Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87602
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許正一zh_TW
dc.contributor.advisorZeng-Yei Hseuen
dc.contributor.author吳卓穎zh_TW
dc.contributor.authorCho-Yin Wuen
dc.date.accessioned2023-06-20T16:18:24Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2023-
dc.date.submitted2023-02-10-
dc.identifier.citation中央氣象局。2019。花蓮氣象站氣候資料年報表。民國110年09月21日,取自https://e-service.cwb.gov.tw/HistoryDataQuery/YearDataController.do?command=viewMain&station=466990&stname=%25E8%258A%25B1%25E8%2593%25AE&datepicker=2019
中央氣象局。2019。花蓮氣象站氣候資料年報表。民國110年09月21日,取自https://e-service.cwb.gov.tw/HistoryDataQuery/YearDataController.do?command=viewMain&station=467660&stname=%25E8%2587%25BA%25E6%259D%25B1&datepicker=2019
中央氣象局。2021。瑞穗氣象站氣候資料年報表。民國110年09月21日,取自https://e-service.cwb.gov.tw/HistoryDataQuery/YearDataController.do?command=viewMain&station=C0Z210&stname=%25E7%2591%259E%25E7%25A9%2597&datepicker=2020
中央氣象局。2021。長濱氣象站氣候資料年報表。民國110年09月21日,取自https://e-service.cwb.gov.tw/HistoryDataQuery/YearDataController.do?command=viewMain&station=C0S830&stname=%25E9%2595%25B7%25E6%25BF%25B1&datepicker=2020
俞震甫、林啟文。2016。脊梁山脈地質區:大南澳片岩帶。載於陳文山 (主編),臺灣地質概論 (9–16頁)。臺北市:社團法人中華民國地質學會。
徐鐵良。1956。臺灣東部海岸山脈地質。臺灣審地質調查所彙刊,8號,15–41頁。
陳文山、游能悌。2016。西部麓山帶地質區。載於陳文山 (主編),臺灣地質概論 (53–88頁)。臺北市:社團法人中華民國地質學會。
陳文山、鍾孫霖、李元希。2013。大南澳片岩玉里帶的碎屑鋯石鈾鉛定年。2013年臺灣地球科學聯合學術研討會,中壢,臺灣。論文摘要。
陳文山。2005。海岸山脈–花東海岸 [導覽篇一]。阿山的地科研究室。民110年08月10日,取自 http://ashan.gl.ntu.edu.tw/chinese/GeoPark/SeacoastSierraGeology/index.htm
陳正宏。1990。臺灣之火成岩。臺北縣:經濟部中央地質調查所。
陳佳元。1974。由三角點檢測證實臺灣海岸山脈向北北東移動。臺灣審地質調查所彙刊,24號,119–123頁。
陳尊賢、蔡呈奇、吳森博、賴鴻裕、簡士濠、李家興。2004。阿里山森林鐵路沿線土壤剖面標本製作及性質調查。行政院農業委員會林務局嘉義林區管理處委託研究計畫 (計畫編號:93-05-8-02)。期末報告,66頁。
謝孟龍。1990。台灣花東海岸晚第四紀沉積層海階地形暨新構造運動的研究 (碩士論文)。取自https://hdl.handle.net/11296/b7z93v
Abedini, A., M. Khosravi, A.A. Calagari, 2019. Geochemical characteristics of the Arbanos karst–type bauxite deposit, NW Iran: implications for parental affinity and factors controlling the distribution of elements. Journal of Geochemical Exploration 200, 249–265.
Ahrens, L.H., J.P. Willis, C.O. Oosthuizen, 1967. Further observations on the composition of manganese nodules, with particular reference to some of the rarer elements. Geochimica et Cosmochimica Acta 31, 2169–2180.
Aide, M.T., C. Aide, 2012. Rare earth elements: their importance in understanding soil genesis. ISRN Soil Science 2012, 1–11.
Aide, M.T., Z. Pavich, 2002. Rare earth element mobilization and migration in a WIPconsin spodosol. Soil science 167, 680–691.
Alfaro, M.R., C.W.A. Nascimento, C.M. Biondi, Y.J.A.B. Silva, Y.J.A.B. Silva, A.M.A. Accioly, A. Montero, O.M. Ugarte, J. Estevez, 2018. Rare–earth–element geochemistry in soils developed in different geological settings of Cuba. Catena 162, 317–324.
Allen, B.L., B.F. Hajek, 1989. Mineral occurrence in soil environments. Mineral occurrence in soil environments, in: Dixon, J.B., Weed, S.B., (Eds.), Minerals in Soil Environments, 2nd edition. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA, pp. 199–270.
Aubert, D., A. Probst, P. Stille, 2004. Distribution and origin of major and trace elements (particularly REE, U and Th) into labile and residual phases in an acid soil profile (Vosges Mountains, France). Applied Geochemistry 19, 899–916.
Aubert, D., P. Stille, A. Probst, 2001. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta 65, 387–406.
Balaram, V., 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers 10, 1285–1303.
Banfield, J.F., R.A. Eggleton, 1989. Apatite replacement and rare–earth mobilization, fractionation, and fixation during weathering. Clays and Clay Minerals 37, 113–127.
Bau, M., 1999. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63, 67–77.
Beckford, H.O., H. Chu, C. Song, C. Chang, H. Ji, 2021. Geochemical characteristics and behaviour of elements during weathering and pedogenesis over karst area in Yunnan–Guizhou Plateau, southwestern China. Environmental Earth Sciences 80, 1–21.
Beyala, V.K.K., V.L. Onana, E.N.E. Priso, J.C. Parisot, G.E. Ekodeck, 2009. Behaviour of REE and mass balance calculations in a lateritic profile over chlorite schists in South Cameroon. Geochemistry, 69, 61–73.
Biq, C.C., 1984. Present-day manner of movement of the Coastal Range, eastern Taiwan, as reflected by triangulation changes. Memoir of the Geological Society of China 6, 35–40.
Bispo, F.H.A., M.D. de Menezes, A. Fontana, J.E. de Souza Sarkis, C.M. Gonçalves, T.S. de Carvalho, N. Curi, L.R.G. Guilherme, 2021. Rare earth elements (REEs): geochemical patterns and contamination aspects in Brazilian benchmark soils. Environmental Pollution 289, 117972.
Blake, G.R., K.H. Hartage, 1986. Bulk density, in: Klute, A. (Ed.), Methods of Soil Analysis, Part 1, Physical and mineralogical methods, 2nd edition. Agronomy monograph. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA, pp. 363–375.
Blume, H.P., U. Schwertmann, 1969. Genetic evaluation of profile distribution of aluminum, iron, and manganese oxides. Soil Science Society of America Journal 33, 438–444.
Braun, J.J., M. Pagel, 1994. Geochemical and mineralogical behavior of REE, Th and U in the Akongo lateritic profile (SW Cameroon). Catena 21, 173–177.
Braun, J.J., M. Pagel, A. Herbillon, C. Rosin, 1993. Mobilization and redistribution of REEs and Thorium in a syenitic lateritic profile—a mass–balance study. Geochimica et Cosmochimica Acta 57, 4419–4434.
Braun, J.J., M. Pagel, J.P. Muller, P. Bilong, A. Michard, B. Guillet, 1990. Cerium anomalies in lateritic profiles. Geochimica et Cosmochimica Acta 54, 781–795.
Braun, J.J., J. Viers, B. Dupré, M. Polve, J. Ndam, J.P. Muller, 1998. Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions. Geochimica et Cosmochimica Acta 62, 273–299.
Brimhall, G.H., W.E., Dietrich, 1987. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochimica et Cosmochimica Acta 51, 567–587.
Bullock, P., N. Fedoroff, A. Jongerius, G. Stoops, T. Tursina. 1985. Handbook for soil thin section description. Waine Research Publications, Wolverhamption, UK
Campbell, A.S., U. Schwertmann, 1984. Iron oxide mineralogy of placic horizons. Journal of Soil Science 35, 569–582.
Cantrell, K.J., R.H. Byrne, 1987. Rare earth element complexation by carbonate and oxalate ions. Geochimica et Cosmochimica Acta 51, 597–605.
Cao, X., P. Wu, Z. Cao, 2016. Elemental geochemical characteristics of a soil profile developed on dolostone in central Guizhou, southern: implications for parent materials. Acta Geochimica 35, 445–462.
Chadwick, O.A., G.H. Brimhall, D.M. Hendricks, 1990. From a black to a gray box-a mass balance interpretation of pedogenesis. Geomorphology 3, 369–390.
Chang, C., F. Li, C. Liu, J. Gao, H. Tong, M. Chen, 2016. Fractionation characteristics of rare earth elements (REEs) linked with secondary Fe, Mn, and Al minerals in soils. Acta Geochimica 35, 329–339.
Chapela Lara, M., H.L. Buss, J.C. Pett-Ridge, 2018. The effects of lithology on trace element and REE behavior during tropical weathering. Chemical Geology 500, 88–102.
Chen, L.M., G.L. Zhang, Z.D. Jin, 2014. Rare earth elements of a 1000-year paddy soil chronosequence: Implications for sediment provenances, parent material uniformity and pedological changes. Geoderma 230, 274–279.
Chen, P.Y., 1977. Table of key lines in X–ray powder diffraction patterns of minerals in clays and associated rocks. Printed by authority of the State of Indiana Bloomington, Indiana.
Chen, W.S., M.T. Huang, T.K. Liu, 1991. Neotectonic significance of the Chimei fault in the Coastal Range, eastern Taiwan, Proceedings of the Geological Society of China 34, 43– 56.
Chen, W.S., Y. Wang, 1988. The Plio-Pleistocene basin development in the Coastal Range of Taiwan. Acta Gelological Taiwanica 26, 37–56.
Chen, J., R. Yang, 2010. Analysis on REE geochemical characteristics of three types of REE-rich soil in Guizhou Province, China. Journal of Rare Earths 28, 517–522.
Coppin, F., G. Berger, A. Bauer, S. Castet, M. Loubet, 2002. Sorption of lanthanides on smectite and kaolinite. Chemical Geology 182, 57–68.
Damhus, T., R.M. Hartshorn, A.T. Hutton, 2005. Nomenclature of inorganic chemistry: IUPAC recommendations 2005. Chemistry International. De Gruyter, Berlin, Germany.
Dang, D.H., K.A. Thompson, L. Ma, H.Q. Nguyen, S.T. Luu, M.T.N. Duong, A. Kernaghan, A, 2021. Toward the circular economy of Rare Earth Elements: a review of abundance, extraction, applications, and environmental impacts. Archives of environmental contamination and toxicology 81, 521–530.
Denys, A., E. Janots, A.L. Auzende, M. Lanson, N., Findling, N., Trcera, 2021. Evaluation of selectivity of sequential extraction procedure applied to REE speciation in laterite. Chemical Geology 559, 119954.
Dequincey, O., F. Chabaux, N. Clauer, O. Sigmarsson, N. Liewig, J.C. Leprun, 2002. Chemical mobilizations in laterites: evidence from trace elements and 238U-234U-230Th disequilibria. Geochimica et cosmochimica acta 66, 1197–1210.
Dinali, G.S., R.A. Root, M.K. Amistadi, J. Chorover, G. Lopes, L.R.G. Guilherme, 2019. Rare earth elements (REY) sorption on soils of contrasting mineralogy and texture. Environment International 128, 279–291.
Dostal, J., 2017. Rare earth element deposits of alkaline igneous rocks. Resources 6, 34.
Dołęgowska, S., Z.M. Migaszewski, 2013. Anomalous concentrations of rare earth elements in the moss–soil system from south-central Poland. Environmental Pollution 178, 33–40.
Durn, G., I. Perković, J. Stummeyer, F. Ottner, M. Mileusnić, 2021. Differences in the behaviour of trace and rare-earth elements in oxidizing and reducing soil environments: Case study of Terra Rossa soils and Cretaceous palaeosols from the Istrian peninsula, Croatia. Chemosphere, 131286.
Ettler, V., M. Chren, M. Mihaljevič, P. Drahota, B. Kříbek, F. Veselovský, O. Sracek, A. Vaněk, V. Penížek, M. Komáreke, B. Mapani, F. Kamona, 2017. Characterization of Fe-Mn concentric nodules from Luvisol irrigated by mine water in a semi-arid agricultural area. Geoderma 299, 32–42.
European Commission, 2017. Uses of the Rare Earth Elements. Retrieved from
http://www.eurare.org/RareEarthElements.html.
Feitosa, M.M., Y.J.A.B. da Silva, C.M. Biondi, V.C. Alcantara, C.W.A. do Nascimento, 2020. Rare Earth elements in rocks and soil profiles of a tropical volcanic archipelago in the Southern Atlantic. Catena 194, 104674.
Feng, J.L., 2010. Behaviour of rare earth elements and yttrium in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa over dolomite during chemical weathering. Chemical Geology 271, 112–132.
Gardner, W.H., 1986. Water Content, in: Klute, A. (Ed.), Methods of Soil Analysis, Part 1, 2nd edition. Agronomy Monograph, 9. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA, pp. 493–541.
Gee, G.W., J.W. Bauder, 1986. Particle–size analysis, in: Klute, A. (Ed.), Methods of Soil Analysis, Part 1, 2nd edition. Agronomy Monograph, 9. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA, pp. 383–411.
Gnandi, K., H.J. Tobschall, 2003. Distribution patterns of rare-earth elements and uranium in tertiary sedimentary phosphorites of Hahotoé–Kpogamé, Togo. Journal of African Earth Sciences 37, 1–10.
Grawunder, A., D. Merten, G. Büchel, 2014. Origin of middle rare earth element enrichment in acid mine drainage–impacted areas. Environmental Science and Pollution Research, 21, 6812–6823.
Gromet, L.P., L.A. Haskin, R.L. Korotev, R.F. Dymek, 1984. The “North American shale composite”: its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta 48, 2469–2482.
Gwenzi, W., L. Mangori, C. Danha, N. Chaukura, N. Dunjana, E. Sanganyado, 2018. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment 636, 299–313.
Hardy, M., S. Cornu, 2006. Location of natural trace elements in silty soils using particle–size fractionation. Geoderma 133, 295–308.
He, M.L., U. Wehr, W.A. Rambeck, 2010. Effect of low doses of dietary rare earth elements on growth performance of broilers. Journal of animal physiology and animal nutrition 94, 86–92.
Heckman, K., C. Rasmussen, 2011. Lithologic controls on regolith weathering and mass flux in forested ecosystems of the southwestern USA. Geoderma 164, 99–111.
Henderson, P., 1984. General geochemical properties and abundances of the rare earth elements. Developments in geochemistry. Elsevier, Amsterdam, Netherlands, pp. 1–32.
Hsu, P.H., 1989. Alumium oxides and oxyhydroxides. Mineral occurrence in soil environments, in: Dixon, J.B., Weed, S.B., (Eds.), Minerals in Soil Environments, 2nd edition. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA, pp. 331–371.
Islam, A.K.M.E., E.G. Lotse, 1986. Quantitative mineralogical analysis of some Bangladesh soils with X-ray, ion exchange and selective dissolution techniques. Clay Minerals 21, 31–42.
Islam, M.R., R. Stuart, A. Risto, P. Vesa, 2002. Mineralogical changes during intense chemical weathering of sedimentary rocks in Bangladesh. Journal of Asian Earth Sciences 20, 889–901.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Jochum, K.P., S.M. Brueckner, U. Nohl, B. Stoll, U. Weis, 2009. Geostandards and geoanalytical research bibliographic review 2008. Geostandards and Geoanalytical Research 33, 501–505.
Johns, W.D., R.E. Grim, W.F. Bradley, 1954. Quantitative estimations of clay minerals by diffraction methods. Journal of Sedimentary Research 24, 242–251.
Jonasson, R.G., G.M. Bancroft, L.A. Boatner, 1988. Surface reactions of synthetic, endmember analogues of monazite, xenotime and rhabdophane, and evolution of natural waters. Geochimica et Cosmochimica Acta 52, 767–770.
Kabata-Pendias, A., 2011. Trace elements in soils and plants. CRC Press, Boca Raton, Florida, USA, pp. 147–165.
Kahle, M., M. Kleber, R. Jahn, 2002. Review of XRD-based quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors. Geoderma 109, 191–205.
Kanazawa, Y., M. Kamitani, 2006. Rare earth minerals and resources in the world. Journal of alloys and compounds 408, 1339–1343.
Khorasanipour, M., S. Rashidi, 2020. Geochemical fractionation pattern and environmental behaviour of rare earth elements (REEs) in mine wastes and mining contaminated sediments; Sarcheshmeh mine, SE of Iran. Journal of Geochemical Exploration 210, 106450.
Kosmulski, M., 2011. The pH-dependent surface charging and points of zero charge: V. Update. Journal of colloid and interface science 353, 1–15.
Laveuf, C., S. Cornu, 2009. A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma 154, 1–12.
Laveuf, C., S. Cornu, L.R.G. Guilherme, A. Guerin, F. Juillot, 2012. The impact of redox conditions on the rare earth element signature of redoximorphic features in a soil sequence developed from limestone. Geoderma 170, 25–38.
Laveuf, C., S. Cornu, F. Juillot, 2008. Rare earth elements as tracers of pedogenetic processes. Comptes Rendus Geoscience 340, 523–532.
Lee, Y.I., H.S. Lim, H.I. Yoon, 2004. Geochemistry of soils of King George Island, South Shetland Islands, West Antarctica: implications for pedogenesis in cold polar regions. Geochimica et Cosmochimica Acta 68, 4319–4333.
Ling, S., X. Wu, Y. Ren, C. Sun, X. Liao, X. Li, B. Zhu, 2015. Geochemistry of trace and rare earth elements during weathering of black shale profiles in Northeast Chongqing, Southwestern China: their mobilization, redistribution, and fractionation. Geochemistry 75, 403–417.
Loell, M., C. Albrecht, P. Felix-Henningsen, 2011. Rare earth elements and relation between their potential bioavailability and soil properties, Nidda catchment (Central Germany). Plant and soil 349, 303–317.
Lu, V.M., K.L. McDonald, H.E. Townley, 2017. Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma. Nanomedicine 12, 2389–2401.
Mareschal, L., M.P. Turpault, J. Ranger, 2015. Effect of granite crystal grain size on soil properties and pedogenic processes along a lithosequence. Geoderma 249, 12–20.
Martins, V., R.S. Barbosa, O.S. Costa Jr, Y.J.A.B. da Silva, Y. J. A. B., da Silva, J.C.G. de Sousa, G.B. Nardoto, 2021. Potentially toxic elements and rare earth elements in sandy soils from the Brazilian Cerrado. Environmental Monitoring and Assessment 193, 1–18.
Mateus, A.C.C., A.F.D.C. Varajão, F.S.D. Oliveira, S. Petit, C.E.G.R. Schaefer, 2021. Geochemical evolution of soils developed from pyroclastic rocks of Trindade Island, South Atlantic. Brazilian Journal of Geology, 51, 1–15.
Mazhari, S.A., R.S. Attar, 2015. Rare earth elements in surface soils of the Davarzan area, NE of Iran. Geoderma Regional 5, 25–33.
McGahan, D.G., R.J. Southard, V.P. Claassen, 2009. Plant‐available calcium varies widely in soils on serpentinite landscapes. Soil Science Society of America Journal 73, 2087–2095.
McKeague, J.A., J.H. Day, 1966. Dithionite– and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science 46, 1322.
McLean, E.O., 1982. Soil pH and lime requirement, in: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis. Part 2, 2nd edition. Agronomy Monograph, 9. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA, pp. 199–224.
McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Geochemistry and Mineralogy of Rare Earth Elements, Reviews in Mineralogy 21, 169–200.
Mehra, O.P., M.L. Jackson, 1960. Iron oxides removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clays Clay Mineral 7, 317–327.
Mei, H., X. Jian, W. Zhang, H. Fu, S. Zhang, 2021. Behavioral differences between weathering and pedogenesis in a subtropical humid granitic terrain: Implications for chemical weathering intensity evaluation. Catena 203, 105368.
Miao, L., Y. Ma, R. Xu, W. Yan, 2011. Environmental biogeochemical characteristics of rare earth elements in soil and soil-grown plants of the Hetai goldfield, Guangdong Province, China. Environmental Earth Sciences 63, 501–511.
Migaszewski, Z.M., A. Gałuszka, 2015. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: a review. Critical reviews in environmental science and technology 45, 429–471.
Migaszewski, Z.M., A. Gałuszka, A. Migaszewski, 2014. The study of rare earth elements in farmer's well waters of the Podwiśniówka acid mine drainage area (south–central Poland). Environmental monitoring and assessment 186, 1609–1622.
Mihajlovic, J., A. Bauriegel, H.J. Stärk, N. Roßkopf, J. Zeitz, G. Milbert, J. Rinklebe, 2019. Rare earth elements in soil profiles of various ecosystems across Germany. Applied Geochemistry 102, 197–217.
Mihajlovic, J., J. Rinklebe, 2018. Rare earth elements in German soils - A review. Chemosphere 205, 514–523.
Moon, J.W., H.S. Moon, Y. Song, J. Kang, G. Lee, H.D. Kim, 2001. The natural enrichment of ferruginous weathering products and its implication for water quality in the Hunchun Basin, China. Environmental Geology 40, 869–883.
Moore, D.M., R.C. Reynolds, 1989. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, USA.
National Research Council. 2008. Minerals, critical minerals, and the US economy. National Academies Press, Washington, D.C., USA.
Nelson, D.W., L.E. Sommers, 1982. Total carbon, organic carbon, and organic matter, in: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis, Part 2, 2nd edition. Agronomy Monograph 9. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA, pp. 539–579.
Nesbitt, H.W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279, 206–210.
Nesbitt, H., G.M. Young, 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717.
Ng, C.W.W., P. Guan, Y.J. Shang, 2001. Weathering mechanisms and indices of the igneous rocks of Hong Kong. Quarterly Journal of Engineering Geology and Hydrogeology 34, 133–151.
Nickel, E., 1973. Experimental dissolution of light and heavy minerals in comparison with weathering and intrastratal solution. Contributions to Sedimentology 1, 1–68.
Palumbo, B., A. Bellanca, R. Neri, M.J. Roe, 2001. Trace metal partitioning in Fe–Mn nodules from Sicilian soils, Italy. Chemical Geology 173, 257–269.
Panahi, A., G.M. Young, R.H. Rainbird, 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archaean granite near Ville Marie, Quebec, Canada. Geochimica et Cosmochimica Acta 64, 2199–2220.
Pasquini, A.I., V.A. Campodonico, S., Rouzaut, V., Giampaoli, 2017. Geochemistry of a soil catena developed from loess deposits in a semiarid environment, Sierra Chica de Córdoba, central Argentina. Geoderma 295, 53–68.
Paye, H.D.S., J.W.V.D. Mello, G.R.L.D. Magalhães Mascarenhas, M. Gasparon, 2016. Distribution and fractionation of the rare earth elements in Brazilian soils. Journal of Geochemical Exploration 161, 27–41.
Peccerillo, A., S.R. Taylor, 1976. Rare earth elements in East Carpathian volcanic rocks. Earth and Planetary Science Letters, 32, 121–126.
Pédrot, M., A. Dia, M. Davranche, G. Gruau, 2015. Upper soil horizons control the rare earth element patterns in shallow groundwater. Geoderma 239, 84–96.
Pourret, O., M. Davranche, G. Gruau, A. Dia, 2007. Rare earth elements complexation with humic acid. Chemical Geology 243, 128–141.
Price, J.R., M.A. Velbel, 2003. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical geology 202, 397–416.
R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/.
Raju, C.S.K., A. Cossmer, H. Scharf, U. Panne, D. Lück, 2010. Speciation of gadolinium based MRI contrast agents in environmental water samples using hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry. Journal of analytical atomic spectrometry 25, 55–61.
Ramos, S.J., G.S. Dinali, C., Oliveira, G.C. Martins, C.G. Moreira, J.O. Siqueira, L.R. Guilherme, 2016. Rare earth elements in the soil environment. Current Pollution Reports 2, 28–50.
Ren, L., D.R. Cohen, N.F. Rutherford, A.M. Zissimos, E.G. Morisseau, 2015. Reflections of the geological characteristics of Cyprus in soil rare earth element patterns. Applied Geochemistry 56, 80–93.
Roaldset, E., 1972. Mineralogy and geochemistry of Quaternary clays in the Numedal Area, southern Norway. Norsk Geolisk Tidsskrift 52, 335–369.
Saiano, F., R. Scalenghe, 2019. Soil REE patterns as tracers of the emplacement of metal-rich anthropogenic materials. A case study in Moa (Cuba). Journal of Soils and Sediments 19, 2777–2784.
Santos, J.C.B., E. Le Pera, C.S. de Oliveira, V.S. de Souza Júnior, F. de Araújo Pedron, M.M. Corrêa, A.C. de Azevedo, 2019. Impact of weathering on REE distribution in soil-saprolite profiles developed on orthogneisses in Borborema Province, NE Brazil. Geoderma 347, 103–117.
Scarciglia, F., D. Barca, R. de Rosa, I. Pulice, 2009. Application of laser ablation ICP-MS and traditional micromorphological techniques to the study of an Alfisol (Sardinia, Italy) in thin sections: Insights into trace element distribution. Geoderma 152, 113–126.
Schaetzl, R.J., 1998. Lithologic discontinuities in some soils on drumlins: theory, detection, and application. Soil Science 163, 570–590.
Shao, W.Y., S.L. Chung, W.S. Chen, 2012. Old continental crust beneath young oceanic arc, Eastern Taiwan: New Data and Interpretation Related to Taiwan Orogeny. Abstract to Geological Society of China Annual Meeting, Chung-Li, p. 234.
Shoji, S., M. Nanzyo, R.A. Dahlgren, 1993. Volcanic ash soils: genesis, properties and utilization. Developments in Soil Science 21, 287.
Silva, B.P.C., M.L.N. Silva, S.H.G. Silva, A.C. Silva, H.R. da Rocha, A.V. Inda, M. Mancini, N. Curi, 2022. From rock to soil: Elemental mobility during pedogenesis in a deep Ultisol profile at the Mantiqueira Mountain Range, Southeastern Brazil. Geoderma Regional 31, e00576.
Silva, Y.J.A.B., C.W.A. do Nascimento, C.M. Biondi, P. van Straaten, V.S. de Souza Júnior, Y.J.A.B. da Silva, C.A. dos Santos, J.C.T deAraújo, 2017. Influence of metaluminous granite mineralogy on the rare earth element geochemistry of rocks and soils along a elevation gradient in Brazil. Geoderma 306, 28–39.
Skurzyński, J., Z. Jary, P. Kenis, R. Kubik, P. Moska, J. Raczyk, C. Seul, 2020. Geochemistry and mineralogy of the Late Pleistocene loess-palaeosol sequence in Złota (near Sandomierz, Poland): implications for weathering, sedimentary recycling and provenance. Geoderma 375, 114459.
Soil Survey Division Staff, 2017. Examination and description of soils in the field. Soil Survey Manual. Issued Mar. 2017. Handbook No. 18. USDA-Soil Conservation Service, Washington, D.C., USA, pp. 83–268.
Soil Survey Staff, 2014. Keys to soil taxonomy. USDA-Natural Resources Conservation Service, 12th ed., U.S. Government Print Office, Washington, D.C., USA.
Stoops, G., A. Jongerius, 1975. Proposal for a micromorphological classification of soil materials. I. A classification of the related distributions of fine and coarse particles. Geoderma 13, 189–199.
Stoops, G., H.J. Altemuller, E.B.A. Bisdom, J. Delvigne, V.V. Dobrovolsky, E.A. FitzPatrick, G. Paneque, J. Sleeman, 1979. Guidelines for the description of mineral alterations in soils micromorphology. Pedologie 29, 121–135.
Takahashi, Y., T. Sakashima, H. Shimizu, 2003. Observation of tetravalent cerium in zircon and its reduction by radiation effect. Geophysical research letters, 30, 1137.
Taunton, A.E., S.A. Welch, J.F. Banfield, 2000. Geomicrobiological controls on light rare earth element, Y and Ba distributions during granite weathering and soil formation. Journal of Alloys and Compounds 303, 30–36.
Taylor, S.R., S.M. McLennan, 1995. The geochemical evolution of the continental crust. Reviews of geophysics 33, 241–265.
Teixeira, W., M.C. Toledo, T.R. Fairchild, F. Taioli, 2000. Decifrando a Terra. Oficina de Textos, São Paulo, Brazil, pp. 558.
Temga, J.P., E. Sababa, L.E. Mamdem, M.L.N. Bijeck, P.T. Azinwi, N. Tehna, P.Z. Zame, V.L. Onana, J.P. Nguetnkam, L.D. Bitom, P.D. Ndjigui, 2021. Rare earth elements in tropical soils, Cameroon soils (Central Africa). Geoderma Regional 25, e00369.
Tun, M.M., I.W. Warmada, A. Idrus, A. Harijoko, K. Yonezu, K. Watanabe, 2019. Geochemical Behavior of Trace–and Rare–Earth Elements in the Hydrothermal Alteration Facies of the Cijulang Area, West Java, Indonesia. Open Journal of Geology 9, 278–294.
Thomas, G.W., 1982. Exchangeable cations, in Page, A.L. (Ed.), Methods of soil analysis, Part 2, 2nd edition. Agronomy Monograph, 9. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA, pp. 159–165.
Tsai, C.C., Z.S. Chen, 2000. Lithologic discontinuities in Ultisols along a toposequence in Taiwan. Soil science 165, 587–596.
Ulrich, M., M. Cathelineau, M. Munoz, M.C. Boiron, Y. Teitler, A.M. Karpoff, 2019. The relative distribution of critical (Sc, REE) and transition metals (Ni, Co, Cr, Mn, V) in some Ni–laterite deposits of New Caledonia. Journal of Geochemical Exploration 197, 93–113.
Vepraskas, M.J., D.L. Lindbo, 2012. Redoximorphic features as related to soil hydrology and hydric soils, in: Lin, H. (Ed.), Hydropedology: synergistic integration of soil science and hydrology. Academic Press, San Diego, California, USA, pp. 143–172.
Vermeire, M.L., S. Cornu, Z. Fekiacova, M. Detienne, B, Delvaux, J.T. Cornélis, 2016. Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chemical Geology 446, 163–174.
Verrecchia, E.P., L. Trombino, 2021. A Visual Atlas for Soil Micromorphologists. Springer Nature, London, UK.
U.S. Environmental Protection Agency, 1996. Method 3052 – Microwave assisted acid digestion of siliceous and organically based matrices. Available online at: https://www.epa.gov/sites/default/files/2015-12/documents/3052.pdf (verified 30 Nov. 2022)
Wan, Y., C. Liu, 2005. Study on adsorption of rare earth elements by kaolinite. Journal of Rare Earths 23, 377–381.
Wu, C.Y., M.F. Chu, K.F. Huang, Z.Y. Hseu, 2022 Rare earth elements associated with pedogenic iron oxides in humid and tropical soils from different parent materials. Geoderma 423, 115966.
Yamamoto, Y., Y. Takahashi, H. Shimizu, 2005. Systematics of stability constants of fulvate complexes with rare earth ions. Chemistry Letters 34, 880–881.
Yuan, Y., S. Liu, M. Wu, M. Zhong, M.Z. Shahid, Y. Liu, 2021. Effects of topography and soil properties on the distribution and fractionation of REEs in topsoil: A case study in Sichuan Basin, China. Science of The Total Environment 791, 148404.
Yusoff, Z.M., B.T. Ngwenya, I. Parsons, 2013. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology 349, 71–86.
Zhou, B., Z. Li, C. Chen, 2017. Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 7, 203.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87602-
dc.description.abstract稀土元素 (rare earth elements, REEs) 在土壤中的含量及組成,主要由母質岩性決定。不過,個別REEs和土壤黏粒、有機質及氧化鐵結合程度各異,導致化育過程中輕REEs (light REEs, LREEs) 與重REEs (heavy REEs, HREEs) 於土壤剖面出現分佈不一致的分化現象 (fractionation)。然而,母質與土壤性質對REEs的地球化學行為之影響卻鮮少被研究。本論文以臺灣東部一個涵蓋片岩、安山岩質集塊岩、砂頁岩互層、海階沖積物及基性岩五種岩性之岩性土序中的六個土壤剖面,探討化育過程中母質岩性差異如何影響REEs的分化。另外,以臺灣中部涵蓋海拔範圍49 m至2394 m之頁岩海拔梯度剖面的九個土壤剖面,解釋化育程度範圍較為廣泛下的REEs分化。
結果顯示,個別REE之含量最高的為Ce、La和Nd,且剖面間個別REE含量之多寡順序相同。此外,供試剖面之REEs全量 (170–319 mg/kg) 在全球背景範圍內 (10.9–562 mg/kg),同時略高於REEs於地殼中的平均含量 (169 mg/kg)。REEs特徵曲線與分化指標 (ΣLREEs/ΣHREEs、LaN/YbN及LaN/SmN) 皆指出,化育自富矽母質的剖面傾向富集LREEs,而母質中含量鐵較高的剖面則相對富集HREEs,表示REEs亞族組成比例主要受到母質岩性所影響。在所有剖面中,REEs、黏粒及連二亞硫酸鹽-檸檬酸鹽-碳酸氫鹽 (dithionite-citrate-bicarbonate, DCB) 可萃取鐵 (Fed) 含量均隨著深度增加而上升;然而,GdN/YbN隨著黏粒與Fed上升而降低。另一方面,DCB萃取液中REEs濃度會隨鐵上升而增加,且雷射剝蝕電漿質譜儀和電子微探儀分析亦顯示,相較於土壤基質REEs在鐵結核與黏粒膜中出現明顯的濃縮現象。另一方面,儘管土壤中LREEs之全量及DCB可萃取量均高於HREEs,但HREEs與黏粒及氧化鐵的結合程度較高。另外,母質岩性會影響土壤中REEs亞族組成,不過在化育過程中,黏粒及氧化鐵逐漸主導REEs的進一步分化,造成GdN/YbN隨著土壤風化程度上升而提高。
zh_TW
dc.description.abstractThe composition and concentration of rare earth elements (REEs) in soils are mainly controlled by the lithology of parent materials. Meanwhile, the distinct affinities of REEs with clay minerals, organic matters, and iron (Fe) oxides lead to the fractionation of light REEs (LREEs) and heavy REEs (HREEs) in soil pedons. Yet, the interaction between parent materials and soil properties affecting the pedochemical behaviors of REEs in soils has barely been investigated. Thus, this study elucidated the influence from lithology on REEs concentration and distribution during the pedogenetic processes with six pedons from a lithosequence including schist, andesitic agglomerate, sandstone interstratified with shale alluvium, terrace deposits, and mafic rocks identified in eastern Taiwan. In addition, nine soil profiles derived from shale along an elevation gradient covering an altitudinal gradient from 49 m to 2394 m above sea level in central Taiwan were analyzed to interpret REEs fractionation under wide-ranging pedogenetic processes.
The results indicated that Ce, La, and Nd were the most abundant REEs in this study, and the order of individual REE levels was identical in all pedons. Moreover, the ΣREEs (170–319 mg/kg) was within the total REEs level often found in soils worldwide (10.9–562 mg/kg) and higher than that in Earth’s crust (169 mg/kg). The REEs patterns and fractionation proxies (ΣLREEs/ΣHREEs, LaN/YbN, and LaN/SmN) indicated that pedons derived from silicon-enriched parent materials tended to be enriched in LREEs; conversely, pedons derived from Fe-enriched parent materials tended to be enriched in HREEs. In the studied pedons, REEs, clay, and dithionite-citrate-bicarbonate (DCB) extractable Fe (Fed) contents increased with increased soil depth; yet, GdN/YbN ratio decreased with increasing clay and Fed contents. Furthermore, the DCB-extractable REEs contents increased the increasing Fed and the condensations of REEs in Fe nodules and clay coatings compared with the soil matrix were identified by the laser ablation inductively coupled plasma mass spectrometry and the electron probe microanalyzer. Additionally, clay particles and pedogenic Fe oxides exhibited a stronger affinity for HREEs over LREEs, although the total and DCB-extractable amounts of LREEs were higher than that of HREEs. Moreover, the lithological properties of parent materials majorly affected the composition of REEs in soils; yet, during the pedogenetic processes, clay particles and pedogenic Fe oxides gradually dominated the further fractionation of REEs and led to the increased GdN/YbN ratio with the increasing degree of weathering.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:18:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:18:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x
第1章 前言 1
第2章 文獻回顧 2
2.1 稀土元素之定義 2
2.2 稀土元素之應用 3
2.3 岩石及礦物中的稀土元素 3
2.4 土壤中的稀土元素 5
2.4.1 稀土元素的總量 5
2.4.2 稀土元素在土壤中的分布 7
2.4.3 文獻領域分析 9
2.5 岩性土序 12
2.6 稀土元素的常態化和指標 13
2.7 質量平衡理論 15
第3章 研究目的 16
第4章 材料與方法 18
4.1 研究位置之地形及地質 18
4.2 氣候及植被 26
4.3 土壤剖面挖掘、野外形態特徵描述及樣品採集 32
4.4 土壤微形態觀察 32
4.5 元素空間分析 32
4.5.1 LA-ICP-MS 32
4.5.2 EPMA 33
4.6 土壤基本性質分析 33
4.6.1 含水量:重量法 33
4.6.2 總體密度:土環法 34
4.6.3 粒徑分析:吸管法 34
4.6.4 土壤酸鹼值:玻璃電極法 35
4.6.5 陽離子可交換容量:醋酸銨法 (pH 7.0) 35
4.6.6 鹽基飽和度:醋酸銨法 (pH 7.0) 36
4.6.7 有機碳含量:Walkley-Black濕式氧化法 36
4.6.8 連二亞硫酸鹽-檸檬酸鹽-碳酸氫鹽 (dithionite-citrate-bicarbonate, DCB) 可萃取元素 37
4.6.9 草酸銨 (pH 3.0) 可萃取元素 37
4.7 元素全量分析 38
4.7.1 波長散射X射線螢光光譜儀 38
4.7.2 微波輔助酸消化法 40
4.8 X光繞射礦物鑑定 43
4.8.1 原生礦物 43
4.8.2 黏土礦物 43
4.9 風化指標、REEs常態化、REEs分化指標及異常值計算 49
4.10 元素質量平衡 50
4.11 統計分析 52
第5章 結果與討論 53
5.1 供試剖面之形態與微形態特徵 53
5.1.1 野外形態特徵 53
5.1.2 微形態特徵 66
5.2 土壤理化性質 72
5.3 XRD礦物鑑定結果 86
5.3.1 砂粒之礦物組成 86
5.3.2 黏土礦物之組成 98
5.4 主要元素之全量、元素質量平衡與風化指標 112
5.5 岩性土序供試剖面之土壤分類 121
5.6 REEs之全量 125
5.7 REEs之分化指標 138
5.8 土壤性質與REEs之關係 141
5.9 REEs與氧化鐵之關係 145
5.10 REEs與黏粒之關係 154
第6章 結論 157
參考文獻 158
附錄一 172
附錄二 183
附錄三 184
-
dc.language.isozh_TW-
dc.title母質及化育作用對土壤稀土元素含量及分佈的影響zh_TW
dc.titleThe influences of parent materials and pedogenesis on the quantity and distribution of rare earth elementsen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳尊賢;蔡衡;李達源;王尚禮;蔡呈奇;簡士濠zh_TW
dc.contributor.oralexamcommitteeZueng-Sang Chen;Heng Tsai;Dar-Yuan Lee;Shan-Li Wang;Chen-Chi Tsai ;Shih-Hao Jienen
dc.subject.keyword土壤分類,海拔梯度,黏粒,分化,鐵結核,zh_TW
dc.subject.keywordsoil classification,elevation gradient,clay particle,fractionation,iron nodule,en
dc.relation.page216-
dc.identifier.doi10.6342/NTU202300351-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
dc.date.embargo-lift2028-02-08-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  目前未授權公開取用
11.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved