Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87601
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃心豪zh_TW
dc.contributor.advisorHsin-Haou Huangen
dc.contributor.author林偉智zh_TW
dc.contributor.authorWei-Chih Linen
dc.date.accessioned2023-06-20T16:18:04Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2023-
dc.date.submitted2023-02-16-
dc.identifier.citation[1] V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of img align= absmiddle Alt= ϵ Eps/Img and μ," Physics-Uspekhi, vol. 10, no. 4, pp. 509-514, 1968.
[2] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical review letters, vol. 58, no. 23, p. 2486, 1987.
[3] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites," Physical review letters, vol. 71, no. 13, p. 2022, 1993.
[4] M.-H. Lu, L. Feng, and Y.-F. Chen, "Phononic crystals and acoustic metamaterials," Materials today, vol. 12, no. 12, pp. 34-42, 2009.
[5] Z. Liu et al., "Locally resonant sonic materials," science, vol. 289, no. 5485, pp. 1734-1736, 2000.
[6] H. Huang and C. Sun, "Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young's modulus," Journal of the Mechanics and Physics of Solids, vol. 59, no. 10, pp. 2070-2081, 2011.
[7] D. Beli, J. Arruda, and M. Ruzzene, "Wave propagation in elastic metamaterial beams and plates with interconnected resonators," International Journal of Solids and Structures, vol. 139, pp. 105-120, 2018.
[8] C. Sugino, M. Ruzzene, and A. Erturk, "Merging mechanical and electromechanical bandgaps in locally resonant metamaterials and metastructures," Journal of the Mechanics and Physics of Solids, vol. 116, pp. 323-333, 2018.
[9] F. Aghighi, J. Morris, and A. V. Amirkhizi, "Low-frequency micro-structured mechanical metamaterials," Mechanics of Materials, vol. 130, pp. 65-75, 2019.
[10] J. Hsu and K. Ahuja, "Cavity noise control using Helmholtz resonators," in Aeroacoustics Conference, 1996, p. 1675.
[11] N. Fang et al., "Ultrasonic metamaterials with negative modulus," Nature materials, vol. 5, no. 6, pp. 452-456, 2006.
[12] M. Xu, A. Selamet, and H. Kim, "Dual helmholtz resonator," Applied Acoustics, vol. 71, no. 9, pp. 822-829, 2010.
[13] D. P. Elford, L. Chalmers, F. V. Kusmartsev, and G. M. Swallowe, "Matryoshka locally resonant sonic crystal," The Journal of the Acoustical Society of America, vol. 130, no. 5, pp. 2746-2755, 2011.
[14] J. Fey and W. M. Robertson, "Compact acoustic bandgap material based on a subwavelength collection of detuned Helmholtz resonators," Journal of Applied Physics, vol. 109, no. 11, p. 114903, 2011.
[15] S.-H. Park, "Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption," Journal of Sound and Vibration, vol. 332, no. 20, pp. 4895-4911, 2013.
[16] C. Cai and C. M. Mak, "Noise control zone for a periodic ducted Helmholtz resonator system," The Journal of the Acoustical Society of America, vol. 140, no. 6, pp. EL471-EL477, 2016.
[17] J. Jiu-Long, Y. Hong, D. Jun, Z. Jing-Bo, and D. Tao, "Low frequency band gap characteristics of double-split Helmholtz locally resonant periodic structures," Acta Physica Sinica, vol. 66, no. 6, 2017.
[18] D.-L. Yu, H.-J. Shen, J.-W. Liu, J.-F. Yin, Z.-F. Zhang, and J.-H. Wen, "Propagation of acoustic waves in a fluid-filled pipe with periodic elastic Helmholtz resonators," Chinese Physics B, vol. 27, no. 6, p. 064301, 2018.
[19] N. Hashimoto, M. Katsura, M. Yasuoka, and H. Fujii, "Sound insulation of a rectangular thin membrane with additional weights," Applied Acoustics, vol. 33, no. 1, pp. 21-43, 1991.
[20] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE transactions on microwave theory and techniques, vol. 47, no. 11, pp. 2075-2084, 1999.
[21] D. R. Smith, J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative refractive index," Science, vol. 305, no. 5685, pp. 788-792, 2004.
[22] Z. Yang, J. Mei, M. Yang, N. Chan, and P. Sheng, "Membrane-type acoustic metamaterial with negative dynamic mass," Physical review letters, vol. 101, no. 20, p. 204301, 2008.
[23] T. Wang, M.-P. Sheng, Z.-W. Guo, and Q.-H. Qin, "Flexural wave suppression by an acoustic metamaterial plate," Applied acoustics, vol. 114, pp. 118-124, 2016.
[24] T. Wang, M. Sheng, X. Ding, and X. Yan, "Wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance attachment," Journal of Physics D: Applied Physics, vol. 51, no. 11, p. 115306, 2018.
[25] T. Wang, G.-B. Wang, R.-J. Zhang, and M.-Z. Ke, "Low-frequency underwater sound absorption metamaterial," Physica Scripta, vol. 97, no. 12, p. 125706, 2022.
[26] H. Zi-Hou, Z. Jing-Bo, Y. Hong, J. Juan-Na, and C. Xin, "Sound insulation performance of thin-film acoustic metamaterials based on piezoelectric materials," Acta Physica Sinica, vol. 68, no. 13, 2019.
[27] Y. Li, B. Liang, X. Tao, X.-f. Zhu, X.-y. Zou, and J.-c. Cheng, "Acoustic focusing by coiling up space," Applied Physics Letters, vol. 101, no. 23, p. 233508, 2012.
[28] Y. Li, B. Liang, X.-y. Zou, and J.-c. Cheng, "Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space," Applied Physics Letters, vol. 103, no. 6, p. 063509, 2013.
[29] Y. Li, T. Chen, X. Wang, K. Yu, and R. Song, "Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot," Physica B: Condensed Matter, vol. 456, pp. 261-266, 2015.
[30] T. Wang, M.-p. Sheng, H. Wang, and Q.-H. Qin, "Band structures in two-dimensional phononic crystals with periodic S-shaped slot," Acoustics Australia, vol. 43, no. 3, pp. 275-281, 2015.
[31] A. Maznev, A. Every, and O. Wright, "Reciprocity in reflection and transmission: What is a ‘phonon diode’?," Wave Motion, vol. 50, no. 4, pp. 776-784, 2013.
[32] Y.-z. PANG, X.-l. YU, X.-w. ZHANG, and M.-s. YU, "Measuring the acoustic properties of underwater coating material under pressure-Acoustic impedance method."
[33] P. S. Wilson, R. A. Roy, and W. M. Carey, "An improved water-filled impedance tube," The Journal of the Acoustical Society of America, vol. 113, no. 6, pp. 3245-3252, 2003.
[34] H. Jiang and Y. Wang, "Phononic glass: A robust acoustic-absorption material," The Journal of the Acoustical Society of America, vol. 132, no. 2, pp. 694-699, 2012.
[35] Y.-H. Seo, S. Kim, S.-M. Lee, Y.-H. Byun, and Y. Seo, "Development of underwater acoustic performance measurement system using pulse tubes," Transactions of the Korean Society for Noise and Vibration Engineering, vol. 24, no. 5, pp. 399-406, 2014.
[36] L. Sun and H. Hou, "Measurement of sound absorption by underwater acoustic material using pulse-separation method," Applied acoustics, vol. 85, pp. 106-110, 2014.
[37] Y.-H. Seo, S.-R. Kim, J.-S. Kim, Y.-H. Byun, and Y. Seo, "A Study on the Effect of a Gap in Measurement of Underwater Transmission Loss by Pulse Tube," 2015.
[38] W. Xu, C. Jiang, and J. Zhang, "Underwater acoustic absorption of air-saturated open-celled silicon carbide foam," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 471, pp. 153-158, 2015.
[39] G. S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, "Sound transmission through a periodically voided soft elastic medium submerged in water," Wave Motion, vol. 70, pp. 101-112, 2017.
[40] H. D. Shin and B. H. Ahn, "Study on the Underwater Acoustic Properties of Polyurethane Elastomer," Elastomers and composites, vol. 52, no. 4, pp. 326-331, 2017.
[41] B.-E. Gu, C.-Y. Huang, T.-H. Shen, and Y.-L. Lee, "Effects of multiwall carbon nanotube addition on the corrosion resistance and underwater acoustic absorption properties of polyurethane coatings," Progress in Organic Coatings, vol. 121, pp. 226-235, 2018.
[42] X. Jiang, Z. Yang, Z. Wang, F. Zhang, F. You, and C. Yao, "Preparation and sound absorption properties of a barium titanate/nitrile butadiene rubber–polyurethane foam composite with multilayered structure," Materials, vol. 11, no. 4, p. 474, 2018.
[43] C. Ye, X. Liu, F. Xin, and T. J. Lu, "Influence of hole shape on sound absorption of underwater anechoic layers," Journal of Sound and Vibration, vol. 426, pp. 54-74, 2018.
[44] B. Yuan, W. Jiang, H. Jiang, M. Chen, and Y. Liu, "Underwater acoustic properties of graphene nanoplatelet-modified rubber," Journal of Reinforced Plastics and Composites, vol. 37, no. 9, pp. 609-616, 2018.
[45] D. Zhao, H. Zhao, H. Yang, and J. Wen, "Optimization and mechanism of acoustic absorption of Alberich coatings on a steel plate in water," Applied Acoustics, vol. 140, pp. 183-187, 2018.
[46] H. Zhong, Y. Gu, B. Bao, Q. Wang, and J. Wu, "2D underwater acoustic metamaterials incorporating a combination of particle-filled polyurethane and spiral-based local resonance mechanisms," Composite Structures, vol. 220, pp. 1-10, 2019.
[47] I. Kabir et al., "PDMS/MWCNT nanocomposite films for underwater sound absorption applications," Journal of Materials Science, vol. 55, no. 12, pp. 5048-5063, 2020.
[48] R. Liu, D. Pei, and Y. Wang, "Experimental research on sound absorption properties of impedance gradient composite with multiphase," in IOP Conference Series: Materials Science and Engineering, 2020, vol. 733, no. 1: IOP Publishing, p. 012009.
[49] S. H. Sohrabi and M. J. Ketabdari, "Stochastic modeling and sensitivity analysis of underwater sound absorber rubber coating," Applied Acoustics, vol. 164, p. 107282, 2020.
[50] S. Wang, B. Hu, and Y. Du, "Sound absorption of periodically cavities with gradient changes of radii and distances between cavities in a soft elastic medium," Applied Acoustics, vol. 170, p. 107501, 2020.
[51] M. Duan, C. Yu, F. Xin, and T. J. Lu, "Tunable underwater acoustic metamaterials via quasi-Helmholtz resonance: From low-frequency to ultra-broadband," Applied Physics Letters, vol. 118, no. 7, p. 071904, 2021.
[52] Y. Fu, J. Fischer, K. Pan, G. H. Yeoh, and Z. Peng, "Underwater sound absorption properties of polydimethylsiloxane/carbon nanotube composites with steel plate backing," Applied Acoustics, vol. 171, p. 107668, 2021.
[53] Y. Fu, I. I. Kabir, G. H. Yeoh, and Z. Peng, "A review on polymer-based materials for underwater sound absorption," Polymer Testing, vol. 96, p. 107115, 2021.
[54] L. Gang, S. Chang-geng, and Y. Xue, "Verification of acoustic superiority of MDI-based gradient structural material on high water pressure," in IOP Conference Series: Earth and Environmental Science, 2021, vol. 639, no. 1: IOP Publishing, p. 012033.
[55] Y. Gu, H. Zhong, B. Bao, Q. Wang, and J. Wu, "Experimental investigation of underwater locally multi-resonant metamaterials under high hydrostatic pressure for low frequency sound absorption," Applied Acoustics, vol. 172, p. 107605, 2021.
[56] Z. Luo, T. Li, Y. Yan, and Z. Zhou, "Analysis of Sound Absorption Performance of Underwater Acoustic Coating considering Different Poisson’s Ratio Values," Shock and Vibration, vol. 2021, 2021.
[57] Y. Wang, H. Zhao, H. Yang, J. Zhong, D. Yu, and J. Wen, "Inverse design of structured materials for broadband sound absorption," Journal of Physics D: Applied Physics, vol. 54, no. 26, p. 265301, 2021.
[58] Y. Zhang and L. Cheng, "Ultra-thin and broadband low-frequency underwater acoustic meta-absorber," International Journal of Mechanical Sciences, vol. 210, p. 106732, 2021.
[59] H. Zhong, Y. Tian, N. Gao, K. Lu, and J. Wu, "Ultra-thin composite underwater honeycomb-type acoustic metamaterial with broadband sound insulation and high hydrostatic pressure resistance," Composite structures, vol. 277, p. 114603, 2021.
[60] C. Daniels and N. Perera, "Investigation of Alberich Coating to Optimise Acoustic Stealth of Submarines," in Acoustics, 2022, vol. 4, no. 2: MDPI, pp. 362-381.
[61] M. J. Sharifi, V. Ghalehkhondabi, and A. Fazlali, "Investigation of the underwater sound absorption and damping properties of polyurethane elastomer," Journal of Thermal Analysis and Calorimetry, vol. 147, no. 6, pp. 4113-4118, 2022.
[62] Z.-Y. Shen, C.-J. Huang, and K.-W. Liu, "Development and Applications of a Pressurized Water-Filled Impedance Tube," Sensors, vol. 22, no. 10, p. 3827, 2022.
[63] Y. Sun and B. Hua, "System error calculation and analysis of underwater sound absorption coefficient measurement experiment," Applied Acoustics, vol. 186, p. 108489, 2022.
[64] I. 10534-2, "Acoustics—Determination of sound absorption coefficient and impedance in impedance tubes—Part 2: Transfer-function method," ed: International Organization for Standardization Geneva, Switzerland, 1998.
[65] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of acoustics. John wiley & sons, 2000.
[66] B. Holownia, "Effect of carbon black on Poisson's ratio of elastomers," Rubber Chemistry and Technology, vol. 48, no. 2, pp. 246-253, 1975.
[67] S. S. Jung, Y. T. Kim, Y. B. Lee, S. H. Shin, D. Kim, and H. C. Kim, "Measurement of the resonance frequency, the loss factor, and the dynamic Young's modulus in structural steel and polycarbonate by using an acoustic velocity sensor," Journal of the Korean Physical Society, vol. 49, no. 5, pp. 1961-1966, 2006.
[68] L. Fok and X. Zhang, "Negative acoustic index metamaterial," Physical Review B, vol. 83, no. 21, p. 214304, 2011.
[69] R. Zhu, Y. Chen, Y. Wang, G. Hu, and G. Huang, "A single-phase elastic hyperbolic metamaterial with anisotropic mass density," The Journal of the Acoustical Society of America, vol. 139, no. 6, pp. 3303-3310, 2016.
[70] K. Vijayakumar et al., "Investigation on aluminium/mild steel plates bonded polyurethane sheets to control vibration," Materials Today: Proceedings, vol. 45, pp. 5860-5867, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87601-
dc.description.abstract本研究以空腔吸音結構為基礎,考慮不同材料組合對吸音係數的影響,此吸音材結合了斜面、雙橡膠、空腔的概念實現具有單向傳輸性能的水下超穎聲學二極體結構,為水下超穎材料提出一種新的設計方向。本研究所使用之吸音材先由簡易均質的純材料結構進行嘗試製作,並以實際的材料參數以及有限元素模擬進行輔助建構阻抗管尺度的試片驗證實驗及模擬結果是吻合的。透過有限元素模擬進行模型優化後決定以丁腈橡膠及三元乙丙橡膠組合進行二極體結構試體製作與吸音係數量測。將製作出的最佳化試片使用本實驗室建置的充水阻抗管進行三參數校正法的實驗量測,實驗量測結果顯示在3000到10000 Hz之內皆達到正向入射吸音係數有達0.6以上,而反向入射吸音係數皆在0.2以下,且由正反向入射有明顯的單向傳輸結果,而有限元素模擬也獲得相同的趨勢。最終透過實驗與有限元素模擬證明模型具有二極體效果,說明本研究所提出的結構設計有實際上應用之潛力。zh_TW
dc.description.abstractThis study based on cavity sound-absorbing structure, consider effect of different material combinations for sound absorption coefficient. The structure uses idea of bevel, double rubber, and cavity to realize an underwater acoustic diode metamaterial structure with unidirectional transmission performance. Propose a new design direction for underwater sound-absorbing materials. The sound-absorbing materials used in this study are firstly made from homogeneous material structure, and use actual material parameters and finite element simulation to construct test sample of impedance tube scale to verify that the experimental and simulation results are consistent. After optimizing model through finite element simulation, we selected combination of NBR and EPDM rubber for diode structure test sample to production and measured sound absorption coefficient. The test sample uses water-filled impedance tube built in this laboratory to carry out experimental measurement of the three-parameter calibration method. The results of finite element analysis and experimental measurement show that sound absorption coefficient of forward incidence is above 0.6 and backward incidence is below 0.2 in range of 3000 to 10000 Hz. And there is an obvious unidirectional transmission result from the forward and backward incidence, and the finite element simulation also obtains the same trend.
Finally, through experiments and finite element simulation, it is proved the model has diode effect, indicating the design structure proposed in this study has potential for practical application.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:18:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:18:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究動機與背景 1
1.2 研究目的 2
1.3 重要性與貢獻 2
1.4 名詞對照與符號說明 2
1.4.1 英文專有名詞與中文翻譯對照 2
1.4.2 符號說明表 4
第二章 文獻探討 7
2.1 聲學超穎材料 7
2.2 水下吸音材 14
第三章 研究方法 18
3.1 研究架構與流程 18
3.2 聲波方程式 19
3.2.1 狀態方程式 19
3.2.2 連續方程式 19
3.2.3 尤拉方程式 20
3.2.4 線性聲波方程式 21
3.3 波傳現象 24
3.3.1 平面波 24
3.3.2 聲阻抗 25
3.3.3 波導管截止頻率 27
3.3.4 吸音係數 30
3.4 吸音材試片材料與結構 31
3.4.1 材料參數整理 31
3.4.2 研究模型代號說明 33
3.4.3 吸音材試片製作 34
3.5 有限元素模擬設定 37
3.6 充水阻抗管傳遞函數法 40
3.6.1 阻抗管傳遞函數法 40
3.6.2 三參數校正法 43
3.7 實驗配置 45
3.7.1 硬體介紹 45
3.7.2 軟體介紹 46
第四章 結果 48
4.1 阻抗管量測 48
4.1.1 預測試 48
4.1.2 三參數校正 48
4.2 二極體雛型模型 50
4.3 橡膠材料吸音性能量測 51
4.3.1 Model B不同疊層橡膠結果 51
4.3.2 Model B單橡膠結果 53
4.4 斜面與階梯雙橡膠結構吸音係數 54
4.4.1 Model C斜面與Model D階梯結構模擬結果 54
4.4.2 Model D階梯結構實驗結果 55
4.5 空腔階梯雙橡膠結構吸音係數 56
4.5.1 Model E穿孔空腔結果 56
4.5.2 Model E海綿空腔結果 57
第五章 討論 59
5.1 Model B結果討論 59
5.1.1 不同疊層橡膠 59
5.1.2 均質橡膠材料 60
5.1.3 不同背板吸音係數影響 61
5.2 斜面與階梯等效結構 62
5.3 雙橡膠結構能量耗散 63
5.4 雙橡膠空腔結構結果討論 65
5.4.1 空腔結構能量耗散 65
5.4.2 Model D與Model E吸音係數比較 68
第六章 結論與未來展望 70
6.1 結論 70
6.2 未來展望 71
參考文獻 72
-
dc.language.isozh_TW-
dc.subject聲學二極體zh_TW
dc.subject水下聲波zh_TW
dc.subject超穎材料zh_TW
dc.subject吸音zh_TW
dc.subject單向傳輸zh_TW
dc.subjectunderwater acoustic waveen
dc.subjectmetamaterialen
dc.subjectunidirectional transmissionen
dc.subjectacoustic diodeen
dc.subjectsound absorptionen
dc.title水下超穎聲學二極體結構之吸音機制探討與充水阻抗管實驗驗證zh_TW
dc.titleStudy on Absorption Property of Underwater Acoustic Diode Metamaterial Structure and Experimental Verification of Water-filled Impedance Tubeen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王昭男;宋家驥;李佳翰;黃勝翊zh_TW
dc.contributor.oralexamcommitteeChao-Nan Wang;Chia-Chi Sung;Jia-Han Li;Hseng-Ji Huangen
dc.subject.keyword超穎材料,水下聲波,聲學二極體,單向傳輸,吸音,zh_TW
dc.subject.keywordmetamaterial,underwater acoustic wave,acoustic diode,unidirectional transmission,sound absorption,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202300416-
dc.rights.note未授權-
dc.date.accepted2023-02-17-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
5.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved