Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87579
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘建興zh_TW
dc.contributor.advisorFrederick Kin Hing Phoaen
dc.contributor.author李奕宏zh_TW
dc.contributor.authorYi-Hung Lien
dc.date.accessioned2023-06-20T16:10:20Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2023-
dc.date.submitted2023-01-17-
dc.identifier.citation[1] Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 2020. 395(10223): p. 497-506.
[2] Velavan, T.P. and C.G. Meyer, The COVID‐19 epidemic. Tropical medicine & international health, 2020. 25(3): p. 278.
[3] Zhou, F., et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet, 2020. 395(10229): p. 1054-1062.
[4] Institute for Health Metrics and Evaluation. IHME: COVID-19 Projections. [cited 2022 November 1]; Available from: https://covid19.healthdata.org/global?view=cumulative-deaths&tab=trend.
[5] Coronavirus Research Center of Johns Hopkins University. Covid-19 map. [cited 2022 November 16]; Available from: https://coronavirus.jhu.edu/map.html.
[6] Wang, C.J., C.Y. Ng, and R.H. Brook, Response to COVID-19 in Taiwan: big data analytics, new technology, and proactive testing. Jama, 2020. 323(14): p. 1341-1342.
[7] Huang, J.-H., et al., Rapid response of a medical center upon the surge of COVID-19 epidemic in Taiwan. Journal of Microbiology, Immunology and Infection, 2022. 55(1): p. 1-5.
[8] Ashouri, M. and F.K.H. Phoa, Interactive tool for clustering and forecasting patterns of Taiwan COVID-19 spread. Plos one, 2022. 17(6): p. e0265477.
[9] Shinde, G.R., et al., Forecasting models for coronavirus disease (COVID-19): a survey of the state-of-the-art. SN Computer Science, 2020. 1(4): p. 1-15.
[10] Malik, Y.S., et al., How artificial intelligence may help the Covid‐19 pandemic: Pitfalls and lessons for the future. Reviews in Medical Virology, 2021. 31(5): p. 1-11.
[11] Dowd, J.B., et al., Demographic science aids in understanding the spread and fatality rates of COVID-19. Proceedings of the National Academy of Sciences, 2020. 117(18): p. 9696-9698.
[12] Ribeiro, M.H.D.M., et al., Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos, Solitons & Fractals, 2020. 135: p. 109853.
[13] Shahid, F., A. Zameer, and M. Muneeb, Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos, Solitons & Fractals, 2020. 140: p. 110212.
[14] Benvenuto, D., et al., Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in brief, 2020. 29: p. 105340.
[15] Khan, F.M. and R. Gupta, ARIMA and NAR based prediction model for time series analysis of COVID-19 cases in India. Journal of Safety Science and Resilience, 2020. 1(1): p. 12-18.
[16] Pourhomayoun, M. and M. Shakibi, Predicting mortality risk in patients with COVID-19 using machine learning to help medical decision-making. Smart Health, 2021. 20: p. 100178.
[17] Randhawa, G.S., et al., Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study. Plos one, 2020. 15(4): p. e0232391.
[18] Sethy, P.K. and S.K. Behera, Detection of coronavirus disease (covid-19) based on deep features. 2020.
[19] Siddiqui, M.K., et al., Correlation between temperature and COVID-19 (suspected, confirmed and death) cases based on machine learning analysis. J Pure Appl Microbiol, 2020. 14(suppl 1): p. 1017-1024.
[20] Carrillo-Larco, R.M. and M. Castillo-Cara, Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach. Wellcome open research, 2020. 5.
[21] Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural computation, 1997. 9(8): p. 1735-1780.
[22] Chimmula, V.K.R. and L. Zhang, Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons & Fractals, 2020. 135: p. 109864.
[23] Chandra, R., A. Jain, and D. Singh Chauhan, Deep learning via LSTM models for COVID-19 infection forecasting in India. PloS one, 2022. 17(1): p. e0262708.
[24] Zeileis, A., T. Hothorn, and K. Hornik, Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 2008. 17(2): p. 492-514.
[25] Ashouri, M., G. Shmueli, and C.-Y. Sin, Tree-based methods for clustering time series using domain-relevant attributes. Journal of Business Analytics, 2019. 2(1): p. 1-23.
[26] Finch, W.H., Structural equation modelling trees for invariance assessment. International Journal of Quantitative Research in Education, 2017. 4(1-2): p. 72-93.
[27] Rusch, T., A. Zeileis, and K. Hornik. Logistic regression trees for ordinal and preference data. in BOOK OF ABSTRACTS. 2016.
[28] Zeileis, A. and K. Hornik, Generalized M‐fluctuation tests for parameter instability. Statistica Neerlandica, 2007. 61(4): p. 488-508.
[29] Hyndman, R.J. and G. Athanasopoulos, Forecasting: principles and practice. 2018: OTexts.
[30] Akaike, H., Information theory and an extension of the maximum likelihood principle, in Selected papers of hirotugu akaike. 1998, Springer. p. 199-213.
[31] Schwarz, G., Estimating the dimension of a model. The annals of statistics, 1978: p. 461-464.
[32] Rashed, E.A., et al., Influence of absolute humidity, temperature and population density on COVID-19 spread and decay durations: multi-prefecture study in Japan. International journal of environmental research and public health, 2020. 17(15): p. 5354.
[33] Ganegoda, N.C., et al., Interrelationship between daily COVID-19 cases and average temperature as well as relative humidity in Germany. Scientific reports, 2021. 11(1): p. 1-16.
[34] Adams, A., et al., The disguised pandemic: The importance of data normalization in COVID-19 web mapping. Public Health, 2020. 183: p. 36.
[35] Kumar, J. and K. Hembram, Epidemiological study of novel coronavirus (COVID-19). arXiv preprint arXiv:2003.11376, 2020.
[36] Sameni, R., Mathematical modeling of epidemic diseases; a case study of the COVID-19 coronavirus. arXiv preprint arXiv:2003.11371, 2020.
[37] Tian, Y., I. Luthra, and X. Zhang, Forecasting COVID-19 cases using Machine Learning models. MedRxiv, 2020.
[38] Perret, B., et al., Removing non-significant regions in hierarchical clustering and segmentation. Pattern Recognition Letters, 2019. 128: p. 433-439.
[39] Tritchler, D., E. Parkhomenko, and J. Beyene, Filtering genes for cluster and network analysis. BMC bioinformatics, 2009. 10(1): p. 1-9.
[40] Oliver, M.A. and R. Webster, Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information System, 1990. 4(3): p. 313-332.
[41] Shtiliyanova, A., et al., Kriging-based approach to predict missing air temperature data. Computers and Electronics in Agriculture, 2017. 142: p. 440-449.
[42] Feng, L., et al., CUTOFF: A spatio-temporal imputation method. Journal of Hydrology, 2014. 519: p. 3591-3605.
[43] Winston Chang, J.C., JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff Allen , Jonathan McPherson, Alan Dipert and Barbara Borges, shiny: Web Application Framework for R. 2021.
[44] Yu, Y., Y. Ouyang, and W. Yao, shinyCircos: an R/Shiny application for interactive creation of Circos plot. Bioinformatics, 2018. 34(7): p. 1229-1231.
[45] Potter, G., et al., Web application teaching tools for statistics using R and shiny. Technology Innovations in Statistics Education, 2016. 9(1).
[46] McGuinness, L.A. and J.P. Higgins, Risk‐of‐bias VISualization (robvis): an R package and Shiny web app for visualizing risk‐of‐bias assessments. Research synthesis methods, 2021. 12(1): p. 55-61.
[47] Shrotri, M., et al., An interactive website tracking COVID-19 vaccine development. The Lancet Global Health, 2021. 9(5): p. e590-e592.
[48] Evrenoglou, T., I. Boutron, and A. Chaimani, metaCOVID: An R-Shiny application for living meta-analyses of COVID-19 trials. medRxiv, 2021.
[49] Tebé, C., et al., COVID19-world: a shiny application to perform comprehensive country-specific data visualization for SARS-CoV-2 epidemic. BMC Medical Research Methodology, 2020. 20(1): p. 1-7.
[50] Zeileis, A., T. Hothorn, and K. Hornik, party with the mob: Model-Based Recursive Partitioning in R. R package version 0.9-9999, 2010.
[51] Chang, W., shinythemes: Themes for Shiny. 2021.
[52] National Center for High-Performance Computing. Taiwan Reports of the COVID-19 Pandemic. [cited 2022 October]; Available from: https://covid-19.nchc.org.tw/dt_005-covidTable_taiwan.php
[53] Government Open Data Platform. Township Borders Dataset (TWD97 Coordinates). [cited 2022 September]; Available from: https://data.gov.tw/dataset/7441.
[54] Government Open Data Platform. Township Population Density Dataset. [cited 2022 September]; Available from: https://data.gov.tw/dataset/8410.
[55] Qi, H., et al., COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. Science of the total environment, 2020. 728: p. 138778.
[56] Ma, Y., et al., Effects of temperature variation and humidity on the mortality of COVID-19 in Wuhan. medRxiv, 2020.
[57] Siegenfeld, A.F. and Y. Bar-Yam, Eliminating covid-19: A community-based analysis. arXiv preprint arXiv:2003.10086, 2020.
[58] Hossain, M.P., et al., The effects of border control and quarantine measures on the spread of COVID-19. Epidemics, 2020. 32: p. 100397.
[59] Klein, M.G., et al., COVID-19 models for hospital surge capacity planning: A systematic review. Disaster medicine and public health preparedness, 2022. 16(1): p. 390-397.
[60] Tobler, W.R., A computer movie simulating urban growth in the Detroit region. Economic geography, 1970. 46(sup1): p. 234-240.
[61] Sergio J. Rey, D.A.-B., Levi J. Wolf, Geographic Data Science with Python. 2020.
[62] CWB Observation Data Inquire System. Observation Data of CWB's Manned and Automatic Weather Stations. [cited 2022 September]; Available from: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp.
[63] Society and Economics Geographic Information System. Statistics for Districts. [cited 2022 September]; Available from: https://segis.moi.gov.tw/STAT/Web/Platform/QueryInterface/STAT_QueryTopProduct.aspx.
[64] Taiwan Medical Association. 2019 Statistics for Taiwan Medical Practitioners and Medical Care Institutions. [cited 2022 September]; Available from: https://www.tma.tw/stats/index_NYearInfo.asp?/2019.html.
[65] Civil Aeronautics Administration of MOTC. The Diagram of Airports. [cited 2022 September]; Available from: https://www.caa.gov.tw/Article.aspx?a=982&lang=2.
[66] Institute of Transportation of MOTC. MOTC Transport API V2. [cited 2022 September]; Available from: https://ptx.transportdata.tw/MOTC/?urls.primaryName=%E8%BB%8C%E9%81%93V2#/Metro/MetroApi_Station_2092.
[67] Wikipedia. List of ROC Public Transfer Interchanges. [cited 2022 September]; Available from: https://zh.m.wikipedia.org/zh-tw/%E4%B8%AD%E8%8F%AF%E6%B0%91%E5%9C%8B%E6%B1%BD%E8%BB%8A%E5%AE%A2%E9%81%8B%E8%BB%8A%E7%AB%99%E5%88%97%E8%A1%A8
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87579-
dc.description.abstract隨著2019年新型冠狀病毒的傳播帶來全球性的災害,科學家們開始意識到適合流行疾病分析的機器學習方法論之重要性。而在眾多相關演算法的發展之中,此研究著重在一個適合時間序列資料分析的分群法—「基於模型的遞迴分割法」之時間序列版。在這篇研究中,我快速地探討了幾篇和這個演算法的發展還有一些與本篇發想的方法論有關的文獻,嘗試優化前篇研究所提出之R/Shiny視覺化工具,並且提出了兩大優化這個演算法的方法論,其中包含了基於人口的標準化技巧,以及鄰近域相關特徵的衍生性概念。以台灣一年半的新型冠狀病毒每日確診數資料為研究對象,我不僅在應用此演算法及上述方法論的實驗中得到了一些流行相關的洞見,也透過了統計方法驗證了我的方法論的有效性。完整地分析過實驗後,我針對這個演算法的分群任務和預測任務都個別提出了相對應的建議參數設定。最後,針對開發過程和實驗過程中的限制,我列舉了幾項本研究未來可能可以優化的方向。zh_TW
dc.description.abstractThe outbreak of COVID-19 raised awareness of the need to develop machine learning methodology suitable for epidemiological pattern recognition. This study focuses on time-series model-based recursive partitioning and one of its derivative applications for visualization. Several literature reviews on related studies including the evolution of this methodology are provided. This study documents the improved functionality enhanced user-friendliness of an R/Shiny application for visualizing time-series model-based recursive partitioning and proposes several methodologies to strengthen the computational results from this algorithm. With Taiwan township-level COVID-19 spread data, several experiments were conducted to gain insights on the spread patterns and validate the effectiveness of this study’s main contributions, which include the population-based scaling technique and the derivative concept of adjacent domain-relevant attributes. Finally, various option configurations for clustering and forecasting tasks based on this epidemic-related algorithm are suggested. After considering the limitation of this work, several promising future directions are provided at the end of this study.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:10:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:10:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
Acknowledgements ii
摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Background 3
1.3 Objectives and Organization 6
Chapter 2 Literature Review 9
2.1 Model-based Recursive Partitioning 9
2.2 Time Series Clustering using Domain-Relevant Attributes 12
2.3 An Interactive Approach to Time Series Clustering 13
2.4 Data Removal and Missing Value Imputation 14
Chapter 3 Interactive Programming by R/Shiny Apps 17
3.1 Introduction to R/Shiny Apps 17
3.2 The Use of R/Shiny Apps in Previous Work on COVID-19 Research 18
3.3 The Improved Version - Interpretable Pattern Recognition Software 19
Chapter 4 Experimental Studies 22
4.1 Origin of Data Feature 22
4.2 Data Preprocessing 24
4.3 Experimental Designs 25
Chapter 5 Results and Interpretations 30
5.1 Effectiveness of Adjacent Domain-Relevant Attributes 31
5.2 Effectiveness of Population-Based Scaling Methods 35
5.3 Differences between Different Pruning Criteria 40
5.4 Suggested Option Configuration 41
5.5 Comparison with the Previous Study 43
Chapter 6 Discussion and Conclusion 45
References 49
Appendix A — Experiment Results 54
-
dc.language.isoen-
dc.subject基於模型的遞迴分割法zh_TW
dc.subject時間序列zh_TW
dc.subject視覺化工具zh_TW
dc.subject新型冠狀病毒zh_TW
dc.subjectmodel-based recursive partitioningen
dc.subjectCOVID-19en
dc.subjecttime seriesen
dc.subjectShinyen
dc.title以時間序列分群法結合R/Shiny資料視覺化探討COVID-19傳播zh_TW
dc.titleAn Investigation to the Spread of COVID-19 via Time Series Clustering and its Data Visualization via R/Shiny Appen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.coadvisor吳沛遠zh_TW
dc.contributor.coadvisorPei-Yuan Wuen
dc.contributor.oralexamcommittee陳君厚;顏佐榕;郎慧珠zh_TW
dc.contributor.oralexamcommitteeChun-Houh Chen;Tso-Jung Yen;Hui-Chu Langen
dc.subject.keyword基於模型的遞迴分割法,新型冠狀病毒,視覺化工具,時間序列,zh_TW
dc.subject.keywordmodel-based recursive partitioning,time series,Shiny,COVID-19,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU202300086-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-01-18-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資料科學學位學程-
dc.date.embargo-lift2025-01-10-
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf8.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved