluid stem cells and conditioned medium to remedy pulmonary fibrosis in ratsen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee宋麗英;林頌然;陳文彬;陳全木zh_TW
dc.contributor.oralexamcommitteeLi-Ying Sung;Sung-Jan Lin;Wen-Pin Chen;Chuan-Mu Chenen
dc.subject.keyword肺纖維化,羊水幹細胞,條件培養液,zh_TW
dc.subject.keywordpulmonary fibrosis,amniotic fluid stem cell,conditioned medium,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202300418-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2028-02-10-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  目前未授權公開取用
3.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved