請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87605
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 闕蓓德 | zh_TW |
dc.contributor.advisor | Pei-Te Chiueh | en |
dc.contributor.author | 陳政睿 | zh_TW |
dc.contributor.author | Cheng-Rui Chen | en |
dc.date.accessioned | 2023-06-20T16:19:25Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-06-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-02-02 | - |
dc.identifier.citation | Ahmed, W., Bertsch, P. M., Bibby, K., Haramoto, E., Hewitt, J., Huygens, F., Gyawali, P., Korajkic, A., Riddell, S., Sherchan, S. P., Simpson, S. L., Sirikanchana, K., Symonds, E. M., Verhagen, R., Vasan, S. S., Kitajima, M., & Bivins, A. (2020). Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environmental Research, 191, 9, Article 110092.https://doi.org/10.1016/j.envres.2020.110092
Ahmed, W., Simpson, S. L., Bertsch, P. M., Bibby, K., Bivins, A., Blackall, L. L., Bofill-Mas, S., Bosch, A., Brandao, J., Choi, P. M., Ciesielski, M., Donner, E., D'Souza, N., Farnleitner, A. H., Gerrity, D., Gonzalez, R., Griffith, J. F., Gyawali, P., Haas, C. N., . . . Shanks, O. C. (2022). Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 805, 20, Article 149877. https://doi.org/10.1016/j.scitotenv.2021.149877 Anand, U., Adelodun, B., Pivato, A., Suresh, S., Indari, O., Jakhmola, S., Jha, H. C., Jha, P. K., Tripathi, V., & Di Maria, F. (2021). A review of the presence of SARS-CoV-2 RNA in wastewater and airborne particulates and its use for virus spreading surveillance. Environmental Research, 196, 14, Article 110929. https://doi.org/10.1016/j.envres.2021.110929 Bar-Or, I., Yaniv, K., Shagan, M., Ozer, E., Weil, M., Indenbaum, V., Elul, M., Erster, O., Mendelson, E., Mannasse, B., Shirazi, R., Kramarsky-Winter, E., Nir, O., Abu-Ali, H., Ronen, Z., Rinott, E., Lewis, Y. E., Friedler, E., Bitkover, E., . . . Kushmaro, A. (2022). Regressing SARS-CoV-2 sewage measurements onto covid-19 burden in the population: A proof-of-concept for quantitative environmental surveillance. Frontiers in Public Health, 9, 7, Article 561710. https://doi.org/10.3389/fpubh.2021.561710 Barrios, R. E., Lim, C., Kelley, M. S., & Li, X. (2021). SARS-CoV-2 concentrations in a wastewater collection system indicated potential COVID-19 hotspots at the zip code level. Science of The Total Environment, 800, 149480. https://doi.org/10.1016/j.scitotenv.2021.149480 Betancourt, W. Q., Schmitz, B. W., Innes, G. K., Prasek, S. M., Pogreba Brown, K. M., Stark, E. R., Foster, A. R., Sprissler, R. S., Harris, D. T., Sherchan, S. P., Gerba, C. P., & Pepper, I. L. (2021). COVID-19 containment on a college campus via wastewater-based epidemiology, targeted clinical testing and an intervention. Science of the Total Environment, 779, 146408. https://doi.org/10.1016/j.scitotenv.2021.146408 Bivins, A., Greaves, J., Fischer, R., Yinda, K. C., Ahmed, W., Kitajima, M., Munster, V. J., & Bibby, K. (2020a). Persistence of SARS-CoV-2 in water and wastewater. Environmental Science & Technology Letters, 7(12), 937-942. https://doi.org/10.1021/acs.estlett.0c00730 Bivins, A., North, D., Ahmad, A., Ahmed, W., Alm, E., Been, F., Bhattacharya, P., Bijlsma, L., Boehm, A. B., Brown, J., Buttiglieri, G., Calabro, V., Carducci, A., Castiglioni, S., Gurol, Z. C., Chakraborty, S., Costa, F., Curcio, S., de los Reyes, F. L., . . . Bibby, K. (2020b). Wastewater-based epidemiology: global collaborative to maximize contributions in the fight against covid-19. Environmental Science & Technology, 54(13), 7754-7757. https://doi.org/10.1021/acs.est.0c02388 Brown, D. M., Butler, D., Orman, N. R., & Davies, J. W. (1996). Gross solids transport in small diameter sewers. Water Science and Technology, 33(9), 25-30. https://doi.org/10.2166/wst.1996.0168 Calle, E., Martinez, D., Brugues-i-Pujolras, R., Farreras, M., Salo-Grau, J., Pueyo-Ros, J., & Corominas, L. (2021). Optimal selection of monitoring sites in cities for SARS-CoV-2 surveillance in sewage networks. Environment International, 157, 11, Article 106768. https://doi.org/10.1016/j.envint.2021.106768 Cervantes-Aviles, P., Moreno-Andrade, I., & Carrillo-Reyes, J. (2021). Approaches applied to detect SARS-CoV-2 in wastewater and perspectives post-COVID-19. Journal of Water Process Engineering, 40, 10, Article 101947. https://doi.org/10.1016/j.jwpe.2021.101947 Choi, P. M., Tscharke, B. J., Donner, E., O'Brien, J. W., Grant, S. C., Kaserzon, S. L., Mackie, R., O'Malley, E., Crosbie, N. D., Thomas, K. V., & Mueller, J. F. (2018a). Wastewater-based epidemiology biomarkers: past, present and future. Trac-Trends in Analytical Chemistry, 105, 453-469. https://doi.org/10.1016/j.trac.2018.06.004 Choi, S., Jung, E., Choi, B. Y., Hur, Y. J., & Ki, M. (2018b). High reproduction number of Middle East respiratory syndrome coronavirus in nosocomial outbreaks: mathematical modelling in Saudi Arabia and South Korea. Journal of Hospital Infection, 99(2), 162-168. https://doi.org/10.1016/j.jhin.2017.09.017 Chowell, G., Castillo-Chavez, C., Fenimore, P. W., Kribs-Zaleta, C. M., Arriola, L., & Hyman, J. M. (2004). Model parameters and outbreak control for SARS. Emerging Infectious Diseases, 10(7), 1258-1263. https://doi.org/10.3201/eid1007.030647 Crank, K., Chen, W., Bivins, A., Lowry, S., & Bibby, K. (2022). Contribution of SARS-CoV-2 RNA shedding routes to RNA loads in wastewater. Science of the Total Environment, 806, 6, Article 150376. https://doi.org/10.1016/j.scitotenv.2021.150376 Daughton, C. G. (2001). Emerging pollutants, and communicating the science of environmental chemistry and mass spectrometry: Pharmaceuticals in the environment. Journal of the American Society for Mass Spectrometry, 12(10), 1067-1076. https://doi.org/10.1016/s1044-0305(01)00287-2 Domokos, E., Sebestyen, V., Somogyi, V., Trajer, A. J., Gerencser-Berta, R., Horvath, B. O., Toth, E. G., Jakab, F., Kemenesi, G., & Abonyi, J. (2022). Identification of sampling points for the detection of SARS-CoV-2 in the sewage system. Sustainable Cities and Society, 76, 12, Article 103422. https://doi.org/10.1016/j.scs.2021.103422 Elias, C., Sekri, A., Leblanc, P., Cucherat, M., & Vanhems, P. (2021). The incubation period of COVID-19: A meta-analysis. International Journal of Infectious Diseases, 104, 708-710. https://doi.org/10.1016/j.ijid.2021.01.069 Esbin, M. N., Whitney, O. N., Chong, S., Maurer, A., Darzacq, X., & Tjian, R. (2020). Overcoming the bottleneck to widespread testing: a rapid review of nucleic acid testing approaches for COVID-19 detection. Rna, 26(7), 771-783. https://doi.org/10.1261/rna.076232.120 European Commission (2021) Commission recommendation of 17.3.2021 on a common approach to establish a systematic surveillance of SARS-CoV-2 and its variants in wastewaters in the EU Off. J. C , pp. 1-6 https://ec.europa.eu/environment/pdf/water/recommendation_covid19_monitoring_wastewaters.pdf Foladori, P., Cutrupi, F., Segata, N., Manara, S., Pinto, F., Malpei, F., Bruni, L., & La Rosa, G. (2020). SARS-CoV-2 from faeces to wastewater treatment: What do we know. A review. Science of the Total Environment, 743, 12, Article 140444. https://doi.org/10.1016/j.scitotenv.2020.140444 Hagberg, A., Swart, P. & S Chult, D. (2008) Exploring network structure, dynamics, and function using networkx. https://www.osti.gov/biblio/960616 . Hart, O. E., & Halden, R. U. (2020). Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Science of the Total Environment, 730, 138875. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138875 Heaton, K. W., Radvan, J., Cripps, H., Mountford, R. A., Braddon, F. E. M., & Hughes, A. O. (1992). Defecation frequency and timing, and stool form in the general population: a prospective study. Gut, 33(6), 818-824. https://doi.org/10.1136/gut.33.6.818 Hellmer, M., Paxeus, N., Magnius, L., Enache, L., Arnholm, B., Johansson, A., Bergstrom, T., & Norder, H. (2014). Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks. Applied and Environmental Microbiology, 80(21), 6771-6781. https://doi.org/10.1128/aem.01981-14 Hokajarvi, A. M., Rytkonen, A., Tiwari, A., Kauppinen, A., Oikarinen, S., Lehto, K. M., Kankaanpaa, A., Gunnar, T., Al-Hello, H., Blomqvist, S., Miettinen, I. T., Savolainen-Kopra, C., & Pitkanen, T. (2021). The detection and stability of the SARS-CoV-2 RNA biomarkers in wastewater influent in Helsinki, Finland. Science of the Total Environment, 770, 7, Article 145274. https://doi.org/10.1016/j.scitotenv.2021.145274 Kapoor, V., Al-Duroobi, H., Phan, D. C., Palekar, R. S., Blount, B., & Rambhia, K. J. (2022). Wastewater surveillance for SARS-CoV-2 to support return to campus: Methodological considerations and data interpretation. Current Opinion in Environmental Science & Health, 27, 100362. https://doi.org/10.1016/j.coesh.2022.100362 Karmaker, C. L., Ahmed, T., Ahmed, S., Ali, S. M., Moktadir, M. A., & Kabir, G. (2021). Improving supply chain sustainability in the context of COVID-19 pandemic in an emerging economy: Exploring drivers using an integrated model. Sustainable Production and Consumption, 26, 411-427. https://doi.org/10.1016/j.spc.2020.09.019 Kim, K., Ban, M. J., Kim, S., Park, M.-H., Stenstrom, M. K., & Kang, J.-H. (2022). Optimal allocation and operation of sewer monitoring sites for wastewater-based disease surveillance: A methodological proposal. Journal of Environmental Management, 320, 115806. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.115806 Kocamemi, B. A., Kurt, H., Sait, A., Sarac, F., Saatci, A. M., & Pakdemirli, B. (2020). SARS-CoV-2 detection in Istanbul wastewater treatment plant sludges. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.05.12.20099358 La Rosa, G., Iaconelli, M., Mancini, P., Ferraro, G. B., Veneri, C., Bonadonna, L., Lucentini, L., & Suffredini, E. (2020). First detection of SARS-CoV-2 in untreated wastewaters in Italy. Science of the Total Environment, 736, 5, Article 139652. https://doi.org/10.1016/j.scitotenv.2020.139652 Lai, S. J., Ruktanonchai, N. W., Zhou, L. C., Prosper, O., Luo, W., Floyd, J. R., Wesolowski, A., Santillana, M., Zhang, C., Du, X. J., Yu, H. J., & Tatem, A. J. (2020). Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature, 585(7825), 410-+. https://doi.org/10.1038/s41586-020-2293-x Larson, R. C., Berman, O., & Nourinejad, M. (2020). Sampling manholes to home in on SARS-CoV-2 infections. PloS one, 15(10), 20, Article e0240007. https://doi.org/10.1371/journal.pone.0240007 Li, J. Y., Ahmed, W., Metcalfe, S., Smith, W. J. M., Tscharke, B., Lynch, P., Sherman, P., Vo, P. H. N., Kaserzon, S. L., Simpson, S. L., McCarthy, D. T., Thomas, K. V., Mueller, J. F., & Thai, P. (2022). Monitoring of SARS-CoV-2 in sewersheds with low COVID-19 cases using a passive sampling technique. Water Research, 218, 10, Article 118481. https://doi.org/10.1016/j.watres.2022.118481 Li, Q., Lee, B. E., Gao, T., Qiu, Y., Ellehoj, E., Yu, J., Diggle, M., Tipples, G., Maal-Bared, R., & Hinshaw, D. (2023). Number of COVID-19 cases required in a population to detect SARS-CoV-2 RNA in wastewater in the province of Alberta, Canada: Sensitivity assessment. Journal of Environmental Sciences, 125, 843-850. https://doi.org/10.1016/j.jes.2022.04.047 Li, X., Zhang, S. X., Shi, J. H., Luby, S. P., & Jiang, G. M. (2021). Uncertainties in estimating SARS-CoV-2 prevalence by wastewater-based epidemiology. Chemical Engineering Journal, 415, 13, Article 129039. https://doi.org/10.1016/j.cej.2021.129039 Mao, K., Zhang, K., Du, W., Ali, W., Feng, X., & Zhang, H. (2020). The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science & Health, 17, 1-7. https://doi.org/10.1016/j.coesh.2020.04.006 McCall, A. K., Palmitessa, R., Blumensaat, F., Morgenroth, E., & Ort, C. (2017). Modeling in-sewer transformations at catchment scale - implications on drug consumption estimates in wastewater-based epidemiology. Water Research, 122, 655-668. https://doi.org/10.1016/j.watres.2017.05.034 Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., & Brouwer, A. (2020). Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported covid-19 prevalence in the early stage of the epidemic in the Netherlands. Environmental Science & Technology Letters, 7(7), 511-516. https://doi.org/10.1021/acs.estlett.0c00357 Mennis, J. (2003). Generating surface models of population using dasymetric mapping. Professional Geographer, 55(1), 31-42. https://doi.org/10.1111/0033-0124.10042 Naidoo, R., & Fisher, B. (2020). Reset sustainable development goals for a pandemic world. Nature, 583(7815), 198-201. https://doi.org/10.1038/d41586-020-01999-x Nemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C., Vanderwood, K. K., Wilkinson, R., & Wiedenheft, B. (2020). Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. Cell Reports Medicine, 1(6), 10, Article 100098. https://doi.org/10.1016/j.xcrm.2020.100098 Nourinejad, M., Berman, O., & Larson, R. C. (2021). Placing sensors in sewer networks: A system to pinpoint new cases of coronavirus. PloS one, 16(4), e0248893. https://doi.org/10.1371/journal.pone.0248893 Omori, R., Miura, F., & Kitajima, M. (2021). Age-dependent association between SARS-CoV-2 cases reported by passive surveillance and viral load in wastewater. Science of the Total Environment, 792, 5, Article 148442. https://doi.org/10.1016/j.scitotenv.2021.148442 Ort, C., Banta-Green, C. J., Bijlsma, L., Castiglioni, S., Emke, E., Gartner, C., Kasprzyk-Hordern, B., Reid, M. J., Rieckermann, J., & van Nuijs, A. L. N. (2014). Sewage-based epidemiology requires a truly trans-disciplinary approach. Gaia-Ecological Perspectives for Science and Society, 23(3), 266-268. https://doi.org/10.14512/gaia.23.3.12 Pan, Y., Zhang, D., Yang, P., Poon, L. L., & Wang, Q. (2020). Viral load of SARS-CoV-2 in clinical samples. The Lancet infectious diseases, 20(4), 411-412. https://doi.org/10.1016/S1473-3099(20)30113-4 Parasa, S., Desai, M., Chandrasekar, V. T., Patel, H. K., Kennedy, K. F., Roesch, T., Spadaccini, M., Colombo, M., Gabbiadini, R., Artifon, E. L. A., Repici, A., & Sharma, P. (2020). Prevalence of gastrointestinal symptoms and fecal viral shedding in patients with coronavirus disease 2019 a systematic review and meta-analysis. Jama Network Open, 3(6), 14, Article e2011335. https://doi.org/10.1001/jamanetworkopen.2020.11335 Prado, T., Fumian, T. M., Mannarino, C. F., Maranhao, A. G., Siqueira, M. M., & Miagostovich, M. P. (2020). Preliminary results of SARS-CoV-2 detection in sewerage system in Niteroi municipality, Rio de Janeiro, Brazil. Memorias Do Instituto Oswaldo Cruz, 115, 3, Article e200196. https://doi.org/10.1590/0074-02760200196 Pulicharla, R., Kaur, G., & Brar, S. K. (2021). A year into the COVID-19 pandemic: Rethinking of wastewater monitoring as a preemptive approach. Journal of Environmental Chemical Engineering, 9(5), 9, Article 106063. https://doi.org/10.1016/j.jece.2021.106063 Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simon, P., Allende, A., & Sanchez, G. (2020). SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Research, 181, 8, Article 115942. https://doi.org/10.1016/j.watres.2020.115942 Sanche, S., Lin, Y. T., Xu, C., Romero-Severson, E., Hengartner, N., & Ke, R. (2020). High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerging Infectious Diseases, 26(7), 1470-1477. https://doi.org/10.3201/eid2607.200282 Scott, L. C., Aubee, A., Babahaji, L., Vigil, K., Tims, S., & Aw, T. G. (2021). Targeted wastewater surveillance of SARS-CoV-2 on a university campus for COVID-19 outbreak detection and mitigation. Environmental research, 200, 111374. https://doi.org/10.1016/j.envres.2021.111374 Shao, Z. Y., Xu, L., Chai, H. X., Yost, S. A., Zheng, Z. L., Wu, Z. S., & He, Q. (2021). A Bayesian-SWMM coupled stochastic model developed to reconstruct the complete profile of an unknown discharging incidence in sewer networks. Journal of Environmental Management, 297, 11, Article 113211. https://doi.org/10.1016/j.jenvman.2021.113211 Sharara, N., Endo, N., Duvallet, C., Ghaeli, N., Matus, M., Heussner, J., Olesen, S. W., Alm, E. J., Chai, P. R., & Erickson, T. B. (2021). Wastewater network infrastructure in public health: applications and learnings from the COVID-19 pandemic. PLOS global public health, 1(12), e0000061. https://doi.org/10.1371/journal.pgph.0000061 Sharkey, M. E., Kumar, N., Mantero, A. M. A., Babler, K. M., Boone, M. M., Cardentey, Y., Cortizas, E. M., Grills, G. S., Herrin, J., Kemper, J. M., Kenney, R., Kobetz, E., Laine, J., Lamar, W. E., Mader, C. C., Mason, C. E., Quintero, A. Z., Reding, B. D., Roca, M. A., . . . Solo-Gabriele, H. M. (2021). Lessons learned from SARS-CoV-2 measurements in wastewater. Science of the Total Environment, 798, 13, Article 149177. https://doi.org/10.1016/j.scitotenv.2021.149177 Sherchan, S. P., Shahin, S., Ward, L. M., Tandukar, S., Aw, T. G., Schmitz, B., Ahmed, W., & Kitajima, M. (2020). First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA. Science of the Total Environment, 743, 6, Article 140621. https://doi.org/10.1016/j.scitotenv.2020.140621 Shi, J. H., Li, X., Zhang, S. X., Sharma, E., Sivakumar, M., Sherchan, S. P., & Jiang, G. M. (2022). Enhanced decay of coronaviruses in sewers with domestic wastewater. Science of the Total Environment, 813, 9, Article 151919. https://doi.org/10.1016/j.scitotenv.2021.151919 Suthar, S., Das, S., Nagpure, A., Madhurantakam, C., Tiwari, S. B., Gahlot, P., & Tyagi, V. K. (2021). Epidemiology and diagnosis, environmental resources quality and socio-economic perspectives for COVID-19 pandemic. Journal of Environmental Management, 280, 14, Article 111700. https://doi.org/10.1016/j.jenvman.2020.111700 US Centers for Disease Control and Prevention (2022) National Wastewater Surveillance System (NWSS). A new public health tool to understand COVID-19 spread in a community. Retrieved from https://www.cdc.gov/healthywater/surveillance/wastewater-surveillance/wastewater-surveillance.html (November 15, 2022) Weidhaas, J., Aanderud, Z. T., Roper, D. K., VanDerslice, J., Gaddis, E. B., Ostermiller, J., ... & LaCross, N. (2021). Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 disease burden in sewersheds. Science of The Total Environment, 775, 145790. https://doi.org/10.1016/j.scitotenv.2021.145790 WHO (2020) WHO coronavirus disease (COVID-19) dashboard. Retrieved from https://covid19.who.int/ (August 5, 2022) Wu, F. Q., Xiao, A., Zhang, J. B., Moniz, K., Endo, N., Armas, F., Bonneau, R., Brown, M. A., Bushman, M., Chai, P. R., Duvallet, C., Erickson, T. B., Foppe, K., Ghaeli, N., Gu, X. Q., Hanage, W. P., Huang, K. H., Lee, W. L., Matus, M., . . . Alm, E. J. (2022). SARS-CoV-2 RNA concentrations in wastewater foreshadow dynamics and clinical presentation of new COVID-19 cases. Science of the Total Environment, 805, 10, Article 150121. https://doi.org/10.1016/j.scitotenv.2021.150121 Xu, Z. X., Qu, Y., Wang, S. Y., & Chu, W. H. (2021). Diagnosis of pipe illicit connections and damaged points in urban stormwater system using an inversed optimization model. Journal of Cleaner Production, 292, 9, Article 126011. https://doi.org/10.1016/j.jclepro.2021.126011 Yang, S. L., Dong, Q., Li, S. Q., Cheng, Z., Kang, X. F., Ren, D. H., Xu, C. Y., Zhou, X. H., Liang, P., Sun, L. L., Zhao, J. H., Jiao, Y., Han, T. L., Liu, Y. C., Qian, Y., Liu, Y., Huang, X., & Qu, J. H. (2022). Persistence of SARS-CoV-2 RNA in wastewater after the end of the COVID-19 epidemics. Journal of Hazardous Materials, 429, 8, Article 128358. https://doi.org/10.1016/j.jhazmat.2022.128358 Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on computers, 100(1), 68-86. https://doi.org/10.1109/T-C.1971.223083 Zhang, N., Gong, Y., Meng, F., Bi, Y., Yang, P., & Wang, F. (2020). Virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. MedRxiv. https://doi.org/10.1101/2020.03.28.20043059 Zuccato, E., Chiabrando, C., Castiglioni, S., Calamari, D., Bagnati, R., Schiarea, S., & Fanelli, R. (2005). Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse. Environmental Health, 4(1), 1-7. https://doi.org/10.1186/1476-069X-4-14 內政部統計處 (2022,3月15日)。最小統計區圖,政府資料開放平台,擷取自https://data.gov.tw/dataset/25128 內政部統計處 (2022,3月15日)。110年6月新北市統計區人口統計最小統計https://segis.moi.gov.tw/stat/web/Platform/QueryInterface/STAT_QueryInterface.aspx?Type=0 內政部營建署下水道工程處 (2014)。污水下水道用戶接管實務手冊。 新北市 (2022,4月18日)。新北市污水下水道地理資訊系統,擷取自https://sewer.ntpc.gov.tw/swggis/Homelogin.aspx?ReturnUrl=%2fswggis%2fdefault.aspx 新北市 (2021,1月)。新北市108年污水下水道現況分析。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87605 | - |
dc.description.abstract | 新冠肺炎 (Coronavirus disease 2019, Covid-19) 的大流行嚴重衝擊著世界各國,其影響層面包含經濟、生命、社會等。此病毒傳染力強以及潛伏期長的特性,使得疫情的防範備受考驗。為此,如何在感染初期發現感染患者,儘早實施隔離等公衛措施成了各國矚目的焦點。正因如此,污水流行病學 (Wastewater-Based Epidemiology, WBE) 的概念再次興起,各國也先後實施污水監測計畫,以提早發現社區中的感染個體並追蹤疫情動態。然而,目前國內外針對污水監測尚未建立起一套完善的監測指引,同時也缺乏監測點效益評估方法,因而無法確定監測點設置後,是否能在疫情初期時儘早發現感染源並在疫情爆發後追蹤感染動態,以充分發揮其污水監測能力。
本研究以下水道管網建置完整的淡水區為案例地區,並以污水流行病學實施的各個階段為評估基礎,考量污水中病原體的產生、病毒於污水中的傳輸、採樣與分析之三大要件,建立一套監測點效益評估方法。在監測適宜性的評估中,本研究以排便習慣之機率分布作為病原體產生之關鍵,輔以下水道之水力模型模擬病毒訊號於污水中的傳輸,藉此評估採樣點監測之有效空間與適宜時間。溯源空間適宜性的評估是以土地利用之人口流動強度為篩選依據,排除人口流動性高的下游集污空間以減低無法找到感染源之機率。最終的溯源效益分析是基於二元搜尋的架構,考量溯源分區大小與單次採樣分析所需的時長,估算完成溯源所需花費的總時間。 監測適宜性評估的結果顯示,在低盛行率與高盛行率的時期皆以上午7至10點為最佳採樣時間。低盛行率時,監測點所涵蓋之有效監測空間無論是人孔或是人口數僅佔整個案例地區的10~22%,顯示此監測點無法有效監測其集污區,須於上游無效監測區額外增設監測點位,以增加污水監測面積。 溯源空間適宜性評估的結果顯示,高人口流動性之下游集污區佔整體集污區人孔數之36.98%、總人口數之29.16%,代表部分地區無法發揮污水流行病學之溯源能力,協助定位潛在感染空間。溯源效益評估的結果使決策者得以了解完成溯源所需花費的時間,以及溯源至最終分區時可能的人口數與人孔數。更具體地來說,上述的結果,反映了溯源之空間定位、人口定位能力。 | zh_TW |
dc.description.abstract | The Covid-19 pandemic has had a significant impact around the world, with economic, life, and society. The highly infectious property and long incubation period of this virus make the prevention of the epidemic challenging. As a result, the concept of Wastewater-Based Epidemiology (WBE) has re-emerged and several countries have launched relative wastewater surveillance programs to detect and track the infected individuals in the community. However, a comprehensive set of monitoring guidelines for wastewater monitoring has not yet been established both domestically and internationally. Besides, there are still lacking of relative methods for evaluating the effectiveness of monitoring sites. Therefore, at this stage, the ability of wastewater surveillance system remains a mystery.
To establish a method for evaluating the effectiveness of monitoring sites, this study takes Tamsui District as a case study area, taking into account the three major elements of WBE, the virus shedding in feces, the virus transport in sewer network, sampling and analyzing. When assessing the adequacy of wastewater monitoring, this study take the probability of defecation as the key factor, and hydraulic modeling for simulating the virus transportation in wastewater, to evaluate the effective area and proper time for sampling. The evaluation of suitability space for infection tracking is based on the relation between land-use type and the intensity of population movement. The downstream of these high population flow areas is excluded to reduce the possibility of not point out the source of infection. The benefit of source tracking is based on the framework of binary search, which consider the size of each tracking area and the time required for a single sampling analysis to estimate the total time required to complete source tracking. The results of the monitoring suitability assessment show that the best sampling time is between 7 and 10 a.m. during both low and high prevalence periods. During low prevalence, the effective monitoring space surveilled by the monitoring sites, both in terms of manholes and population, only account for 10-22% of the entire upstream area, indicating that the monitoring sites could not effectively monitor the sewershed. Thus additional monitoring sites are needed in the ineffective monitoring zone to increase the wastewater monitoring coverage. The results of the spatial suitability assessment for traceability show that the catchment areas with highly population flow properties account for 36.98% of the total manholes and 29.16% of the total population. This represents a portion of the area where the source tracking ability of WBE could not be utilized to help locate potential infection sites. The results of the traceability assessment allow decision makers to understand the time required to complete infection tracking, and the potential population and number of manholes when converges to the final district. More specifically, these results reflect the spatial and demographic locating capability of infection tracking. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:19:25Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-06-20T16:19:25Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 3 1.3 研究架構 3 第二章 文獻回顧 5 2.1 污水流行病學 5 2.1.1 污水流行病學介紹 5 2.1.2 Covid-19 污水監測 6 2.2 污水流行病學建置 11 2.2.1 長期監測點位 11 2.2.2 溯源方法建置 16 2.3 SARS-CoV-2於下水道的宿命 17 2.4 污水中污染物傳輸之模式模擬 18 第三章 研究方法 20 3.1 研究範疇 20 3.2 研究材料 21 3.3 長期監測點位建置 30 3.4 監測適宜性分析 31 3.4.1 SWMM資料建置 32 3.4.2 監測有效性指標 34 3.5 溯源適宜性分析 39 3.5.1 溯源空間適宜性 39 3.5.2 溯源效益分析 42 第四章 結果與討論 44 4.1 長期監測點建置 44 4.2 監測適宜性分析 45 4.2.1 低盛行率監測有效性指標(EL) 45 4.2.2 高盛行率監測有效性指標(EH) 50 4.3 溯源適宜性分析 54 4.3.1 溯源空間建議 54 4.3.2 溯源效益分析 56 第五章 結論與建議 60 5.1 結論 60 5.2 未來研究建議 63 參考文獻 67 附錄 77 附錄一 流量計回傳值與SWMM流量模擬結果比較 77 附錄二 不同高人口流動性土地佔比之下游影響區 77 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於污水流行病學建置SARS-CoV-2採樣點選擇方法與效益評估 | zh_TW |
dc.title | Developing a SARS-CoV-2 sampling site selection and evaluation method for wastewater-based epidemiology | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 駱尚廉;童心欣;溫在弘 | zh_TW |
dc.contributor.oralexamcommittee | Shang-Ling Lo;Hsin-Hsin Tung;Tzai-Hung Wen | en |
dc.subject.keyword | 污水流行病學,污水監測,新冠肺炎,監測效益評估,病毒溯源, | zh_TW |
dc.subject.keyword | wastewater-based epidemiology,wastewater surveillance,covid-19,monitoring effectiveness assessment,virus source tracking, | en |
dc.relation.page | 77 | - |
dc.identifier.doi | 10.6342/NTU202300259 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-02-04 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
dc.date.embargo-lift | 2025-12-31 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf 此日期後於網路公開 2025-12-31 | 4.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。