Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87606
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊顯zh_TW
dc.contributor.advisorChun-hsien Chenen
dc.contributor.author許庭榮zh_TW
dc.contributor.authorTing-Rong Hsuen
dc.date.accessioned2023-06-20T16:19:44Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2023-
dc.date.submitted2023-01-31-
dc.identifier.citation[1] Moore, G. E., Cramming more components onto integrated circuits. Electron. 1965, 38, 114‒117.
[2] Aviram, A.; Ratner, M. A., Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277‒283.
[3] Jia, C.; Wang, J.; Yao, C.; Cao, Y.; Zhong, Y.; Liu, Z.; Liu, Z.; Guo, X., Conductance switching and mechanisms in single-molecule junctions. Angew. Chem. Int. Ed. 2013, 52, 8666‒8670.
[4] Capozzi, B.; Xia, J.; Adak, O.; Dell, E. J.; Liu, Z.-F.; Taylor, J. C.; Neaton, J. B.; Campos, L. M.; Venkataraman, L., Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 2015, 10, 522‒527.
[5] Martínez-Blanco, J.; Nacci, C.; Erwin, S. C.; Kanisawa, K.; Locane, E.; Thomas, M.; Von Oppen, F.; Brouwer, P. W.; Fölsch, S., Gating a single-molecule transistor with individual atoms. Nat. Phys. 2015, 11, 640‒644.
[6] Shieh, S.-J.; Chou, C.-C.; Lee, G.-H.; Wang, C.-C.; Peng, S.-M., Linear pentanuclear complexes containing a chain of metal atoms: [Co5II(μ5-tpda)4(NCS)2] and [Ni5II(μ5-tpda)4Cl2]. Angew Chem. Int. Ed. Engl. 1997, 36, 56‒59.
[7] Wang, C.-C.; Lo, W.-C.; Chou, C.-C.; Lee, G.-H.; Chen, J.-M.; Peng, S.-M., Synthesis, crystal structures, and magnetic properties of a series of linear pentanickel(II) complexes:  [Ni5(μ5-tpda)4X2] (X = Cl-, CN-, N3-, NCS-) and [Ni5(tpda)4(CH3CN)2](PF6)2 (tpda2- = the tripyridyldiamido dianion). Inorg. Chem. 1998, 37, 4059‒4065.
[8] Clérac, R.; Cotton, F. A.; Jeffery, S. P.; Murillo, C. A.; Wang, X., Compounds with symmetrical tricobalt chains wrapped by dipyridylamide ligands and cyanide or isothiocyanate ions as terminal ligands. Inorg. Chem. 2001, 40, 1265‒1270.
[9] Yeh, C.-Y.; Chou, C.-H.; Pan, K.-C.; Wang, C.-C.; Lee, G.-H.; Su, Y. O.; Peng, S.-M., Linear pentacobalt complexes: synthesis, structures, and physical properties of neutral and one-electron oxidation compounds. J. Chem. Soc., Dalton Trans. 2002, 2670‒2677.
[10] Liu, I. P.; Benard, M.; Hasanov, H.; Chen, I W.; Tseng, W. H.; Fu, M. D.; Rohmer, M. M.; Chen, C. H.; Lee, G. H.; Peng, S. M., A new generation of metal string complexes: structure, magnetism, spectroscopy, theoretical analysis, and single molecular conductance of an unusual mixed-valence linear [Ni5]8+ complex. Eur. J. Chem. 2007, 13, 8667‒8677.
[11] Yang, E.-C.; Cheng, M.-C.; Tsai, M.-S.; Peng, S.-M., Structure of a linear unsymmetrical trinuclear cobalt(II) complex with a localized CoII–CoII bond: dichlorotetrakis[µ3-bis(2-pyridyl)amido]tricobalt(II). J. Chem. Soc., Chem. Commun. 1994, 2377‒2378.
[12] Berry, J. F., Metal–metal bonds in chains of three or more metal atoms: from homometallic to heterometallic chains. Springer Berlin Heidelberg: 2010; p 1‒28.
[13] Chen, I W. P.; Fu, M.-D.; Tseng, W.-H.; Yu, J.-Y.; Wu, S.-H.; Ku, C.-J.; Chen, C.-H.; Peng, S.-M., Conductance and stochastic switching of ligand-supported linear chains of metal atoms. Angew. Chem. Int. Ed. 2006, 45, 5814‒5818.
[14] Po-Chun Liu, I.; Chen, C.-h.; Peng, S.-M., The road to molecular metal wires: The past and recent advances of metal string complexes. Bull. Chem. Soc. Jpn. 2012, 59, 3‒10.
[15] Huang, M. J.; Hsu, L. Y.; Fu, M. D.; Chuang, S. T.; Tien, F. W.; Chen, C. H., Conductance of tailored molecular segments: a rudimentary assessment by Landauer formulation. J. Am. Chem. Soc. 2014, 136, 1832‒1841.
[16] Ting, T. C.; Hsu, L. Y.; Huang, M. J.; Horng, E. C.; Lu, H. C.; Hsu, C. H.; Jiang, C. H.; Jin, B. Y.; Peng, S. M.; Chen, C. H., Energy-level alignment for single-molecule conductance of extended metal-atom chains. Angew. Chem. Int. Ed. 2015, 54, 15734‒15738.
[17] Lin, G. M.; Cheng, M. C.; Liou, S. J.; Tsao, H. S.; Lin, C. H.; Lin, Y. R.; Lee, G. H.; Chen, C. H.; Peng, S. M., Revisit of trinickel metal string complexes [Ni3L4X2] (L = dipyridylamido, diazaphenoxazine; X = NCS, CN) for quantum transport. J. Chin. Chem. Soc. 2019, 66, 1157‒1164.
[18] Chen, P.-J.; Sigrist, M.; Horng, E.-C.; Lin, G.-M.; Lee, G.-H.; Chen, C.-h.; Peng, S.-M., A ligand design with a modified naphthyridylamide for achieving the longest EMACs: the 1st single-molecule conductance of an undeca-nickel metal string. ChemComm 2017, 53, 4673‒4676.
[19] Xu, B. Q.; Tao, N. J. J., Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221‒1223.
[20] Schwarz, F.; Kastlunger, G.; Lissel, F.; Egler-Lucas, C.; Semenov, S. N.; Venkatesan, K.; Berke, H.; Stadler, R.; Lörtscher, E., Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. Nat. Nanotechnol. 2016, 11, 170‒176.
[21] Salomon, A.; Cahen, D.; Lindsay, S.; Tomfohr, J.; Engelkes, V. B.; Frisbie, C. D., Comparison of electronic transport measurements on organic molecules. Adv. Mater. 2003, 15, 1881‒1890.
[22] Paulsson, M.; Datta, S., Thermoelectric effect in molecular electronics. Phys. Rev. B 2003, 67, 241403.
[23] Karthäuser, S., Control of molecule-based transport for future molecular devices. J. Phys. Condens. Matter 2010, 23, 013001.
[24] Hurley, T. J.; Robinson, M. A., Nickel(II)-2,2'-dipyridylamine system. I. Synthesis and stereochemistry of the complexes. Inorg. Chem. 1968, 7, 33‒38.
[25] Aduldecha, S.; Hathaway, B., Crystal structure and electronic properties of tetrakis[µ3-bis(2-pyridyl)amido]dichlorotrinickel(II)–water–acetone (1/0.23/0.5). J. Chem. Soc., Dalton Trans. 1991, 993‒998.
[26] Sheu, J.-T.; Lin, C.-C.; Chao, I.; Wang, C.-C.; Peng, S.-M., Linear trinuclear three-centred metal–metal multiple bonds: synthesis and crystal structure of [M3(dpa)4Cl2][M = RuIIor RhII, dpa = bis (2-pyridyl) amidoanion]. ChemComm 1996, 315‒316.
[27] Clerac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Kirschbaum, K.; Murillo, C. A.; Pinkerton, A. A.; Schultz, A. J.; Wang, X. P., Linear tricobalt compounds with di(2-pyridyl)amide (dpa) ligands: Temperature dependence of the structural and magnetic properties of symmetrical and unsymmetrical forms of Co3(dpa)4Cl2 in the solid state. J. Am. Chem. Soc. 2000, 122, 6226‒6236.
[28] Shih, K.-N.; Huang, M.-J.; Lu, H.-C.; Fu, M.-D.; Kuo, C.-K.; Huang, G.-C.; Lee, G.-H.; Chen, C.-H.; Peng, S.-M., On the tuning of electric conductance of extended metal atom chains via axial ligands for [Ru3(μ3-dpa)4(X)2]0/+ (X = NCS−, CN−). ChemComm 2010, 46, 1338.
[29] Yeh, C.-Y.; Chiang, Y.-L.; Lee, G.-H.; Peng, S.-M., Unsymmetrical linear pentanuclear nickel string complexes:[Ni5(tpda)4(H2O)(BF4)](BF4)2 and [Ni5(tpda)4(SO3CF3)2](SO3CF3). Inorg. Chem. 2002, 41, 4096‒4098.
[30] Lai, S.-Y.; Lin, T.-W.; Chen, Y.-H.; Wang, C.-C.; Lee, G.-H.; Yang, M.-h.; Leung, M.-k.; Peng, S.-M., Metal string complexes: Synthesis and crystal structure of [Ni4(μ4-phdpda)4] and [Ni7(μ7-teptra)4Cl2](H2phdpda = N-Phenyldipyridyldiamine and H3teptra = Tetrapyridyltriamine). J. Am. Chem. Soc. 1999, 121, 250‒251.
[31] Peng, S.-M.; Wang, C.-C.; Jang, Y.-L.; Chen, Y.-H.; Li, F.-Y.; Mou, C.-Y.; Leung, M.-K., One-dimensional metal string complexes. J. Magn. Magn. Mater. 2000, 209, 80‒83.
[32] Cotton, F.; Curtis, N.; Harris, C.; Johnson, B.; Lippard, S.; Mague, J.; Robinson, W.; Wood, J., Mononuclear and polynuclear chemistry of rhenium(III): Its pronounced homophilicity. Science 1964, 145, 1305‒1307.
[33] Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M., Advanced inorganic chemistry. John Wiley and Sons, Inc.: 1999.
[34] Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X., Oxidation of Ni3(dpa)4Cl2 and Cu3(dpa)4Cl2: nickel−nickel bonding interaction, but no copper−copper bonds. Inorg. Chem. 2003, 42, 2418‒2427.
[35] Berry, J. F.; Cotton, F. A.; Lei, P.; Lu, T.; Murillo, C. A., Additional steps toward molecular scale wires: further study of Ni510/11+ chains embraced by polypyridylamide ligands. Inorg. Chem. 2003, 42, 3534‒3539.
[36] Devid, E. J.; Martinho, P. N.; Kamalakar, M. V.; Šalitroš, I.; Prendergast, Ú.; Dayen, J.-F.; Meded, V.; Lemma, T.; González-Prieto, R.; Evers, F.; Keyes, T. E.; Ruben, M.; Doudin, B.; Van Der Molen, S. J., Spin transition in arrays of gold nanoparticles and spin crossover molecules. ACS Nano 2015, 9, 4496‒4507.
[37] Prinz, G. A., Spin-polarized transport. Phys. Today 1995, 48, 58‒63.
[38] Stoner, E. C., Collective electron ferronmagnetism. Proc R Soc Lond A Math Phys Sci. 1938, 165, 372‒414.
[39] Stollhoff, G.; Oleś, A. M.; Heine, V., Stoner exchange interaction in transition metals. Phys. Rev. B 1990, 41, 7028‒7041.
[40] Johnson, M.; Silsbee, R. H., Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 1985, 55, 1790‒1793.
[41] Eriksson, O.; Fernando, G. W.; Albers, R. C.; Boring, A. M., Enhanced orbital contribution to surface magnetism in Fe, Co, and Ni. Solid State Commun. 1991, 78, 801‒806.
[42] Prinz, G. A., Spin‐Polarized Transport. Phys. Today 1995, 48, 58‒63.
[43] Moodera, J. S.; Miao, G.-X.; Santos, T. S., Frontiers in spin-polarized tunneling. Phys. Today 2010, 63, 46‒51.
[44] Sanvito, S., The rise of spinterface science. Nat. Phys. 2010, 6, 562‒564.
[45] Wiesendanger, R., Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 2009, 81, 1495‒1550.
[46] Ziman, J. M., Principles of the theory of solids. 2 ed.; Cambridge University Press: Cambridge, 1972.
[47] Chant, N.; Roos, P., Spin orbit effects in quasifree knockout reactions. Phys. Rev. C 1983, 27, 1060.
[48] Hellman, F.; Hoffmann, A.; Tserkovnyak, Y.; Beach, G. S.; Fullerton, E. E.; Leighton, C.; MacDonald, A. H.; Ralph, D. C.; Arena, D. A.; Dürr, H. A., Interface-induced phenomena in magnetism. Rev. Mod. Phys. 2017, 89, 025006.
[49] Qu, D.; Huang, S. Y.; Miao, B. F.; Huang, S. X.; Chien, C. L., Self-consistent determination of spin Hall angles in selected 5d metals by thermal spin injection. Phys. Rev. B 2014, 89.
[50] Lashell, S.; McDougall, B. A.; Jensen, E., Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 1996, 77, 3419‒3422.
[51] Nicolay, G.; Reinert, F.; Hüfner, S.; Blaha, P., Spin-orbit splitting of the L-gap surface state on Au(111) and Ag(111). Phys. Rev. B 2001, 65, 033407.
[52] Inkpen, M. S.; Liu, Z. F.; Li, H.; Campos, L. M.; Neaton, J. B.; Venkataraman, L., Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers. Nat. Chem. 2019, 11, 351‒358.
[53] Kokkin, D. L.; Zhang, R.; Steimle, T. C.; Wyse, I. A.; Pearlman, B. W.; Varberg, T. D., Au–S bonding revealed from the characterization of diatomic gold sulfide, AuS. J. Phys. Chem. A 2015, 119, 11659‒11667.
[54] Kubetzka, A.; Hanneken, C.; Wiesendanger, R.; von Bergmann, K., Impact of the skyrmion spin texture on magnetoresistance. Phys. Rev. B 2017, 95.
[55] Grünewald, M.; Wahler, M.; Schumann, F.; Michelfeit, M.; Gould, C.; Schmidt, R.; Würthner, F.; Schmidt, G.; Molenkamp, L. W., Tunneling anisotropic magnetoresistance in organic spin valves. Phys. Rev. B 2011, 84.
[56] Li, J.-J.; Bai, M.-L.; Chen, Z.-B.; Zhou, X.-S.; Shi, Z.; Zhang, M.; Ding, S.-Y.; Hou, S.-M.; Schwarzacher, W.; Nichols, R. J.; Mao, B.-W., Giant single-molecule anisotropic magnetoresistance at room temperature. J. Am. Chem. Soc. 2015, 137, 5923‒5929.
[57] Li, J.-J.; Chen, Z.-B.; Wang, Y.-H.; Zhou, X.-S.; Xie, L.-Q.; Shi, Z.; Liu, J.-X.; Yan, J.-W.; Mao, B.-W., Single-molecule anisotropic magnetoresistance at room temperature: Influence of molecular structure. Electrochim. Acta 2021, 389, 138760.
[58] Aragones, A. C.; Aravena, D.; Cerda, J. I.; Acis-Castillo, Z.; Li, H.; Real, J. A.; Sanz, F.; Hihath, J.; Ruiz, E.; Diez-Perez, I., Large conductance switching in a single-molecule device through room temperature spin-dependent transport. Nano Lett. 2016, 16, 218‒226.
[59] Aragones, A. C.; Aravena, D.; Valverde-Munoz, F. J.; Real, J. A.; Sanz, F.; Diez-Perez, I.; Ruiz, E., Metal-controlled magnetoresistance at room temperature in single-molecule devices. J. Am. Chem. Soc. 2017, 139, 5768‒5778.
[60] Georgiev, V. P.; Sameera, W. M. C.; McGrady, J. E., Attenuation of conductance in cobalt extended metal atom chains. J. Phys. Chem. C 2012, 116, 20163‒20172.
[61] Cavallini, M.; Biscarini, F., Electrochemically etched nickel tips for spin polarized scanning tunneling microscopy. Rev. Sci. Instrum. 2000, 71, 4457.
[62] Haze, M.; Yang, H. H.; Asakawa, K.; Watanabe, N.; Yamamoto, R.; Yoshida, Y.; Hasegawa, Y., Bulk ferromagnetic tips for spin-polarized scanning tunneling microscopy. Rev Sci Instrum 2019, 90, 013704.
[63] Zhang, J.; Wang, P.; Zhang, X.; Ji, H.; Luo, J.; Wang, H.; Wang, J., Systematic electrochemical etching of various metal tips for tunneling spectroscopy and scanning probe microscopy. Rev. Sci. Instrum. 2021, 92, 015124.
[64] Takeuchi, N.; Chan, C. T.; Ho, K. M., Au(111): A theoretical study of the surface reconstruction and the surface electronic structure. Phys. Rev. B 1991, 43, 13899‒13906.
[65] Makk, P.; Tomaszewski, D.; Martinek, J.; Balogh, Z.; Csonka, S.; Wawrzyniak, M.; Frei, M.; Venkataraman, L.; Halbritter, A., Correlation analysis of atomic and single-molecule junction conductance. ACS Nano 2012, 6, 3411‒3423.
[66] Leary, E.; La Rosa, A.; González, M. T.; Rubio-Bollinger, G.; Agraït, N.; Martín, N., Incorporating single molecules into electrical circuits. The role of the chemical anchoring group. Chem. Soc. Rev. 2015, 44, 920‒942.
[67] Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Khomyakov, P. A.; Vej-Hansen, U. G.; Lee, M.-E.; Chill, S. T.; Rasmussen, F.; Penazzi, G.; Corsetti, F.; Ojanperä, A.; Jensen, K.; Palsgaard, M. L. N.; Martinez, U.; Blom, A.; Brandbyge, M.; Stokbro, K., QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 2020, 32, 015901.
[68] Becke, A. D.; Johnson, E. R., A simple effective potential for exchange. J. Chem. Phys. 2006, 124, 221101.
[69] Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865‒3868.
[70] Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.; Reuter, K.; Scheffler, M., Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009, 180, 2175‒2196.
[71] Smidstrup, S.; Stradi, D.; Wellendorff, J.; Khomyakov, P. A.; Vej-Hansen, U. G.; Lee, M.-E.; Ghosh, T.; Jónsson, E.; Jónsson, H.; Stokbro, K., First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach. Phys. Rev. B 2017, 96.
[72] Brooke, R. J.; Jin, C.; Szumski, D. S.; Nichols, R. J.; Mao, B.-W.; Thygesen, K. S.; Schwarzacher, W., Single-molecule electrochemical transistor utilizing a nickel-pyridyl spinterface. Nano Lett. 2015, 15, 275‒280.
[73] Kim, T.; Darancet, P.; Widawsky, J. R.; Kotiuga, M.; Quek, S. Y.; Neaton, J. B.; Venkataraman, L., Determination of energy level alignment and coupling strength in 4,4'-bipyridine single-molecule junctions. Nano Lett. 2014, 14, 794‒798.
[74] Pacuski, W., Optical spectroscopy of wide-gap diluted magnetic semiconductors. Springer Berlin Heidelberg: 2010; p 37‒63.
[75] Zhu, J.-G.; Park, C., Magnetic tunnel junctions. Mater. Today 2006, 9, 36‒45.
[76] Xie, Z.; Markus, T. Z.; Cohen, S. R.; Vager, Z.; Gutierrez, R.; Naaman, R., Spin specific electron conduction through DNA oligomers. Nano Lett. 2011, 11, 4652‒4655.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87606-
dc.description.abstract本研究探討三核鈷金屬串錯合物[Co3(dpa)4(NCS)2]的自旋電子傳輸行為,討論磁場對「電極-單分子-電極」量測平台測得的單分子導電值的影響。量測方法是掃描式穿隧顯微術斷裂接合法(scanning tunneling microscopy-based break junction, STM BJ),檢視的量測平台的電極材料有金/金和金/鎳兩種組合,前者的導電值不受磁場的影響,後者會因強力磁鐵的磁力方向而有兩個數量級的差異。非平衡態格林函數-密度泛函理論(non-equilibrium Green's function-density functional theory, NEGF-DFT)計算電子穿透能譜(transmission spectrum)的結果顯示零偏壓的β-spin電子穿透峰(transmission peak)與電極的費米能階相距0.03 eV,小於α-spin的0.35 eV,可見主導傳輸的是β-spin電子。論文中以能態密度(density of states, DOS)的簡化模型解釋導電值量測的自旋選擇效應:磁力方向影響鎳電極的DOS與β-spin電子穿透峰能量;此外,金元素之自旋-軌域耦合(spin-orbit coupling, SOC)與金屬串分子磁矩非定域化的兩者性質共同造成金電極能態密度自旋極化、DOS分裂。上述以DOS圖像描繪出的幾個機制,其加乘的結果定性地描述了自旋選擇效應。本研究呈現金屬串錯合物的磁性所致的電性表現,顯示金屬串錯合物作為自旋電子元件的可能性。zh_TW
dc.description.abstractThe conductance of single-molecule junctions for a tricobalt metal-string complex [Co3(dpa)4(NCS)2] was investigated under magnetic influence and measured by scanning tunneling microscopy-based break junction (STM BJ) technique. The metal-molecule-metal (MMM) junctions were configured by Au- or Ni-tips of the STM and a piece of Au substrate. For the Ni-Au pair of electrodes, the junction conductance was associated with whether the magnet’s north or south pole faced the Ni-tip. For the control experiments using Au-Au electrodes, the magnetic field had little effect on conductance. Spin-polarized transmission spectra were calculated by non-equilibrium Green's function-density functional theory (NEGF-DFT) and showed a transmission peak of β-spin closer to the electrode Fermi energy than that of the α-spin one, indicating that the magnetic and tranpsport properties of the molecule were dominated by β-spin electron. Proposed herein is a DOS-based model (density of states) in which the magnetized nickel electrode influenced the energy of β-spin transmission peaks. Additionally, the spin-orbit coupling (SOC) effect from gold and the spin delocalization of the molecule led to spin polarization and the consequent DOS splitting in the gold electrode. In conclusion, this study shows the electron-transporting behavior across Au-[Co3(dpa)4(NCS)2]-Ni junctions under the influence of a 0.22-Tesla magnet.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:19:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:19:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
論文口試委員審定書 i
謝辭 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 x
第1章 緒論 1
1.1. 前言 1
1.2. 單分子電性量測 2
1.2.1. 掃描式穿隧顯微術破裂接合法 2
1.2.2. 電子傳輸機制 3
1.3. 金屬串錯合物 5
1.3.1. 金屬串的介紹 5
1.3.2. 金屬金屬鍵結理論 7
1.3.3. 三核鈷金屬串錯合物的基本性質。 9
1.4. 鐵磁體的自旋特性 11
1.4.1. 鐵磁體 11
1.4.2. 鐵磁體的自旋電子能帶分裂 13
1.4.3. 電極間的自旋極化傳輸 15
1.5. 重金屬的自旋軌域作用 18
1.6. 分子自旋電子傳輸的文獻回顧 19
1.6.1. 單核錯合物之自旋電子傳輸 20
1.6.2. 三核鈷金屬串錯合物的分子軌域與自旋電子穿透能譜 25
1.7. 研究動機 28
第2章 實驗部分 29
2.1. 藥品及耗材 29
2.2. 儀器與設備 30
2.3. 實驗步驟 31
2.3.1. STM的金探針製備 31
2.3.2. 鎳探針蝕刻 31
2.3.3. 鍛燒金基材 33
2.3.4. 組裝樣品槽 35
2.3.5. 以外加磁場磁化鎳探針電極 36
2.3.6. 儀器裝置與架設 37
2.3.7. 樣品配製與實驗條件 38
2.4. 數據處理 38
2.4.1. 一維單分子導電值直方統計圖 38
2.4.2. 單分子導電值-探針位移的二維統計圖 40
第3章 結果與討論 41
3.1. [Co3(dpa)4(NCS)2]於金-金與鎳-金電極系統中的電性 41
3.2. 外加磁場下[Co3(dpa)4(NCS)2]於金-金電極系統中的電性 46
3.3. 外加磁場下[Co3(dpa)4(NCS)2]於鎳-金電極系統中的電性 48
3.4. 外加磁場下[Co3(dpa)4(NCS)2]於鎳-金電極系統中的自旋電子傳輸機制 53
第4章 結論 58
參考文獻 59
附錄 67
-
dc.language.isozh_TW-
dc.subject非平衡態格林函數-密度泛函理論zh_TW
dc.subject自旋-軌域耦合zh_TW
dc.subject掃描式穿隧顯微術斷裂接合法zh_TW
dc.subject自旋電子學zh_TW
dc.subject磁阻效應zh_TW
dc.subject多核金屬串錯合物zh_TW
dc.subject單分子導電值zh_TW
dc.subjectScanning Tunneling Microscopy-Based Break Junctionen
dc.subjectSingle-Molecule Conductanceen
dc.subjectMetal-String Complexen
dc.subjectMagnetoresistanceen
dc.subjectSpintronicsen
dc.subjectNon-equilibrium Green’s Function-Density Functional Theoryen
dc.subjectSpin-Orbit Couplingen
dc.title三核鈷金屬串錯合物[Co3(dpa)4(NCS)2]的自旋電子傳輸機制zh_TW
dc.titleTransport Mechanism of Tricobalt Metal-String Complex [Co3(dpa)4(NCS)2] under Magnetic Influenceen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee彭旭明;許良彥zh_TW
dc.contributor.oralexamcommitteeShie-Ming Peng;Liang-Yan Hsuen
dc.subject.keyword掃描式穿隧顯微術斷裂接合法,自旋電子學,磁阻效應,多核金屬串錯合物,單分子導電值,非平衡態格林函數-密度泛函理論,自旋-軌域耦合,zh_TW
dc.subject.keywordScanning Tunneling Microscopy-Based Break Junction,Spintronics,Magnetoresistance,Metal-String Complex,Single-Molecule Conductance,Non-equilibrium Green’s Function-Density Functional Theory,Spin-Orbit Coupling,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202300132-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-02-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2027-12-23-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
4.61 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved