請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87598
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊爵因 | zh_TW |
dc.contributor.advisor | Jiue-in Yang | en |
dc.contributor.author | 黃紹綺 | zh_TW |
dc.contributor.author | Shao-Chi Huang | en |
dc.date.accessioned | 2023-06-20T16:16:59Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-06-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-02-17 | - |
dc.identifier.citation | Abad, P., Castagnone-Sereno, P., Rosso, M.-N., Engler, J. d. A., Favery, B. 2009. Invasion, feeding and development. In Root-knot nematodes. CABI Wallingford UK, p.163-181.
Adhikari, B., Adhikari, M., Ghimire, B., Park, G., Choi, E. H. 2019. Cold atmospheric plasma-activated water irrigation induces defense hormone and gene expression in tomato seedlings. Sci. Rep. 9:1-15. Ajang, S. N. N. 2010. Resistance of carrot cultivars to Meloidogyne chitwoodi. Nematology.1-30. Al-Hazmi, A., Al-Yahya, F., AbdelRafaa, O., Lafi, H. 2019. Effects of humic acid, Trichoderma harzianum, and Paecilomyces lilacinus on Meloidogyne javanica. Int. J. Agric. Environ. Bio-Res. 4:61-74. Alfy, H., Ghareeb, R. Y., Soltan, E., Farag, D. A. 2020. Impact of chitosan nanoparticles as insecticide and nematicide against Spodoptera littoralis, Locusta migratoria, and Meloidogyne incognita. Plant Cell Biotechnol. Mol. Biol. 21:126-140. Ashokkumar, N., Poornima, K., Kalaiarasan, P. 2019. Embryogenesis, penetration and post penetration development of Meloidogyne enterolobii in guava (Psidium guajava L.). Ann. Plant Prot. Sci. 27:140-145. Azevedo de Oliveira, S., Oliveira, C. M. G. d., Maleita, C. M. N., Silva, M. d. F. A., et al. 2018. First report of Meloidogyne graminis on golf courses turfgrass in Brazil. PLoS One.13:e0192397. Bansal, R., and Bajaj, A. 2003. Effect of volatile fatty acids on embryogenesis and hatching of Meloidogyne incognita eggs. Nematologia Mediterranea. 31 :135-140 Barker, K. 1985. Nematode extraction and bioassays. An advanced treatise on Meloidogyne. 2:19-35. Bilgin, D. D., Aldea, M., O'Neill, B. F., Benitez, M., Li, M., Clough, S. J., DeLucia, E. H. 2008. Elevated ozone alters soybean-virus interaction. Mol. Plant Microbe Interact. 21:1297-1308. Bird, A. F., and McClure, M. 1976. The tylenchid (Nematoda) egg shell: structure, composition and permeability. Parasitology. 72:19-28. Blok, V. C., Powers, T. O. 2009. Biochemical and molecular identification. In Root-knot nematodes, p98-118. Brito, J., Kaur, R., Cetintas, R., Stanley, J., Mendes, M., Powers, T. O., Dickson, D. 2010. Meloidogyne spp. infecting ornamental plants in Florida. Nematropica. 40:87-103. Brito, J., Stanley, J., Kaur, R., Cetintas, R., Di Vito, M., Thies, J., Dickson, D. 2007. Effects of the Mi-1, N and Tabasco genes on infection and reproduction of Meloidogyne mayaguensis on tomato and pepper genotypes. J. Nematol. 39: 327. Bybd Jr, D., Kirkpatrick, T., & Barker, K. 1983. An improved technique for clearing and staining plant tissues for detection of nematodes. J. Nematol. 15:142. Cabasan, M. T. N., Kumar, A., De Waele, D. 2012. Comparison of migration, penetration, development and reproduction of Meloidogyne graminicola on susceptible and resistant rice genotypes. Nematology.14: 405-415. Castagnone-Sereno, P. 2012. Meloidogyne enterolobii (= M. mayaguensis): profile of an emerging, highly pathogenic, root-knot nematode species. Nematology. 14:133-138. Cetintas, R., Brito, J., Dickson, D. 2008. Virulence of four Florida isolates of Meloidogyne mayaguensis to selected soybean genotypes. Nematropica. 127-136. Chen, D.Y. and Yen, J.H. 2015. The plant-parasitic nematode diseases of red dragon fruit and its control strategies in Taiwan. Spec. Publ. TARI No. 184. 137-144 Chitwood, D. J., and Perry, R. N. 2009. Reproduction, physiology and biochemistry. In Root-knot nematodes, p182-200. Ciancio, A. 2007. General concepts in integrated pest and disease management, edited by A. Ciancio, KG Mukerji. Integrated Management of Plant and Diseases. 1. Collett, R. L., Marais, M., Daneel, M., Rashidifard, M., Fourie, H. 2021. Meloidogyne enterolobii, a threat to crop production with particular reference to sub-Saharan Africa: an extensive, critical and updated review. Nematology.23: 247-285. Curtis, R. H., Robinson, A. F., Perry, R. N. 2009. Hatch and host location. In Root-knot nematodes. Wallingford UK: CABI. p.139-162. Chang, D., Serra, L., Lu, D., Mortazavi, A., Dillman, A. 2021. A revised adaptation of the smart-Seq2 protocol for single-nematode RNA-seq. In RNA Abundance Analysis. Springer. p. 79-99. Cong, Y., Yang, H., Zhang, P., Xie, Y., Cao, X., Zhang, L. 2020. Transcriptome analysis of the nematode Caenorhabditis elegans in acidic stress environments. Front. physiol 11:1107. Cody, R. 2018. An introduction to SAS university edition. SAS Institute. Das, S., DeMason, D. A., Ehlers, J. D., Close, T. J., Roberts, P. A. 2008. Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. J. Exp. Bot.59:1305-1313. de Moura, R. M., Lira, V. L. 2020. Embryonic development and hacthing of Meloidogyne enterolobii (Nematoda: Meloidogynideae). Anais da Academia Pernambucana de Ciência Agronômica.17:99-104. El-Deeb, A., El-Ashry, R., El-Marzoky, A. 2018. Nematicidal activities of certain animal manures and biopesticides against Meloidogyne incognita infecting cucurbit plants under greenhouse conditions. J. Plant Prot. Pathol. 9: 265-271. El-Maarouf-Bouteau, H., Bailly, C. 2008. Oxidative signaling in seed germination and dormancy. Plant Signal. Behav. 3:175-182. Elling, A. A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology. 103: 1092-1102. EPPO. 2016. PM 7/103 (2) Meloidogyne enterolobii. Bulletin OEPP/EPPO Bulletin, 46, 190-201. Ewels, P., Magnusson, M., Lundin, S., Käller, M. 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics.32: 3047-3048. Freitas, V. M., Silva, J. G., Gomes, C. B., Castro, J., Correa, V. R., Carneiro, R. M. 2017. Host status of selected cultivated fruit crops to Meloidogyne enterolobii. Eur. J. Plant Pathol. 148: 307-319. Fridman, A. 2008. Plasma chemistry: Cambridge University press UK. Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics.28: 3150-3152. Fourie, H., Mc Donald, A. H., De Waele, D., Jordaan, A. 2013. Comparative cellular responses in susceptible and resistant soybean cultivars infected by Meloidogyne incognita. Nematology. 15:695-708. Garrity, M. M., Burgart, L. J., Riehle, D. L., Hill, E. M., Sebo, T. J., Witzig, T. 2003. Identifying and quantifying apoptosis: navigating technical pitfalls. Mod. Pathol. 16: 389-394. Ghaffari, N., Sanchez-Flores, A., Doan, R., Garcia-Orozco, K. D., Chen, P. L., Ochoa-Leyva, A., et al. 2014. Novel transcriptome assembly and improved annotation of the whiteleg shrimp (Litopenaeus vannamei), a dominant crustacean in global seafood mariculture. Sci. Rep. 4: 1-10. Gendy, A. S., Said-Al Ahl, H. A., Mahmoud, A. A., Mohamed, H. F. 2013. Effect of nitrogen sources, bio-fertilizers and their interaction on the growth, seed yield and chemical composition of guar plants. Life Sci. 10:389-402. Guo, J., Wang, J., Xie, H., Jiang, J., Li, C., Li, W., et al. 2022. Inactivation effects of plasma-activated water on Fusarium graminearum. Food Control. 134:108683 Gallego Romero, I., Pai, A. A., Tung, J., Gilad, Y. 2014. RNA-seq: impact of RNA degradation on transcript quantification. BMC Bio. 12:1-13. Griffiths, G. J., Holland, J. M., Bailey, A., Thomas, M. B. 2008. Efficacy and economics of shelter habitats for conservation biological control. Biol. Control. 45: 200-209. Gomes, V. M., Souza, R. M., Almeida, A. M., Dolinski, C. 2014. Relationships between M. enterolobii and F. solani: spatial and temporal dynamics in the occurrence of guava decline. Nematoda. 1: e01014. Haas, B. 2013. Denovo transcript sequence reconstruction from RNA-Seq: Trinity platform for reference generation and analysis. Nat. Protoc. 8: 1494-1512. Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8: 1494-1512. Hamdan, A., Profili, J., Cha, M. S. 2020. Microwave plasma jet in water: effect of water electrical conductivity on plasma characteristics. Plasma Chem. Plasma Process. 40: 169-185. Handoo, Z., and Subbotin, S. 2018. Taxonomy, identification and principal species. In Cyst nematodes. Wallingford, UK, CAB International. p. 365-397. Herianto, S., Hou, C. Y., Lin, C. M., Chen, H. L. 2021. Nonthermal plasma‐activated water: A comprehensive review of this new tool for enhanced food safety and quality. Compr. Rev. Food Sci. Food Saf. 20: 583-626. Ho, J. T., Liang, C. C., Chen, P. 2022. First report of root-knot nematode Meloidogyne enterolobii on cockscomb (Celosia argentea var. cristata) in Taiwan. Plant Dis.106: 2000. Hussain, M. A., Mukhtar, T., Kayani, M. Z. 2016. Reproduction of Meloidogyne incognita on resistant and susceptible okra cultivars. Pak. J. Agric. Sci. 53. Hsieh, M. S. 2020. Effects of nickel and chromium on microbial communities and root- knot nematode in serpentine soil. Master thesis. National Taiwan University, Taipei, Taiwan. Inglis, W. G. 1964. The structure of the namatode cuticle.. In Proceedings of the Zoological Society of London. Oxford, UK: Blackwell Publishing Ltd. p. 465-502. Ishibashi, N. 1969. Studies on the propagation of the root knot nematode Meloidogyne incognita (Kofoid & White) Chitwood, 1949. Plant Prot. Res. 2:25-128. Jones, V. P., Unruh, T. R., Horton, D. R., Mills, N. J., Brunner, J. F., Beers, E. H., Shearer, P. W. 2009. Tree fruit IPM programs in the western United States: the challenge of enhancing biological control through intensive management. Pest Manag. Sci. 65:1305-1310. Jin, Y. S., Cho, C., Kim, D., Sohn, C. H., Ha, C.-s., Han, S.-T. 2020. Mass production of plasma activated water by an atmospheric pressure plasma. Jpn. J. Appl. Phys. 59: SHHF05. Judée, F., Simon, S., Bailly, C., Dufour, T. 2018. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water Res.133: 47-59. Koutsovoulos, G. D., Poullet, M., Elashry, A., Kozlowski, D. K., Sallet, E., Da Rocha, M., et al. 2020. Genome assembly and annotation of Meloidogyne enterolobii, an emerging parthenogenetic root-knot nematode. Sci. Data. 7:1-13. Kiewnick, S., Dessimoz, M., Franck, L. 2009. Effects of the Mi-1 and the N root-knot nematode-resistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars. J. Nematol. 41: 134. Kiewnick, S., Karssen, G., Brito, J., Oggenfuss, M., and Frey, J.-E. 2008. First report of root-knot nematode Meloidogyne enterolobii on tomato and cucumber in Switzerland. Plant Dis. 92: 1370-1370. Kim, Y., Park, Y., Hwang, J., Kwack, K. 2018. Comparative genomic analysis of the human and nematode Caenorhabditis elegans uncovers potential reproductive genes and disease associations in humans. Physiol. Genomics. 50 :1002-1014. Koppenhöfer, A. M. 2000. Nematodes. In Field manual of techniques in invertebrate pathology. Springer, p. 283-301 Kumari, C., Dutta, T. K., Chaudhary, S., Banakar, P., Papolu, P. K., Rao, U. 2017. Molecular characterization of FMRFamide-like peptides in Meloidogyne graminicola and analysis of their knockdown effect on nematode infectivity. Gene. 619: 50-60. Langmead, B., Trapnell, C., Pop, M., Salzberg, S. L. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10: 1-10. Lee, Y. S., Naning, K. W., Nguyen, X. H., Kim, S. B., Moon, J. H., Kim, K. Y. 2014. Ovicidal activity of lactic acid produced by Lysobacter capsici YS1215 on eggs of root-knot nematode, Meloidogyne incognita. J. Microbiol. Biotechnol. 24: 1510-1515. Li, B., and Dewey, C. N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12: 1-16. Li, H., Li, H., Zuo, N., Liu, Y., Lang, D., Steinberg, C., et al. 2022. Direct toxicity of environmentally persistent free radicals to nematode Caenorhabditis elegans after excluding the concomitant chemicals. Sci. Total Environ. 839: 156226. Lindsay, A., Byrns, B., King, W., Andhvarapou, A., Fields, J., Knappe, D., et al. 2014. Fertilization of radishes, tomatoes, and marigolds using a large-volume atmospheric glow discharge. Plasma Chem. Plasma Process. 34: 1271-1290. Li, X., Yang, D., Niu, J., Zhao, J., Jian, H. 2016. De novo analysis of the transcriptome of Meloidogyne enterolobii to uncover potential target genes for biological control. Int. J. Mol. Sci. 17:1442. Liang, C. C.,and Chen, P. 2022. First report of root-knot nematode Meloidogyne enterolobii on Poinsettia ‘Luv U Pink’in Taiwan. Plant Dis. 106: 1764. Lu, C.J., Meng, Y., Wang, Y.L., Zhang, T., Yang, G.F., Mo, M.H., et al. 2022. Survival and infectivity of second-stage root-knot nematode Meloidogyne incognita juveniles depend on lysosome-mediated lipolysis. J. Biol. Chem. 298 Lu, N., Yu, X., He, X., Zhou, Z. 2009. Detecting apoptotic cells and monitoring their clearance in the nematode Caenorhabditis elegans. In Apoptosis. Springer, p. 357-370 Lu, X., Naidis, G. V., Laroussi, M., Reuter, S., Graves, D. B., Ostrikov, K. 2016. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. 630: 1-84. Long, H., Chen, Y., Pei, Y., Li, H., Sun, Y., Feng, T. 2022. Occurrence and Identification of Root-Knot Nematodes on Red Dragon Fruit (Hylocereus polyrhizus) in Hainan, China. Agronomy. 12: 1064. Lin, Yi-Hsin. Effects of Environmental Factors on the Sex Differentiation of Southern Root-Knot Nematode(Meloidogyne incognita)Master thesis. National Chung Hsing University, Taichung, Taiwan Lai, J. R. 2019. Development and application of the plasma activated water management system for root-knot nematode. Master thesis. National Taiwan University, Taipei, Taiwan. Meher, H. C., Gajbhiye, V. T., Chawla, G., Singh, G. 2009. Virulence development and genetic polymorphism in Meloidogyne incognita (Kofoid & White) Chitwood after prolonged exposure to sublethal concentrations of nematicides and continuous growing of resistant tomato cultivars. Pest Manag. Sci. 65: 1201-1207. Machala, Z., Tarabová, B., Sersenová, D., Janda, M., Hensel, K. 2018. Chemical and antibacterial effects of plasma activated water: Correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J. Phys. D . 52: 034002. McCarthy, D. J., Chen, Y., Smyth, G. K. 2012. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40: 4288-4297. McKay, F. M., McCoy, C. J., Crooks, B., Marks, N. J., Maule, A. G., Atkinson, L. E., Mousley, A. 2022. In silico analyses of neuropeptide-like protein (NLP) profiles in parasitic nematodes. Int. J. Parasitol.52: 77-85. Melakeberhan, H., Dey, J., Baligar, V. C., Carter Jr, T. E. 2004. Effect of soil pH on the pathogenesis of Heterodera glycines and Meloidogyne incognita on Glycine max genotypes. Nematology.6: 585-592. Melakeberhan, H., Ferris, H., McKenry, M., Gaspard, J. 1989. Overwintering Stages of Meloidogyne incognita in Vitis vinifera. J. Nematol. 21: 92. Min, Y. Y., Toyota, K., Sato, E. 2012. A novel nematode diagnostic method using the direct quantification of major plant-parasitic nematodes in soil by real-time PCR. Nematology. 14: 265-276. Misra, N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J., Keener, K., Cullen, P. 2014. In-package atmospheric pressure cold plasma treatment of strawberries. J. Food Eng.125: 131-138. Mitsugi, F., Abiru, T., Ikegami, T., Ebihara, K., Nagahama, K. 2017. Treatment of nematode in soil using surface barrier discharge ozone generator. IEEE Trans. Plasma Sci. 45: 3076-3081. Moens, M., Perry, R. N., Starr, J. L. 2009. Meloidogyne species–a diverse group of novel and important plant parasites. In Root-knot nematodes, 1, 483. Mohapatra, A. D., Kumar, S., Satapathy, A. K., Ravindran, B. 2011. Caspase dependent programmed cell death in developing embryos: a potential target for therapeutic intervention against pathogenic nematodes. PLOS Negl. Trop. Dis. 5:e1306. Nasiou, E., Thoden, T., Pardavella, I. V., Tzortzakakis, E. A. 2020. Compatibility of fluazaindolizine and oxamyl with Pasteuria penetrans on spore attachment to juveniles of Meloidogyne javanica and M. incognita. J. Nematol. Naumova, I., Maksimov, A., Hliustova, A. 2011. Stimulation of the Germinability of Seeds and Germ Growth under Treatment with Plasma Activated Water. Surf. Eng. Appl. Electrochem. 47: 263-265. Neyts, E. C., Ostrikov, K., Sunkara, M. K., Bogaerts, A. 2015. Plasma catalysis: synergistic effects at the nanoscale. Chem. Rev. 115:13408-13446. Nazir, K., Mukhtar, T., Javed, H. 2019. In Vitro Effectiveness of Silver Nanoparticles against Root-Knot Nematode (Meloidogyne incognita). Pak. J. Zool. 51. Noling, J. 2015. Fumigant nematicides registered for vegetable crop use in Florida. ENY-064, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Oka, Y., and Mizukubo, T. 2009. Tomato culture filtrate stimulates hatching and activity of Meloidogyne incognita juveniles. Nematology. 11:51-61. Orion, D., and Kritzman, G. 1991. Antimicrobial activity of Meloidogyne javanica gelatinous matrix. Revue de Nématologie. 14: 481-483. Overstreet, C., McGowley, E., Clark, C., Rezende, J., Smith, T., Sistrunk, M. 2019. Guava root knot nematode a potentially serious new pest in Louisiana. LSU Ag Center publication. Papadopoulou, J., and Traintaphyllou, A. 1982. Sex differentiation in Meloidogyne incognita and anatomical evidence of sex reversal. J. Nematol. 14: 549. Park, D. P., Davis, K., Gilani, S., Alonzo, C.-A., Dobrynin, D., Friedman, G.,et al. 2013. Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield. Curr. Appl. Phys. 13: S19-S29. Pereira, F. O., Souza, R., Souza, P. M., Dolinski, C., Santos, G. K. 2009. Estimativa do impacto econômico e social direto de Meloidogyne mayaguensis na cultura da goiaba no Brasil. Nematologia Brasileira. 33: 176-181. Perez, S. M., Biondi, E., Laurita, R., Proto, M., Sarti, F., Gherardi, M.,et al. 2019. Plasma activated water as resistance inducer against bacterial leaf spot of tomato. PloS one. 14: e0217788. Petitot, A. S., Dereeper, A., Agbessi, M., Da Silva, C., Guy, J., Ardisson, M., & Fernandez, D. 2016. Dual RNA‐seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants. Mol. Plant Pathol. 17:860-874. Pertot, I., Caffi, T., Rossi, V., Mugnai, L., Hoffmann, C., Grando, M., .et al. 2017. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot.97: 70-84. Phani, V., Shivakumara, T. N., Davies, K. G., Rao, U. 2017. Meloidogyne incognita fatty acid-and retinol-binding protein (Mi-FAR-1) affects nematode infection of plant roots and the attachment of Pasteuria penetrans endospores. Front. Microbiol.8:2122. Philbrick, A. N., Adhikari, T. B., Louws, F. J., Gorny, A. M. 2020. Meloidogyne enterolobii, a major threat to tomato production: current status and future prospects for its management. Front. Plant Sci. 1773. Przybylska, A., and Obrępalska-Stęplowska, A. 2020. Plant defense responses in monocotyledonous and dicotyledonous host plants during root-knot nematode infection. Plant and Soil. 451: 239-260. Puač, N., Škoro, N., Spasić, K., Živković, S., Milutinović, M., Malović, G., Petrović, Z. L. 2018. Activity of catalase enzyme in Paulownia tomentosa seeds during the process of germination after treatments with low pressure plasma and plasma activated water. Plasma Process. Poly. 15: 1700082. Quintin, S., Aspert, T., Ye, T., Charvin, G. 2022. Distinct mechanisms underlie H2O2 sensing in C. elegans head and tail. PloS one. 17: e0274226. Qin X., Duan Y., Yang M. 1991. Primary identification of tobacco root-knot nematodes in Yunnan. Yunnan Agricul- tural Science and Technology. 4:22–23. Rich, J., Brito, J., Kaur, R., Ferrell, J. 2009. Weed species as hosts of Meloidogyne: a review. Nematropica. 157-185. Robinson, A., and Perry, R. 2006. Behaviour and sensory perception. Plant nematology, 210-233. Rodriguez, M. G., Sanchez, L., Rowe, J. 2003. Host status of acriculturally important plant familes to the root-knot nematode Melodogyne mayaguensis in Cuba. Nematropica. 125-130. Rutter, W. B., Hewezi, T., Abubucker, S., Maier, T. R., Huang, G., Mitreva, M., .et al. 2014. Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita. Mol. Plant Microbe Interact. 27: 965-974. Santos, D., Abrantes, I., Maleita, C. 2019. The quarantine root‐knot nematode Meloidogyne enterolobii–a potential threat to Portugal and Europe. Plant Pathol. 68: 1607-1615. Sarinont, T., Amano, T., Kitazaki, S., Koga, K., Uchida, G., Shiratani, M., Hayashi, N. 2014. Growth enhancement effects of radish sprouts: Atmospheric pressure plasma irradiation vs. heat shock. Paper presented at the Journal of Physics: Conference Series. Silva, E. M. d., Souza Pollo, A., Nascimento, D. D., Ferreira, R. J., Duarte, S. R., Fernandes, J. P. P., Soares, P. L. M. 2021. First Report of Root-Knot Nematode Meloidogyne enterolobii Infecting Sweetpotato in the State of Rio Grande do Norte, Brazil. Plant Dis. 105: 1571. Shahbaz, M. U., Mukhtar, T., Begum, N. 2015. Biochemical and Serological Characterization of Ralstonia solanacearum Associated with Chilli Seeds from Pakistan. Int. J. Agric. Biol. 17. Shaw, D., Hermoso, A., Lluch-Senar, M., Serrano, L. 2020. Comparative gene essentiality across the bacterial domain. BioRxiv. 2020-02. Shukla, N., Yadav, R., Kaur, P., Rasmussen, S., Goel, S., Agarwal, M., et al. 2018. Transcriptome analysis of root‐knot nematode (Meloidogyne incognita)‐infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. Mol. Plant Pathol.19:615-633. Szitenberg, A., Salazar-Jaramillo, L., Blok, V. C., Laetsch, D. R., Joseph, S., Williamson, V. M.,et al. 2017. Comparative genomics of apomictic root-knot nematodes: hybridization, ploidy, and dynamic genome change. Genome Biol. Evol.9:2844-2861. Singh, R. R., Verstraeten, B., Siddique, S., Tegene, A. M., Tenhaken, R., Frei, M., et al. 2020. Ascorbate oxidation activates systemic defence against root-knot nematode Meloidogyne graminicola in rice. J. Exp. Bot. 71: 4271-4284. Šírová, J., Sedlářová, M., Piterková, J., Luhová, L., Petřivalský, M. 2011. The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci. 181: 560-572. Sivachandiran, L., and Khacef, A. 2017. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv. 7: 1822-1832. Sousa, E. S. R. d. 2017. Bioinformatics analyses and approaches to RNA-Seq Data. Spence, K. O., Lewis, E. E., Perry, R. N. 2008. Host-finding and invasion by entomopathogenic and plant-parasitic nematodes: evaluating the ability of laboratory bioassays to predict field results. J. Nematol. 40: 93. Takahata, J., Takaki, K., Satta, N., Takahashi, K., Fujio, T., Sasaki, Y. 2014. Improvement of growth rate of plants by bubble discharge in water. Jpn. J. Appl. Phys. 54: 01AG07. Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., Valdramidis, V. P. 2018. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci Technol. 77: 21-31. Thirumdas, R., Sarangapani, C., Annapure, U. S. 2015. Cold plasma: a novel non-thermal technology for food processing. Food Biophys.10: 1-11. Triantaphyllou, A. 1987. Cytogenetic status of Meloidogyne (Hypsoperine) spartinae in relation to other Meloidogyne species. J. Nematol. 19:1. Trinh, Q., Le, T., Nguyen, T., Nguyen, H. T., Liebanas, G., Nguyen, T. 2019. Meloidogyne daklakensis n. sp.(Nematoda: Meloidogynidae), a new root-knot nematode associated with Robusta coffee (Coffea canephora Pierre ex A. Froehner) in the Western Highlands, Vietnam. J. Helminthol. 93: 242-254. Udalova, Z. V., Zinovieva, S. 2019. Effect of salicylic acid on the oxidative and photosynthetic processes in tomato plants at invasion with root-knot nematode Meloidogyne incognita (Kofoid Et White, 1919) Chitwood, 1949. Paper presented at the Doklady Biochemistry and Biophysics. Veronico, P., Paciolla, C., Sasanelli, N., De Leonardis, S., Melillo, M. T. 2017. Ozonated water reduces susceptibility in tomato plants to Meloidogyne incognita by the modulation of the antioxidant system. Mol. Plant Pathol. 18: 529-539. van Lenteren, J. C. 2000. A greenhouse without pesticides: fact or fantasy? Crop Prot. 19:375-384. Watts, J. L., and Ristow, M. 2017. Lipid and carbohydrate metabolism in Caenorhabditis elegans. Genetics. 207:413-446. Wang, H., Zhao, Y., Zhang, Z. 2019. Age-dependent effects of floxuridine (FUdR) on senescent pathology and mortality in the nematode Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 509:694-699. Wesemael, W., Perry, R., Moens, M. 2006. The influence of root diffusate and host age on hatching of the root-knot nematodes, Meloidogyne chitwoodi and M. fallax. Nematology. 8: 895-902. Wesemael, W., Viaene, N., Moens, M. 2011. Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology.13: 3-16. Williamson, V. M., Roberts, P. A., Perry, R. 2009. Mechanisms and genetics of resistance. In Root-knot nematodes, 301. Yang, B., and Eisenback, J. 983. Meloidogyne enterolobii n. sp.(Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. J. Nematol. 15: 381. Yang, Y., Hu, X., Liu, P., Chen, L., Peng, H., Wang, Q., Zhang, Q. 2021. A new root-knot nematode, Meloidogyne vitis sp. nov.(Nematoda: Meloidogynidae), parasitizing grape in Yunnan. PloS one.16: e0245201. Ye, W., Koenning, S., Zhuo, K., Liao, J. 2013. First report of Meloidogyne enterolobii on cotton and soybean in North Carolina, United States. Plant Dis. 97: 1262-1262. Yoon, D. S., Lee, M.-H., Cha, D. S. 2018. Measurement of intracellular ROS in Caenorhabditis elegans using 2’, 7’-dichlorodihydrofluorescein diacetate. Bio-protocol. 8: e2774-e2774. Young, N. D., Harris, T. J., Evangelista, M., Tran, S., Wouters, M. A., Soares da Costa, T. P., et al. 2020. Diversity in the intrinsic apoptosis pathway of nematodes. Commun. Biol. 3:1-12. Zambon, Y., Contaldo, N., Laurita, R., Várallyay, E., Canel, A., Gherardi, M., et al. 2020. Plasma activated water triggers plant defence responses. Sci. Rep. 10: 1-10. Zasada, I. A., Halbrendt, J. M., Kokalis-Burelle, N., LaMondia, J., McKenry, M. V., Noling, J. W. 2010. Managing nematodes without methyl bromide. Annu. Rev. Phytopathol. 48: 311-328. Zhao, Y. M., Patange, A., Sun, D. W., Tiwari, B. 2020. Plasma‐activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Compr. Rev. Food Sci. Food Saf. 19: 3951-3979. Zhou, D., Yang, J., Li, H., Lu, Q., Liu, Y. d., Lin, K. f. 2016. Ecotoxicological evaluation of low‐concentration bisphenol A exposure on the soil nematode Caenorhabditis elegans and intrinsic mechanisms of stress response in vivo. Environ. Toxicol. Chem. 35: 2041-2047. Zhou, R., Zhou, R., Prasad, K., Fang, Z., Speight, R., Bazaka, K., Ostrikov, K. K. 2018. Cold atmospheric plasma activated water as a prospective disinfectant: The crucial role of peroxynitrite. Green Chemi. 20: 5276-5284. Zhou, R., Zhou, R., Zhang, X., Zhuang, J., Yang, S., Bazaka, K. 2016. Effects of atmospheric-pressure N2, He, air, and O2 microplasmas on mung bean seed germination and seedling growth. Sci. Rep. 6:1-11 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87598 | - |
dc.description.abstract | 象耳豆根瘤線蟲 (Meloidogyne enterolobii) 為新興植物病原,其寄主廣泛且具有強致病力,可突破已知作物中對其他根瘤線蟲之抗性,對番茄、番石榴等重要經濟作物危害甚鉅。田間一般以化學藥劑防治根瘤線蟲,但其長久累積易造成環境負擔,其非專一性危及非目標生物,且對施用者存在較高健康風險。電漿激活水 (Plasma-activated water, PAW) 為電漿化後的大氣與水反應之產物,為新型環境友善資材。過往研究指出,PAW對象耳豆根瘤線蟲二齡幼蟲具有致死效果,且能顯著抑制相關病徵發展與線蟲繁殖,使植株生長較好,為具有應用潛力的線蟲病害防治資材。本研究從線蟲生理與轉錄體層面探討PAW於象耳豆根瘤線蟲之作用機制,期望強化該資材未來於植物線蟲病害防治之應用基礎。本研究發現,浸泡於PAW中的卵發育速度變慢甚至停滯;有74%無法順利發育成一齡幼蟲,其餘26%發育至一齡期後即停止生長。於PAW中,卵孵化的速度較慢,且孵化率顯著降低70%。二齡幼蟲接觸PAW後6小時,死亡率為35%;而若接觸24小時,則死亡率則可達83%。以細胞滲透螢光探針H2DCFDA檢測二齡幼蟲體內活性氧物質(Reactive oxygen species, ROS)總量,發現經過PAW處理24小時的組別含量增加35%,暗示PAW在短時間內對線蟲造成氧化壓力而影響其生存。透過接種試驗發現,二齡幼蟲在PAW環境中對番茄之侵染率下降65.3%。於番茄盆栽實驗中澆灌PAW,在接種後第7、21和35天皆觀察到發現已侵入根內的線蟲發育速度仍然緩慢,第35天僅25%能發育至成蟲。在接種後第35天,根部的根瘤數量相較未處理組降低40%。同時,觀察到經過PAW處理後的族群子代中不僅雄蟲比例上升,族群規模亦下降。在盆栽試驗中亦觀察到澆灌電漿水可有效抑制番茄病徵發展使植株生長情況較佳。本研究利用RNA定序技術 (RNA-sequencing) 探討象耳豆根瘤線蟲二齡幼蟲接觸電漿激活水後轉錄體之變化。分析結果獲得75個差異表現基因 (differentially expressed genes, DEGs)。其中,25個基因表現量上升,50個基因表現量下降。透過與COGs、GO和KEGG資料庫比對,表現量上升的DEGs主要參與細胞代謝與訊息傳導 (cellular processes and signaling)、定位(localization)、酵素活性(enzyme activity)、花生四烯酸代謝(arachidonic acid metabolism)與紫質代謝(porphyrin metabolism)。而表現量下降的DEGs主要參與細胞代謝(cellular processes)細胞凋亡(apoptosis)和離子結合(ion binding)。本研究結果闡明PAW對象耳豆根瘤線蟲生活史中自卵至成蟲的各階段皆有抑制作用,可能作用機制為影響根瘤線蟲細胞活性與脂質代謝而造成線蟲氧化壓力。 | zh_TW |
dc.description.abstract | The guava root-knot nematode, Meloidogyne enterolobii, is an emerging plant pathogen with a wide host range and worldwide distribution. It is an aggressive parasite with high pathogenicity, which overcomes known resistance genes in plants and reproduce successfully on them. M. enterolobii causes enormous losses on important economic crops such as tomato and guava. Nematicide application is the most common and effective method for root-knot nematode management in the fields. However, long-term nematicide application damages the environment, harms non-target organisms, and poses high health risks to growers. Plasma-activated water (PAW) is a new eco-friendly material generated by treating water with cold atmospheric plasma. Previous study showed that PAW had lethal effect on the second-stage juveniles (J2) of M. enterolobii. In addition, PAW significantly reduced nematode disease symptoms on plants, inhibited nematode reproduction, and induced plant growth. Based on its high application potential in root-knot nematode management, this study aims to further investigate the physiological influences and unveil the genetic mechanisms of the regulation of M. enterolobii by PAW, in the hope of providing a solid foundation for PAW application on plant nematode diseases. In this study, PAW was found to inhibit the embryogenesis of M. enterolobii. 74% of the PAW-treated eggs stopped development before reaching the first-stage juveniles (J1), and the other 26% couldn’t grow beyond J1. Eighty-three percent J2s died after 24 hours after PAW treatment. The egg hatch was delayed by PAW, and the hatching rate decreased 70%. The total amount of reactive oxygen species (ROS) detected by H2DCFDA in the PAW-treated J2 increased by 35%. The result indicated that PAW caused oxidative stress on J2s in a short period and influenced their survival. Through inoculation plate experiment, the number of J2 successfully invading the tomato roots was decreased 65.3% in the PAW environment. When tomato plants were irrigated with PAW, the juvenile development was slowed down on the 7th, 21st, and 35th days post inoculation (dpi). At 35 dpi, only 25% became adults, and the number of root knots decreased 40%. At the same time, PAW changed the nematode population structure and size. The male ratio increased, and the number of offspring decreased. Meanwhile, PAW reduced nematode disease symptoms and promoted tomato growth. In addition, transcriptome analysis was performed to investigate the influence of PAW on the J2s. A total of 75 differentially expressed genes (DEGs) were identified. Among them, 25 genes were up-regulated and 50 genes were down-regulated. Through the annotations of the DEGs with COGs, GO and KEGG databases, the up-regulated genes were found to be enriched in cellular processes and signaling, localization, enzyme activity, arachidonic acid metabolism, and porphyrin metabolism, while the genes in cellular processes, binding and apoptosis were down-regulated. The study demonstrated that PAW had adverse effects on every development stage of M. enterolobii life cycle, from egg to adult, and that PAW also improves plant growth in pots. In addition, the results revealed that PAW caused oxidative stress to nematodes and regulates the cell activity and lipid metabolism of M. enterolobii. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:16:59Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-06-20T16:16:59Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract v List of tables x List of figures xi 1. Introduction 1 1.1 Meloidogyne enterolobii 1 1.1.1 Agricultural influences and importance 1 1.2.2 Host range and geographic distribution 2 1.1.3 Life cycle 3 1.2 The stress responses and survival adaptation of Meloidogyne spp. 4 1.3 Management of disease caused by root-knot nematode 5 1.4 Plasma-activated water (PAW) 6 1.4.1 Introduction 6 1.4.2 Generation methods 7 1.4.3 Physicochemical properties 7 1.4.4 Plant growth promotion 8 1.4.5 Antimicrobial ability 9 1.5 The aim and objectives of this study 10 2. Materials and methods 11 2.1 Nematode culture 11 2.2 Plasma-activated water generation 11 2.3 Soil property measurement 12 2.4 Embryo development 13 2.5 Hatching rate 13 2.6 Mortality test 14 2.7 Intracellular ROS measurement 14 2.8 Host invasion assay 15 2.9 Juvenile development 17 2.10 Sex differentiation 18 2.11 Reproduction assay 20 2.12 Plant growth assay 20 2.13 Plant basal defense 20 2.14 Transcriptome analysis 21 2.14.1 Nematode collection and treatment 21 2.14.2 RNA extraction 22 2.14.3 RNA quality control and sequencing 23 2.14.4 Bioinformatic analysis 23 3. Results 25 3.1 The physicochemical properties of PAW 25 3.2 PAW did not change the soil pH and EC 25 3.3 PAW inhibited the embryogenesis of M. enterolobii 25 3.4 PAW inhibited the hatching of M. enterolobii 27 3.5 PAW reduced the viability and caused high mortality rate of M. enterolobii 28 3.6 PAW caused intracellular ROS accumulation in M. enterolobii 28 3.7 PAW decreased the invasion rate of M. enterolobii. 29 3.8 PAW slowed down the M. enterolobii juvenile in roots 29 3.9 PAW changed the sex ratio of the M. enterolobii population 31 3.10 PAW inhibited the reproduction of M. enterolobii 31 3.11 PAW decreased the tomato symptom 32 3.12 PAW promoted plant growth 32 3.13 PAW increased the ROS level in tomato roots 33 3.14 De novo transcriptome assembly of M. enterolobii 33 3.15 Differentially expressed genes analyses 34 3.16 Functional Enrichment Analysis 34 4. Discussion 36 5. Reference 45 Supplementary information 92 | - |
dc.language.iso | en | - |
dc.title | 電漿激活水對根瘤線蟲發育之調控 | zh_TW |
dc.title | The regulation of plasma-activated water on the development of Meloidogyne enterolobii | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林乃君;徐振哲;陳珮臻 | zh_TW |
dc.contributor.oralexamcommittee | Nai-Chun Lin;Cheng-Che Hsu;Pei-chen Chen | en |
dc.subject.keyword | 象耳豆根瘤線蟲,電漿激活水,非化學防治,線蟲發育,氧化壓力,轉錄體分析, | zh_TW |
dc.subject.keyword | Meloidogyne enterolobii,Plasma-activated water,non-chemical control,nematode development,oxidative stress,transcriptome analysis, | en |
dc.relation.page | 92 | - |
dc.identifier.doi | 10.6342/NTU202300452 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-02-18 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 植物病理與微生物學系 | - |
dc.date.embargo-lift | 2025-04-01 | - |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 11.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。