請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87596完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾泰琳 | zh_TW |
| dc.contributor.advisor | Tai-Lin Tseng | en |
| dc.contributor.author | 童靖惠 | zh_TW |
| dc.contributor.author | Jing-Hui Tong | en |
| dc.date.accessioned | 2023-06-20T16:16:14Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-06-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-13 | - |
| dc.identifier.citation | Agard, P., Omrani, J., Jolivet, L., & Mouthereau, F. (2005). Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94(3), 401–419. https://doi.org/10.1007/s00531-005-0481-4
Albuquerque Seismological Laboratory/USGS. (2014). Global Seismograph Network (GSN – IRIS/USGS) [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IU Al-Lazki, A. I., Sandvol, E., Seber, D., Barazangi, M., Turkelli, N., & Mohamad, R. (2004). Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates. Geophysical Journal International, 158(3), 1024–1040. https://doi.org/10.1111/j.1365-246X.2004.02355.x Angus, D. A., Wilson, D. C., Sandvol, E., & Ni, J. F. (2006). Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkey from S-wave receiver functions. Geophysical Journal International, 166(3), 1335–1346. https://doi.org/10.1111/j.1365-246x.2006.03070.x Argus, D. F., Gordon, R. G., & DeMets, C. (2011). Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12(11). https://doi.org/10.1029/2011gc003751 Arvin, S., Sobouti, F., Priestley, K., Ghods, A., Motaghi, K., Tilmann, F., & Eken, T. (2021). Seismic anisotropy and mantle deformation in NW Iran inferred from splitting measurements of SK(K)S and direct S phases. Geophysical Journal International, 226(2), 1417–1431. https://doi.org/10.1093/gji/ggab181 Assumpcao, M., Heintz, M., Vauchez, A., & Silva, M. (2006). Upper mantle anisotropy in SE and central Brazil from SKS splitting: Evidence of asthenospheric flow around a cratonic keel. Earth and Planetary Science Letters, 250(1-2), 224–240. https://doi.org/10.1016/j.epsl.2006.07.038 Audet, P., & Schaeffer, A. J. (2019). SplitPy: Software for teleseismic shear-wave splitting analysis (v0.1.0). Zenodo. https://doi.org/10.5281/zenodo.3564780 Audet, P., Thomson, C. J., Bostock, M. G., & Eulenfeld, T. (2019). Telewavesim: Python sofeware for teleseismic body wave modeling. Journal of Open Source Software, 4(44), 1818, https://doi.org.10.21105/joss.01818 Barazangi, M., Sandvol, E., & Seber Doğan. (2006). Structure and tectonic evolution of the Anatolian plateau in eastern Turkey. Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. https://doi.org/10.1130/2006.2409(22) Bartol, J., & Govers, R. (2014). A single cause for uplift of the central and eastern Anatolian plateau? Tectonophysics, 637, 116–136. https://doi.org/10.1016/j.tecto.2014.10.002 Becker, T. W., & Faccenna, C. (2011). Mantle conveyor beneath the Tethyan collisional belt. Earth and Planetary Science Letters, 310(3–4), 453–461. https://doi.org/10.1016/j.epsl.2011.08.021 Becker, T. W., & Lebedev, S. (2021). Dynamics of the upper mantle in light of seismic anisotropy. Mantle Convection and Surface Expressions, 257–282. https://doi.org/10.1002/9781119528609.ch10 Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). https://doi.org/10.1029/2001gc000252 Boneh, Y., & Skemer, P. (2014). The effect of deformation history on the evolution of Olivine CPO. Earth and Planetary Science Letters, 406, 213–222. https://doi.org/10.1016/j.epsl.2014.09.018 Boness, N. L., & Zoback, M. D. (2006). Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology, 34(10), 825. https://doi.org/10.1130/g22309.1 Bowman, J. R., & Ando, M. (1987). Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophysical Journal International, 88(1), 25–41. https://doi.org/10.1111/j.1365-246x.1987.tb01367.x Bozkurt, E., & Mittwede, S. K. (2001). Introduction to the geology of Turkey—a synthesis. International Geology Review, 43(7), 578–594. https://doi.org/10.1080/00206810109465034 Chernyshev, A. V., Lebedev, V.A., Bubnov, S.N., Arakelyants, M. M., Goltsman, Yu. V. (2001). Stages of magmatic activity in the Elbrus volcanic center (Greater Caucasus): evidence from isotope geochronological data. Dokl. Akad. Nauk 380(3), 384–389. Chernyshev, I. V., Lebedev, V. A., Arakelyants, M. M., Jrbashyan, R. T., Gukasyan, Yu. G. (2002). Quaternary geochronology of the Aragats volcanic center, Armenia: evidence from K–Ar dating. Dokl. Akad. Nauk 384 (1), 95–102 (in russian) Chetty, T. R. K. (2017). Orogens. Proterozoic Orogens of India, 1–34. https://doi.org/10.1016/b978-0-12-804441-4.00001-8 Crampin, S., & Gao, Y. (2006). A review of techniques for measuring shear-wave splitting above small earthquakes. Physics of the Earth and Planetary Interiors, 159(1-2), 1–14. https://doi.org/10.1016/j.pepi.2006.06.002 Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismological Research Letters, 70(2), 154–160. https://doi.org/10.1785/gssrl.70.2.154 Currie, C. A., & van Wijk, J. (2016). How craton margins are preserved: Insights from geodynamic models. Journal of Geodynamics, 100, 144–158. https://doi.org/10.1016/j.jog.2016.03.015 Debayle, E., & Ricard, Y. (2013). Seismic observations of large-scale deformation at the bottom of fast-moving plates. Earth and Planetary Science Letters, 376, 165–177. https://doi.org/10.1016/j.epsl.2013.06.025 Dewey, J. F., Hempton, M. R., Kidd, W. S. F., Saroglu, F., & Şengör, A. M. C. (1986). Shortening of continental lithosphere: The Neotectonics of Eastern Anatolia — a young Collision Zone. Geological Society, London, Special Publications, 19(1), 1–36. https://doi.org/10.1144/gsl.sp.1986.019.01.01 Dilek, Y., & Furnes, H. (2019). Tethyan ophiolites and Tethyan Seaways. Journal of the Geological Society, 176(5), 899–912. https://doi.org/10.1144/jgs2019-129 Doglioni, C., Ismail-Zadeh, A., Panza, G., & Riguzzi, F. (2011). Lithosphere-asthenosphere viscosity contrast and decoupling. Physics of the Earth and Planetary Interiors, 189(1–2), 1–8. https://doi.org/10.1016/j.pepi.2011.09.006 Faccenna, C., Becker, T. W., Jolivet, L., & Keskin, M. (2013). Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth and Planetary Science Letters, 375, 254–269. https://doi.org/10.1016/j.epsl.2013.05.043 Flament, N., Williams, S., Müller, R. D., Gurnis, M., & Bower, D. J. (2017). Origin and evolution of the deep thermochemical structure beneath Eurasia. Nature Communications, 8(1). https://doi.org/10.1038/ncomms14164 Fouch, M. J., Fischer, K. M., Parmentier, E. M., Wysession, M. E., & Clarke, T. J. (2000). Shear wave splitting, continental keels, and patterns of mantle flow. Journal of Geophysical Research: Solid Earth, 105(3), 6255–6275. https://doi.org/10.1029/1999jb900372 Fouch, M. J., & Rondenay, S. (2006). Seismic anisotropy beneath stable continental interiors. Physics of the Earth and Planetary Interiors, 158(2-4), 292–320. https://doi.org/10.1016/j.pepi.2006.03.024 Fukao, Y. (1984). Evidence from core-reflected shear waves for anisotropy in the Earth’s mantle. Nature, 309(5970), 695–698. https://doi.org/10.1038/309695a0 Garnero, E. J., McNamara, A. K., & Shim, S.-H. (2016). Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nature Geoscience, 9(7), 481–489. https://doi.org/10.1038/ngeo2733 Gao, Y., Chen, L., Talebian, M., Wu, Z., Wang, X., Lan, H., Ai, Y., Jiang, M., Hou, G., Khatib, M. M., Xiao, W., & Zhu, R. (2022). Nature and structural heterogeneities of the lithosphere control the continental deformation in the northeastern and eastern Iranian plateau as revealed by shear-wave splitting observations. Earth and Planetary Science Letters, 578, 117284. https://doi.org/10.1016/j.epsl.2021.117284 Gelati, R. (1975). Miocene marine sequence from Lake Van, eastern Turkey, Riv. Ital. Paleontol. Stratigr, 81, 477-490 Glebovitsky, V. A., Nikitina, L. P., Khiltova, V. Y., & Ovchinnikov, N. O. (2004). The thermal regimes of the upper mantle beneath Precambrian and Phanerozoic structures up to the thermobarometry data of mantle xenoliths. Lithos, 74(1–2), 1–20. https://doi.org/10.1016/j.lithos.2003.03.001 Global Volcanism Program, 2022. [Database] Volcanoes of the World (v.5.0.0.; 1 Nov 2022). Distributed by Smithsonian Institution. Complied by Venzke, E. https://doi.org/10.5479/si.GVP.VOTW5-2022.5.0 Gök, R., Sandvol, E., Türkelli, N., Seber, D., & Barazangi, M. (2003). Sn attenuation in the Anatolian and Iranian Plateau and surrounding regions. Geophysical Research Letters, 30(24). https://doi.org/10.1029/2003gl018020 Gök, R., Mellors, R. J., Sandvol, E., Pasyanos, M., Hauk, T., Takedatsu, R., Yetirmishli, G., Teoman, U., Turkelli, N., Godoladze, T., & Javakishvirli, Z. (2011). Lithospheric velocity structure of the Anatolian plateau-Caucasus-Caspian region. Journal of Geophysical Research, 116(B5). https://doi.org/10.1029/2009jb000837 Göǧüş, O. H., & Psyklywec, R. N. (2008). Mantle lithosphere delamination driving plateau uplift and synconvergent extension in eastern Anatolia. Geology, 36(9), 723–726. https://doi.org/10.1130/G24982A.1 Grund, M., & Ritter, J. R. R. (2019). Widespread seismic anisotropy in Earth’s lowermost mantle beneath the Atlantic and Siberia. Geology, 47(2), 123–126. https://doi.org/10.1130/G45514.1 Houseman, G. A., McKenzie, D. P., & Molnar, P. (1981). Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. Journal of Geophysical Research: Solid Earth, 86(B7), 6115–6132. https://doi.org/10.1029/jb086ib07p06115 Houseman, G. A., & Molnar, P. (1997). Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophysical Journal International, 128(1), 125–150. https://doi.org/10.1111/j.1365-246x.1997.tb04075.x Hatzfeld, D., & Molnar, P. (2010). Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews of Geophysics, 48(2). https://doi.org/10.1029/2009rg000304 IRIS DMC(2012), Data Services Products: SWS-DBs Shear-wave splitting databases, http://doi.org/10.17611/DP/SWS.1. Ismaı̈l Walid Ben, & Mainprice, D. (1998). An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophysics, 296(1-2), 145–157. https://doi.org/10.1016/s0040-1951(98)00141-3 Jia, Y., Liu, K. H., Kong, F., Liu, L., & Gao, S. S. (2021). A systematic investigation of piercing-point-dependent seismic azimuthal anisotropy. Geophysical Journal International, 227(3), 1496–1511. https://doi.org/10.1093/gji/ggab285 Jung, H., Katayama, I., Jiang, Z., Hiraga, T., & Karato, S. (2006). Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 421(1-2), 1–22. https://doi.org/10.1016/j.tecto.2006.02.011 Kandilli Observatory And Earthquake Research Institute, Boğaziçi University. (1971). Kandilli Observatory And Earthquake Research Institute (KOERI) [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/KO Kaislaniemi, L., & van Hunen, J. (2014). Dynamics of lithospheric thinning and mantle melting by edge-driven convection: Application to Moroccan Atlas mountains. Geochemistry, Geophysics, Geosystems, 15(8), 3175–3189. https://doi.org/10.1002/2014GC005414 Karapetyan, K. I., Adamyan, A. A. (1973). Neovolcanism in Some Areas of the Armenian SSR. AN ArmSSR, Yerevan, p. 166 (in Russian) Karakhanian, A. S., Trifonov, V. G., Philip, H., Avagyan, A., Hessami, K., Jamali, F., Salih Bayraktutan, M., Bagdassarian, H., Arakelian, S., Davtian, V., & Adilkhanyan, A. (2004). Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran. Tectonophysics, 380(3-4), 189–219. https://doi.org/10.1016/j.tecto.2003.09.020 Karakhanyan, A., Vernant, P., Doerflinger, E., Avagyan, A., Philip, H., Aslanyan, R., Champollion, C., Arakelyan, S., Collard, P., Baghdasaryan, H., Peyret, M., Davtyan, V., Calais, E., & Masson, F. (2013). GPS constraints on continental deformation in the Armenian region and Lesser Caucasus. Tectonophysics, 592, 39–45. https://doi.org/10.1016/j.tecto.2013.02.002 Karato, S.-ichiro, Jung, H., Katayama, I., & Skemer, P. (2008). Geodynamic significance of seismic anisotropy of the upper mantle: New Insights From Laboratory Studies. Annual Review of Earth and Planetary Sciences, 36(1), 59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120 Karato, S.-ichiro, & Wu, P. (1993). Rheology of the upper mantle: A synthesis. Science, 260(5109), 771–778. https://doi.org/10.1126/science.260.5109.771 Kaviani, A., Mahmoodabadi, M., Rümpker, G., Pilia, S., Tatar, M., Nilfouroushan, F., Yamini-Fard, F., Moradi, A., & Ali, M. Y. (2021). Mantle-flow diversion beneath the Iranian plateau induced by Zagros’ Lithospheric Keel. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81541-9 Kaviani, A., Sandvol, E., Moradi, A., Rümpker, G., Tang, Z., & Mai, P. M. (2018). Mantle transition zone thickness beneath the Middle East: Evidence for segmented Tethyan slabs, delaminated lithosphere, and lower mantle upwelling. Journal of Geophysical Research: Solid Earth, 123(6), 4886–4905. https://doi.org/10.1029/2018jb015627 Kaviani, A., Sandvol, E., Ku, W., Beck, S. L., Türkelli, N., Özacar, A. A., & Delph, J. R. (2022). Seismic attenuation tomography of the Sn phase beneath the Turkish-Iranian Plateau and the Zagros mountain belt. Geosphere. https://doi.org/10.1130/ges02503.1 Kennett, B. L. & Engdahl, E. R. (1991). Travel times for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465. https://doi.org/10.1111/j.1365-246x.1991.tb06724.x Keskin, M. (2003). Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30(24). https://doi.org/10.1029/2003gl018019 Keskin, M. (2007). Eastern Anatolia: A hotspot in a collision zone without a mantle plume. Special Paper of the Geological Society of America, 430, 693–722. https://doi.org/10.1130/2007.2430(32) Khorrami, F., Vernant, P., Masson, F., Nilfouroushan, F., Mousavi, Z., Nankali, H., Saadat, S. A., Walpersdorf, A., Hosseini, S., Tavakoli, P., Aghamohammadi, A., & Alijanzade, M. (2019). An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities. Geophysical Journal International, 217(2), 832–843. https://doi.org/10.1093/gji/ggz045 Kounoudis, R., Bastow, I. D., Ogden, C. S., Goes, S., Jenkins, J., Grant, B., & Braham, C. (2020). Seismic Tomographic Imaging of the Eastern Mediterranean Mantle: Implications for Terminal-Stage Subduction, the Uplift of Anatolia, and the Development of the North Anatolian Fault. Geochemistry, Geophysics, Geosystems, 21(7). https://doi.org/10.1029/2020GC009009 Kreemer, C., Blewitt, G., & Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15(10), 3849–3889. https://doi.org/10.1002/2014GC005407 Kreemer, C., Holt, W. E., & Haines, A. J. (2003). An integrated global model of present-day plate motions and plate boundary deformation. Geophysical Journal International, 154(1), 8–34. http://doi.org/10.1046/j.1365-246x.2003.01917.x Krienitz, M.-S., Haase, K. M., Mezger, K., van den Bogaard, P., Thiemann, V., & Shaikh-Mashail, M. A. (2009). Tectonic events, continental intraplate volcanism, and mantle plume activity in northern Arabia: Constraints from geochemistry and Ar-Ar dating of Syrian lavas. Geochemistry, Geophysics, Geosystems, 10(4). https://doi.org/10.1029/2008gc002254 Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: A bridge for seismology into the Scientific Python ecosystem. Computational Science & Discovery, 8(1), 014003. https://doi.org/10.1088/1749-4699/8/1/014003 Lachenbruch, A. H., & Morgan, P. (1990). Continental extension, magmatism and elevation; formal relations and rules of thumb. Tectonophysics, 174(1-2), 39–62. https://doi.org/10.1016/0040-1951(90)90383-j Lebedev, V. A., Chernyshev, I.V., Arakelyants, M. M., Goltsman, Yu. V., Dudauri, O. Z.,Vashakidze, G. T. (2004) Geochronology of the Neogene–Quaternary Dacitic Volcanism in the Northwestern Lesser Caucasus (Georgia). Stratigr. Geol. Correl. 12, 96–115 (in russian) Legendre, C. P., Zhao, L., & Tseng, T.-L. (2021). Large-scale variation in seismic anisotropy in the crust and upper mantle beneath Anatolia, Turkey. Communications Earth & Environment, 2(1). https://doi.org/10.1038/s43247-021-00142-6 Lemnifi, A. A., Elshaafi, A., Karaoğlu, Ö., Salah, M. K., Aouad, N., Reed, C. A., & Yu, Y. (2017). Complex seismic anisotropy and mantle dynamics beneath Turkey. Journal of Geodynamics, 112, 31–45. https://doi.org/10.1016/j.jog.2017.10.004 Li, S., Guo, Z., Chen, Y. J., Yu, Y., & Morgan, J. P. (2020). Shear Wave Splitting Evidence for Keel-Deflected Mantle Flow at the Northern Margin of the Ordos Block and Its Implications for the Ongoing Modification of Craton Lithosphere. Journal of Geophysical Research: Solid Earth, 125(12). https://doi.org/10.1029/2020JB020485 Lin, C. M., Tseng, T. L., Meliksetian, K., Karakhanyan, A., Huang, B. S., Babayan, H., Hu, J. C., Gevorgyan, M., Chang, S. F., & Levonyan, A. (2020). Locally thin crust and high crustal VP/VS ratio beneath the Armenian volcanic highland of the Lesser Caucasus: A case for recent delamination. Journal of Geophysical Research: Solid Earth, 125(9). https://doi.org/10.1029/2019jb019151 Lin, Y.-C., Chung, S.-L., Bingöl, A. F., Yang, L., Okrostsvaridze, A., Pang, K.-N., Lee, H.-Y., & Lin, T.-H. (2020). Diachronous initiation of post-collisional magmatism in the Arabia-Eurasia collision zone. Lithos, 356-357, 105394. https://doi.org/10.1016/j.lithos.2020.105394 Lin, Y.-P., Zhao, L., & Hung, S.-H. (2014). Full-wave effects on shear wave splitting. Geophysical Research Letters, 41(3), 799–804. https://doi.org/10.1002/2013gl058742 Long, M. D., & Lynner, C. (2015). Seismic anisotropy in the lowermost mantle near the Perm Anomaly. Geophysical Research Letters, 42(17), 7073–7080. https://doi.org/10.1002/2015gl065506 Long, M. D., & Silver, P. G. (2008). The subduction zone flow field from seismic anisotropy: A global view. Science, 319(5861), 315–318. https://doi.org/10.1126/science.1150809 Long, M. D., & Silver, P. G. (2009). Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions. Surveys in Geophysics, 30(4-5), 407–461. https://doi.org/10.1007/s10712-009-9075-1 Lü, Y., Ni, S., Chen, L., & Chen, Q.-F. (2017). Pn tomography with moho depth correction from eastern Europe to western China. Journal of Geophysical Research: Solid Earth, 122(2), 1284–1301. https://doi.org/10.1002/2016jb013052 Lynner, C., Delph, J. R., Portner, D. E., Beck, S. L., Sandvol, E., & Özacar, A. A. (2022). Slab Induced Mantle Upwelling Beneath the Anatolian Plateau. Geophysical Research Letters, 49(11). https://doi.org/10.1029/2021GL097451 Lynner, C., & Long, M. D. (2014). Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP. Geophysical Research Letters, 41(10), 3447–3454. https://doi.org/10.1002/2014gl059875 Magni, V., & Király, Á. (2020). Delamination. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/b978-0-12-409548-9.09515-4 Mark, H. F., Lizarralde, D., Collins, J. A., Miller, N. C., Hirth, G., Gaherty, J. B., & Evans, R. L. (2019). Azimuthal seismic anisotropy of 70‐Ma Pacific‐plate upper mantle. Journal of Geophysical Research: Solid Earth, 124(2), 1889–1909. https://doi.org/10.1029/2018jb016451 McNab, F., Ball, P. W., Hoggard, M. J., & White, N. J. (2018). Neogene uplift and magmatism of Anatolia: Insights from drainage analysis and basaltic geochemistry. Geochemistry, Geophysics, Geosystems, 19(1), 175–213. https://doi.org/10.1002/2017gc007251 Mellors, R. J., Jackson, J., Myers, S., Gök, R., Priestley, K., Yetirmishli, G., Turkelli, N., & Godoladze, T. (2012). Deep earthquakes beneath the northern Caucasus: Evidence of active or recent subduction in western Asia. Bulletin of the Seismological Society of America, 102(2), 862–866. https://doi.org/10.1785/0120110184 Merry, T. A. J., Bastow, I. D., Kounoudis, R., Ogden, C. S., Bell, R. E., & Jones, L. (2021). The Influence of the North Anatolian Fault and a Fragmenting Slab Architecture on Upper Mantle Seismic Anisotropy in the Eastern Mediterranean. Geochemistry, Geophysics, Geosystems, 22(9). https://doi.org/10.1029/2021GC009896 Meissner, R., Mooney, W. D., & Artemieva, I. (2002). Seismic anisotropy and mantle creep in young orogens. Geophysical Journal International, 149(1), 1–14. https://doi.org/10.1046/j.1365-246x.2002.01628.x Molnar, P., & Houseman, G. A. (2004). The effects of buoyant crust on the gravitational instability of thickened mantle lithosphere at zones of intracontinental convergence. Geophysical Journal International, 158(3), 1134–1150. https://doi.org/10.1111/j.1365-246x.2004.02312.x Memiş, C., Göğüş, O. H., Uluocak, E. Ş., Pysklywec, R., Keskin, M., Şengör, A. M. C., & Topuz, G. (2020). Long Wavelength Progressive Plateau Uplift in Eastern Anatolia Since 20 Ma: Implications for the Role of Slab Peel-Back and Break-Off. Geochemistry, Geophysics, Geosystems, 21(2). https://doi.org/10.1029/2019GC008726 Montagner, J.-P., Griot-Pommera, D.-A., & Lavé, J. (2000). How to relate body wave and surface wave anisotropy? Journal of Geophysical Research: Solid Earth, 105(B8), 19015–19027. https://doi.org/10.1029/2000jb900015 Morgan, P. (1984). The thermal structure and thermal evolution of the continental lithosphere. Physics and Chemistry of the Earth, 15, 107–193. https://doi.org/10.1016/0079-1946(84)90006-5 Mumladze, T., Forte, A. M., Cowgill, E. S., Trexler, C. C., Niemi, N. A., Burak Yıkılmaz, M., & Kellogg, L. H. (2015). Subducted, detached, and torn slabs beneath the Greater Caucasus. GeoResJ, 5, 36–46. https://doi.org/10.1016/j.grj.2014.09.004 Mutlu, A. K., & Karabulut, H. (2011). Anisotropic P_n tomography of Turkey and adjacent regions. Geophysical Journal International, 187(3), 1743–1758. https://doi.org/10.1111/j.1365-246x.2011.05235. Neill, I., Meliksetian, K., Allen, M. B., Navasardyan, G., & Kuiper, K. (2015). Petrogenesis of mafic collision zone magmatism: The Armenian sector of the Turkish-Iranian Plateau. Chemical Geology, 403, 24–41. https://doi.org/10.1016/j.chemgeo.2015.03.013 Paul, A., Karabulut, H., Mutlu, A. K., & Salaün, G. (2014). A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean–Anatolia region. Earth and Planetary Science Letters, 389, 14–22. https://doi.org/10.1016/j.epsl.2013.12.019 Pearce, J. A., Bender, J. F., De Long, S. E., Kidd, W. S. F., Low, P. J., Güner, Y., Saroglu, F., Yilmaz, Y., Moorbath, S., & Mitchell, J. G. (1990). Genesis of collision volcanism in eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44(1-2), 189–229. https://doi.org/10.1016/0377-0273(90)90018-b Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Duchesnay, E., Perrot, M., Brucher, M., Cournapeau, D., Passos, A., Vanderplas, J., Dubourg, V., Weiss, R., Prettenhofer, P., Blondel, M., Grisel, O., & Thirion, B. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830. Retrieved from http://jmlr.org/papers/v12/pedregosa11a.html. Philip, H., Cisternas, A., Gvishiani, A., & Gorshkov, A. (1989). The Caucasus: An actual example of the initial stages of continental collision. Tectonophysics, 161(1-2), 1–21. https://doi.org/10.1016/0040-1951(89)90297-7 Portner, D. E., Delph, J. R., Berk Biryol, C., Beck, S. L., Zandt, G., Özacar, A. A., Sandvol, E., & Türkelli, N. (2018). Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia. Geosphere, 14(3), 907–925. https://doi.org/10.1130/GES01617.1 Priestley, K. & McKenzie, D. (2013). The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth and Planetary Science Letters, 381, 78–91. https://doi.org/10.1016/j.epsl.2013.08.022 Raeesi, M., Zarifi, Z., Nilfouroushan, F., Boroujeni, S. A., & Tiampo, K. (2017). Quantitative Analysis of Seismicity in Iran. Pure and Applied Geophysics, 174(3), 793–833. https://doi.org/10.1007/s00024-016-1435-4 Refayee, H. A., Yang, B. B., Liu, K. H., & Gao, S. S. (2014). Mantle flow and lithosphere–asthenosphere coupling beneath the southwestern edge of the North American craton: Constraints from shear‐wave splitting measurements. Earth and Planetary Science Letters, 402, 209–220. https://doi.org/10.1016/j.epsl.2013.01.031 Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Karam, G. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005jb004051 Rolland, Y., Perincek, D., Kaymakci, N., Sosson, M., Barrier, E., & Avagyan, A. (2012). Evidence for ∼80–75 Ma subduction jump during Anatolide–Tauride–Armenian block accretion and ∼48 Ma Arabia–Eurasia collision in Lesser Caucasus–East Anatolia. Journal of Geodynamics, 56‐57, 76–85. https://doi.org/10.1016/j.jog.2011.08.006 Rudnick, R. L., & Gao, S. (2014). Composition of the continental crust. Treatise on Geochemistry, 1–51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6 Sadeghi‐Bagherabadi, A., Margheriti, L., Aoudia, A., & Sobouti, F. (2018). Seismic anisotropy and its geodynamic implications in Iran, the easternmost part of the Tethyan Belt. Tectonics, 37(12), 4377–4395. https://doi.org/10.1029/2018tc005209 Sandvol, E., Turkelli, N., Zor, E., Gök, R., Bekler, T., Gurbuz, C., Seber, D., & Barazangi, M. (2003). Shear wave splitting in a young continent-continent collision: An example from eastern Turkey. Geophysical Research Letters, 30(24). https://doi.org/10.1029/2003gl017390 Savage, M. K. (1999). Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics, 37(1), 65–106. https://doi.org/10.1029/98rg02075 Scholz, J.-R., Barruol, G., Fontaine, F. R., Sigloch, K., Crawford, W. C., & Deen, M. (2016). Orienting ocean-bottom seismometers from P-wave and Rayleigh wave polarizations. Geophysical Journal International, 208(3), 1277–1289. https://doi.org/10.1093/gji/ggw426 Scripps Institution of Oceanography. (1986). Global Seismograph Network – IRIS/IDA [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/II Şengör, A. M. C. (1980). Türkiye’nin Neotektoniginin Esaslari: Türk. Jeol. Kur., Konf. Serisi, 2, 40 pp. Şengör, A. M. C., Özeren, S., Genç, T., & Zor, E. (2003). East Anatolian high plateau as a mantle-supported, north-south shortened domal structure. Geophysical Research Letters, 30(24). https://doi.org/10.1029/2003gl017858 Şengör, A. M. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3-4), 181–241. https://doi.org/10.1016/0040-1951(81)90275-4 Şengül Uluocak, E., Oğuz H., G., Pysklywec, R. N., & Chen, B. (2021). Geodynamics of East Anatolia-Caucasus Domain: Inferences From 3D Thermo-Mechanical Models, Residual Topography, and Admittance Function Analyses. Tectonics, 40(12). https://doi.org/10.1029/2021TC007031 Silver, P. G. (1996). Seismic anisotropy beneath the continents: Probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24(1), 385–432. https://doi.org/10.1146/annurev.earth.24.1.385 Silver, P. G., & Chan, W. W. (1991). Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research, 96(B10), 16429. https://doi.org/10.1029/91jb00899 Silver, P. G., & Holt, W. E. (2002). The mantle flow field beneath eestern North America. Science, 295(5557), 1054–1057. https://doi.org/10.1126/science.1066878 Silver, P. G., & Long, M. D. (2011). The non-commutivity of shear wave splitting operators at low frequencies and implications for anisotropy tomography. Geophysical Journal International, 184(3), 1415–1427. https://doi.org/10.1111/j.1365-246x.2010.04927.x Silver, P. G., & Savage, M. K. (1994). The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophysical Journal International, 119(3), 949–963. https://doi.org/10.1111/j.1365-246x.1994.tb04027.x Simmons, N. A., Forte, A. M., Boschi, L., & Grand, S. P. (2010). Gypsum: A joint tomographic model of mantle density and seismic wave speeds. Journal of Geophysical Research, 115(B12). https://doi.org/10.1029/2010jb007631 Stein, S., & Wysession, M. (2011). An introduction to seismology, earthquakes, and earth structure. Blackwell Publ Sugden, P. J., Savov, I. P., Wilson, M., Meliksetian, K., Navasardyan, G., & Halama, R. (2019). The Thickness of the Mantle Lithosphere and Collision-Related Volcanism in the Lesser Caucasus. Journal of Petrology, 60(2), 199–230. https://doi.org/10.1093/petrology/egy111 Tezcan, A. K. (1995). Geothermal explorations and heat flow in Turkey. In Gupta, M. L., & Yamano, M. (Eds.), Terrestrial heat flow and geo-thermal energy in Asia (pp. 23–42) Tozer, B, Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6, 1847–1864. https://doi.org/10.1029/2019EA000658 Trabant, C., A. R. Hutko, M. Bahavar, R. Karstens, T. Ahern,& R. Aster (2012). Data Products at the IRIS DMC: Stepping Stones for Research and Other Applications, Seismological Research Letters, 83(5), 846–854, https://doi.org/10.1785/0220120032. Tseng, T. L., Hsu, H. C., Jian, P. R., Huang, B. S., Hu, J. C., & Chung, S. L. (2016). Focal mechanisms and stress variations in the Caucasus and northeast Turkey from constraints of regional waveforms. Tectonophysics, 691, 362–374. https://doi.org/10.1016/j.tecto.2016.10.028 Türkoğlu, E., Unsworth, M., Çağlar, İ., Tuncer, V., & Avşar, Ü. (2008). Lithospheric structure of the Arabia-Eurasia collision zone in eastern Anatolia: Magnetotelluric evidence for widespread weakening by fluids. Geology, 36(8), 619. https://doi.org/10.1130/g24683a.1 Uieda, L., Tian, D., Leong, W. J., Jones, M., Schlitzer, W., Grund, M., Toney, L., Yao, J., Magen, Y., Materna, K., Newton, T., Anant, A., Ziebarth, M., Quinn, J., & Wessel, P. (2022). PyGMT: A Python interface for the Generic Mapping Tools. Zenodo, https://doi.org/10.5281/ZENODO.6426493 Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H., & Tian, D. (2019). The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019gc008515 West, J. D., Fouch, M. J., Roth, J. B., & Elkins-Tanton, L. T. (2009). Vertical mantle flow associated with a lithospheric drip beneath the Great Basin. Nature Geoscience, 2(6), 439–444. https://doi.org/10.1038/ngeo526 Wu, F.-Y., Yang, J.-H., Xu, Y.-G., Wilde, S. A., & Walker, R. J. (2019). The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org. Annual Review of Earth and Planetary Sciences Annu. Rev. Earth Planet. Sci, 47, 173–195. https://doi.org/10.1146/annurev-earth-053018 Wüstefeld, A., & Bokelmann, G. (2007). Null detection in shear-wave splitting measurements. Bulletin of the Seismological Society of America, 97(4), 1204–1211. https://doi.org/10.1785/0120060190 Yang, B. B., Gao, S. S., Liu, K. H., Elsheikh, A. A., Lemnifi, A. A., Refayee, H. A., & Yu, Y. (2014). Seismic anisotropy and mantle flow beneath the northern Great Plains of North America. Journal of Geophysical Research: Solid Earth, 119, 1971–1985. https://doi.org/10.1002/2013JB010561 Yılmaz. (1993). New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin, 105(2), 251–271. https://doi.org/10.1130/0016-7606(1993)105<0251:neamot>2.3.co;2 Yuan, K., & Beghein, C. (2013). Seismic anisotropy changes across upper mantle phase transitions. Earth and Planetary Science Letters, 374, 132–144. https://doi.org/10.1016/j.epsl.2013.05.031 Yuan, H., & Levin, V. (2014). Stratified seismic anisotropy and the lithosphere‐asthenosphere boundary beneath eastern North America. Journal of Geophysical Research: Solid Earth, 119(4), 3096–3114. https://doi.org/10.1002/2013jb010785 Zabelina, I., Koulakov, I., Amanatashvili, I., El Khrepy, S., & Al-Arifi, N. (2016). Seismic structure of the crust and uppermost mantle beneath Caucasus based on regional earthquake tomography. Journal of Asian Earth Sciences, 119, 87–99. https://doi.org/10.1016/j.jseaes.2016.01.010 Zhao, L., & Xue, M. (2010). Mantle flow pattern and geodynamic cause of the North China Craton reactivation: Evidence from seismic anisotropy. Geochemistry, Geophysics, Geosystems, 11(7). https://doi.org/10.1029/2010GC003068 Zor, E., Sandvol, E., Gürbüz, C., Türkelli, N., Seber, D., & Barazangi, M. (2003). The crustal structure of the east Anatolian plateau (Turkey) from receiver functions. Geophysical Research Letters, 30(24). https://doi.org/10.1029/2003gl018192 李詩婷(2014)。聯合接收函數與表面波頻散資料逆推高加索下方之岩石圈速度構造,國立台灣大學理學院地質科學研究所碩士論文,共120頁。 林志銘(2016)。利用遠震接收函數探究小高加索與鄰近地區的地殼速度構造,國立台灣大學理學院地質科學研究所碩士論文,共142頁。 林俞青(2011)。亞美尼亞及高加索造山帶火成岩的地球化學特性與岩石成因,國立台灣大學理學院地質科學研究所碩士論文,共113頁。 許炘志(2013)。以區域波形震源逆推探討高加索至東土耳其之應力變化,國立台灣大學理學院地質科學研究所碩士論文,共110頁。 張宇涵(2014)。喬治亞小高加索山區新生代火成岩之地球化學特性與岩石成因,國立台灣大學理學院地質科學研究所碩士論文,共143頁。 張碩芬、曾泰琳、梁文宗、黃柏壽、Arkadi Karakhanyan(2018,5月)高加索地區之寬頻地震觀測網設置及定位初步分析[摘要]。中華民國地質學會與中華民國地球物理學會107年年會暨學術研討會海報發表,嘉義縣。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87596 | - |
| dc.description.abstract | 高加索是兩千五百萬年前阿拉伯板塊開始與歐亞板塊碰撞所形成的大陸造山帶,陸—陸板塊的碰撞通常伴隨著火成活動與岩石圈構造變化,前人研究發現碰撞後的火成活動自11 Ma時由東安納托利亞高原遷移至伊朗西北部,而亞美尼亞高地擁有大範圍且年輕(<2 Ma)的火成活動。此外,東安納托利亞高原至小高加索與亞美尼亞高地一帶,皆被認為下方的岩石圈地函已不存在。然而,受限於儀器佈放範圍與地球物理觀測所解析的深度,至今高加索地區的地函動力學仍尚未釐清。為了瞭解此處岩石圈的形變和軟流圈流動,本研究利用喬治亞及亞美尼亞的區域地震網紀錄之10年資料,分析SK(K)S波相的剪力波分離(shear-wave splitting, SWS)以獲得震波非均向性的側向變化。為求得可靠的剪力波分離參數——快方向與延遲時間,我們藉由主成份分析量化質點運動的線性程度,並且比對交互相關法與切向分量最小能量法得到的測量結果。
本研究得到46個測站紀錄的1191個高品質SWS量測結果,其中有167筆品質優良且分離的剪力波,其平均快方向為45°,延遲時間為0.92秒,與岩石圈厚度已減為40-50 km的東安納托利亞SWS結果(快方向約45°及延遲時間1.3秒)一致。大範圍呈現東北—西南的快方向雖然與小高加索山脈走向垂直,但與絕對板塊運動(65°)大致平行,表示岩石圈與其底下的軟流圈的耦合良好。然而,平均快方向與絕對板塊運動方向仍相差約20°,此偏差暗示著有另一非均向性介質存在,利用順推模擬證明雙層地函流的累加才符合平均快方向,兩層地函流分別是淺部的板塊耦合地函流與深部的大尺度地函流。本研究最後所推得的深部地函流呈現南—北走向,與深度100至200 km 的表面波全球地函非均向性結果一致,或許可與前人提出的特提斯對流胞作鏈結。此外,亞美尼亞高地正下方為未拆沉的岩石圈西緣,相較上述的大尺度非均向性特徵,亞美尼亞高地的快方向順時鐘增加17°、延遲時間減少40%。此現象可與因應厚度變化而改變的地函流有關,強烈的地函溫度側向差異促進瑞利—泰勒不穩定性(Rayleigh-Taylor instability),使鉛直方向的地函流加劇。 | zh_TW |
| dc.description.abstract | The Caucasus in west Asia is a natural laboratory to study dynamics of continental collision between the Arabian and Eurasian Plates that initiated ~25 Ma. Lithospheric delamination beneath the Anatolian-Caucasus region was proposed by previous studies to explain the migration of post-collisional volcanisms from eastern Anatolian Plateau to NW Iran starting 11 Ma. In particular, the lithospheric mantle is absent in the eastern Anatolian Plateau, Lesser Caucasus and Armenian Highland where volcanic activities are pervasive within 2 Ma. Due to limited station coverage and the depth constraints from previous geophysical observations, the upper mantle dynamics beneath the Caucasus region is still poorly understood. In this study, we clarify the deformation of lithosphere and flow of asthenosphere using shear-wave splitting (SWS) of SK(K)S phases from regional array in Georgia and Armenia, which has been operated for nearly 10 years. To reliably determine the fast-direction and delay time of splitted SK(K)S phases, we carefully compared results from both rotation correlation and transverse minimization methods, with the linearity of particle motion quantified by principal components analysis.
In total, we obtain 167 good- and fair-quality SWS parameters from 1191 analyzed SK(K)S phases for 46 stations. The average fast-direction and delay time are 45° and 0.92 s, respectively. Both splitting parameters are greatly consistent with the previous results in the eastern Anatolia (~45° and 1.3 s), where lithosphere is as thin as 40-50 km due to delamination. The NE-SW direction is almost perpendicular to the trend of Lesser Caucasus Mountain belt but is sub-parallel to the absolute plate motion (APM) at 65° from north, suggesting mantle flow influenced strongly by the lithosphere-asthenosphere coupling. However, the difference of 20° between the average fast-direction and APM requires an additional anisotropic layer. As the result of forward modeling, the average fast-direction can be expressed by a two-layer mantle flow model, namely the plate-coupled and deep mantle flow. The lower layer anisotropy exhibits sub-N-S fast-direction which agrees well with the global surface-wave at the depth of ~150 km or deeper, likely associated with the previously proposed Tethyan convection cell. Given the similar azimuth in such vast area, we presume the average anisotropy correspond to a long-term & large-scale asthenospheric flow. In addition, the detailed pattern of SWS reveals that the fast-direction deviates from the main average by 17° clockwise and the corresponding delay time decreases by 40% right beneath central Armenia near the western edge of undelaminated lithosphere. Such a correlation may relate to the modified flow at the thickness transition where lateral thermal gradient promotes Rayleigh-Taylor instabilities and the vertical-oriented mantle flow nearby is enhanced. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:16:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-06-20T16:16:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iv ABSTRACT v 目錄 vii 圖目錄 ix 表目錄 xii 第1章 緒論 1 1.1 前言 1 1.2 研究區域地質背景介紹 3 1.2.1 CIA地區的火成活動與成因 3 1.2.2 高加索區域的岩石圈構造與地震學觀測 8 1.3 高加索地區與鄰近區與的震波非均向性 16 1.4 研究動機與目標 23 1.5 章節編排 24 第2章 研究原理與方法 25 2.1 地球內部的非均向性 25 2.1.1 彈性介質與震波速度的關係 25 2.1.2 地球內部的非均向性介質與震波非均向性成因 29 2.2 剪力波分離與參數量測 33 2.2.1 交互相關法(Rotation Correlation) 35 2.2.2 切向分量最小能量法(Transverse Minimization) 35 2.3 量化質點運動的線性 38 第3章 資料與分析 40 3.1 資料來源與測站分佈 41 3.2 地震事件選取與資料處理 43 3.2.1 依訊噪比初步篩選資料 46 3.2.2 人工選取SK(K)S波相視窗 48 3.2.3 排除LSVP對研究資料的影響 52 3.3 剪力波分離量測 56 3.3.1 質點運動線性參數之門檻值設定 56 3.3.2 剪力波分離結果之品質標準界定 58 3.3.3 兩種SWS量測方法之優缺點比較 62 第4章 剪力波分離量測結果 66 4.1 高加索地區的整體非均向性趨勢 66 4.2 大高加索的非均向性 73 4.3 喬治亞境內小高加索的非均向性 77 4.4 亞美尼亞境內小高加索的非均向性 81 第5章 討論 85 5.1 震波非均向性的來源 85 5.2 以順推模擬檢驗大尺度地函流 91 5.3 亞美尼亞高地的非均向性局部變化 104 第6章 結論 113 參考文獻 115 附錄A 測站資訊 132 附錄B 線性質點運動的SWS參數 134 附錄C 剪力波分離量測參數 137 附錄D 測站的赤平投影 172 附錄E 順推模擬—長週期視分離參數 177 附錄F 全球地函非均向性模型 178 附錄G 高頻下的剪力波分離模擬波形 181 附錄H 阿拉伯—歐亞碰撞帶的剪力波分離結果 183 附錄I 量測結果投影至不同深度之穿射點 184 附錄J 集群分析結果 185 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 特提斯造山帶 | zh_TW |
| dc.subject | 岩石圈拆沉作用 | zh_TW |
| dc.subject | 雙層地函流 | zh_TW |
| dc.subject | 震波非均向性 | zh_TW |
| dc.subject | 剪力波分離 | zh_TW |
| dc.subject | 高加索 | zh_TW |
| dc.subject | two-layer mantle flow | en |
| dc.subject | Caucasus | en |
| dc.subject | seismic anisotropy | en |
| dc.subject | lithospheric delamination | en |
| dc.subject | shear-wave splitting | en |
| dc.subject | Tethyan orogen | en |
| dc.title | 小高加索與亞美尼亞高地震波非均向性之區域變化 | zh_TW |
| dc.title | Local Variations in Seismic Azimuthal Anisotropy Beneath the Lesser Caucasus and Armenian Highland | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 林佩瑩 | zh_TW |
| dc.contributor.coadvisor | Pei-Ying Patty Lin | en |
| dc.contributor.oralexamcommittee | 譚諤;黃柏壽;彭振謙 | zh_TW |
| dc.contributor.oralexamcommittee | Eh Tan ;Bor-Shouh Huang;Cheng-Chien Peng | en |
| dc.subject.keyword | 高加索,剪力波分離,震波非均向性,雙層地函流,岩石圈拆沉作用,特提斯造山帶, | zh_TW |
| dc.subject.keyword | Caucasus,shear-wave splitting,seismic anisotropy,two-layer mantle flow,lithospheric delamination,Tethyan orogen, | en |
| dc.relation.page | 187 | - |
| dc.identifier.doi | 10.6342/NTU202300423 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-02-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | 2025-03-01 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 79.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
