Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87572
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳立涵zh_TW
dc.contributor.advisorLi-Han Chenen
dc.contributor.author張峻魁zh_TW
dc.contributor.authorChun-Kuei Changen
dc.date.accessioned2023-06-20T16:08:02Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2023-
dc.date.submitted2023-02-15-
dc.identifier.citation行政院農業委員會漁業署. (2011-2020). 漁業統計年報.
高正一. (2007). 創新式蝦池清淤系統之研發.
陳弘成. (2003). 蝦類養殖新科技-健康安全的白蝦養殖法. 國立臺灣大學 漁業推廣委員會, 第十四期, 1-16.
陳弘成. (2005). 白蝦室外超高密度之養殖、產量與管理. 水產試驗所特刊, 第6號(白蝦養殖產業發展與技術創新), 147-153.
Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M., & Evans, R. M. (2013). PPARγ signaling and metabolism: the good, the bad and the future. Nature Medicine, 19(5), 557-566. doi:10.1038/nm.3159
Ai, Y., Cai, X., Liu, L., Li, J., Long, H., Ren, W., . . . Xie, Z. Y. (2022). Effects of different dietary preparations of Enterococcus faecalis F7 on the growth and intestinal microbiota of Pacific white shrimp ( Litopenaeus vannamei ). Aquaculture Research, 53(8), 3238-3247. doi:10.1111/are.15835
Al-Dohail, M. A., Hashim, R., & Aliyu-Paiko, M. (2009). Effects of the probiotic,Lactobacillus acidophilus, on the growth performance, haematology parameters and immunoglobulin concentration in African Catfish (Clarias gariepinus, Burchell 1822) fingerling. Aquaculture Research, 40(14), 1642-1652. doi:10.1111/j.1365-2109.2009.02265.x
Alakomi, H.-L., Skytta, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K., & Helander, I. (2000). Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and environmental microbiology, 66(5), 2001-2005. doi:10.1128/AEM.66.5.2001-2005.2000
Alfaro, A. C., Nguyen, T. V., Bayot, B., Leon, J. A. R., Domínguez-Borbor, C., & Sonnenholzner, S. (2021). Metabolic responses of whiteleg shrimp to white spot syndrome virus (WSSV). Journal of invertebrate pathology, 180, 107545. doi:10.1016/j.jip.2021.107545
Amin, M., Rakhisi, Z., & Zarei Ahmady, A. (2015). Isolation and Identification of Bacillus Species From Soil and Evaluation of Their Antibacterial Properties. Avicenna Journal of Clinical Microbiology and Infection, 2(1), 23233-23233. doi:10.17795/ajcmi-23233
Amoah, K., Dong, X. H., Tan, B. P., Zhang, S., Chi, S. Y., Yang, Q. H., . . . Zhang, H. T. (2020). Administration of probiotic Bacillus licheniformis induces growth, immune and antioxidant enzyme activities, gut microbiota assembly and resistance to Vibrio parahaemolyticus in Litopenaeus vanna. Aquaculture Nutrition, 26(5), 1604-1622. doi:10.1111/anu.13106
Amoah, K., Huang, Q.-C., Tan, B.-P., Zhang, S., Chi, S.-Y., Yang, Q.-H., . . . Dong, X.-H. (2019). Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 87, 796-808. doi:10.1016/j.fsi.2019.02.029
Arnds, J., Knittel, K., Buck, U., Winkel, M., & Amann, R. (2010). Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Systematic and Applied Microbiology, 33(3), 139-148. doi:10.1016/j.syapm.2009.12.005
Balcázar, J. L., Rojas-Luna, T., & Cunningham, D. P. (2007). Effect of the addition of four potential probiotic strains on the survival of pacific white shrimp (Litopenaeus vannamei) following immersion challenge with Vibrio parahaemolyticus. Journal of invertebrate pathology, 96(2), 147-150. doi:10.1016/j.jip.2007.04.008
Banerjee, S., Khatoon, H., Shariff, M., & Yusoff, F. M. (2010). Enhancement of Penaeus monodon shrimp postlarvae growth and survival without water exchange using marine Bacillus pumilus and periphytic microalgae. Fisheries Science, 76(3), 481-487. doi:10.1007/s12562-010-0230-x
Beller, H. R., Chain, P. S. G., Letain, T. E., Chakicherla, A., Larimer, F. W., Richardson, P. M., . . . Kelly, D. P. (2006). The Genome Sequence of the Obligately Chemolithoautotrophic, Facultatively Anaerobic Bacterium Thiobacillus denitrificans. Journal of Bacteriology, 188(4), 1473-1488. doi:10.1128/jb.188.4.1473-1488.2006
Bergen, B., Herlemann, D. P. R., Labrenz, M., & Jürgens, K. (2014). Distribution of the verrucomicrobial clade Spartobacteria along a salinity gradient in the Baltic Sea. Environmental Microbiology Reports, 6(6), 625-630. doi:10.1111/1758-2229.12178
Bernal, M. G., Campa-Córdova, Á. I., Saucedo, P. E., González, M. C., Marrero, R. M., & Mazón-Suástegui, J. M. (2015). Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture. Veterinary world, 8(2), 170. doi:10.14202/vetworld.2015.170-176
Blankenship, R. E., Madigan, M. T., & Bauer, C. E. (2006). Anoxygenic photosynthetic bacteria (Vol. 2): Springer Science & Business Media.
Bower, C. E., & Bidwell, J. P. (1978). Ionization of ammonia in seawater: effects of temperature, pH, and salinity. Journal of the Fisheries Board of Canada, 35(7), 1012-1016. doi:10.1139/f78-165
Boyd, C. E., & Tucker, C. S. (2014). Handbook for aquaculture water quality. Handbook for aquaculture water quality, 439.
Bransden, M. P., Carson, J., Munday, B. L., Handlinger, J. H., Carter, C. G., & Nowak, B. F. (2000). Nocardiosis in tank‐reared Atlantic salmon, Salmo salar L. Journal of Fish Diseases, 23(1), 83-85. doi:10.1046/j.1365-2761.2000.00201.x
Breurec, S., Criscuolo, A., Diancourt, L., Rendueles, O., Vandenbogaert, M., Passet, V., . . . Brisse, S. (2016). Genomic epidemiology and global diversity of the emerging bacterial pathogen Elizabethkingia anophelis. Scientific Reports, 6(1), 30379. doi:10.1038/srep30379
Buckley, D. H., & Schmidt, T. M. (2001). Environmental factors influencing the distribution of rRNA from Verrucomicrobia in soil. FEMS Microbiology Ecology, 35(1), 105-112. doi:10.1111/j.1574-6941.2001.tb00793.x
Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., & Buschmann, A. H. (2013). Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15(7), 1917-1942. doi:10.1111/1462-2920.12134
Cai, H., Jiang, H., Krumholz, L. R., & Yang, Z. (2014). Bacterial Community Composition of Size-Fractioned Aggregates within the Phycosphere of Cyanobacterial Blooms in a Eutrophic Freshwater Lake. PLoS ONE, 9(8), e102879. doi:10.1371/journal.pone.0102879
Cao, K. F., Zhi, R., & Zhang, G. M. (2020). Photosynthetic bacteria wastewater treatment with the production of value-added products: A review. Bioresource Technology, 299, 10. doi:10.1016/j.biortech.2019.122648
Castine, S. A., Bourne, D. G., Trott, L. A., & McKinnon, D. A. (2009). Sediment microbial community analysis: Establishing impacts of aquaculture on a tropical mangrove ecosystem. Aquaculture, 297(1-4), 91-98. doi:10.1016/j.aquaculture.2009.09.013
Chaiyapechara, S., Rungrassamee, W., Suriyachay, I., Kuncharin, Y., Klanchui, A., Karoonuthaisiri, N., & Jiravanichpaisal, P. (2012). Bacterial Community Associated with the Intestinal Tract of P. monodon in Commercial Farms. Microbial Ecology, 63(4), 938-953. doi:10.1007/s00248-011-9936-2
Chen, C.-C., & Chen, S.-N. (2001). Water Quality Management with Bacillus spp. in the High-Density Culture of Red-Parrot Fish Cichlasoma citrinellum C. synspilum. North American Journal of Aquaculture, 63(1), 66-73. doi:10.1577/1548-8454(2001)063<0066:wqmwbs>2.0.co;2
Chen, S. C., Lee, J. L., Lai, C. C., Gu, Y. W., Wang, C. T., Chang, H. Y., & Tsai, K. H. (2000). Nocardiosis in sea bass, Lateolabrax japonicus, in Taiwan. Journal of Fish Diseases, 23(5), 299-307. doi:10.1046/j.1365-2761.2000.00217.x
Chi, Z. F., Ju, S. J., Li, H., Li, J. L., Wu, H. T., & Yan, B. X. (2021). Deciphering edaphic bacterial community and function potential in a Chinese delta under exogenous nutrient input and salinity stress. Catena, 201. doi:10.1016/j.catena.2021.105212
Choi, A., Cho, H., Kim, B., Kim, H. C., Jung, R. H., Lee, W. C., & Hyun, J. H. (2018). Effects of finfish aquaculture on biogeochemistry and bacterial communities associated with sulfur cycles in highly sulfidic sediments. Aquaculture Environment Interactions, 10, 413-427. doi:10.2307/26849967
Cornejo-Granados, F., Lopez-Zavala, A. A., Gallardo-Becerra, L., Mendoza-Vargas, A., Sánchez, F., Vichido, R., . . . Ochoa-Leyva, A. (2017). Microbiome of Pacific Whiteleg shrimp reveals differential bacterial community composition between Wild, Aquacultured and AHPND/EMS outbreak conditions. Scientific Reports, 7(1). doi:10.1038/s41598-017-11805-w
Costa, M. S., Costa, M., Ramos, V., Leão, P. N., Barreiro, A., Vasconcelos, V., & Martins, R. (2015). Picocyanobacteria From a Clade of Marine Cyanobium Revealed Bioactive Potential Against Microalgae, Bacteria, and Marine Invertebrates. Journal of Toxicology and Environmental Health, Part A, 78(7), 432-442. doi:10.1080/15287394.2014.991466
Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., & Verstraete, W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270(1-4), 1-14. doi:10.1016/j.aquaculture.2007.05.006
Dalmin, G., Kathiresan, K., & Purushothaman, A. (2001). Effect of probiotics on bacterial population and health status of shrimp in culture pond ecosystem.
Das, S., Ward, L. R., & Burke, C. (2008). Prospects of using marine actinobacteria as probiotics in aquaculture. Applied Microbiology and Biotechnology, 81(3), 419-429. doi:10.1007/s00253-008-1731-8
Das, S., Ward, L. R., & Burke, C. (2010). Screening of marine Streptomyces spp. for potential use as probiotics in aquaculture. Aquaculture, 305(1-4), 32-41. doi:10.1016/j.aquaculture.2010.04.001
Dedysh, S. N., Kulichevskaya, I. S., Huber, K. J., & Overmann, J. (2017). Defining the taxonomic status of described subdivision 3 Acidobacteria: proposal of Bryobacteraceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 67(2), 498-501. doi:10.1099/ijsem.0.001687
Deng, Y., Xu, X., Yin, X., Lu, H., Chen, G., Yu, J., & Ruan, Y. (2019). Effect of stock density on the microbial community in biofloc water and Pacific white shrimp (Litopenaeus vannamei) gut microbiota. Applied Microbiology and Biotechnology, 103(10), 4241-4252. doi:10.1007/s00253-019-09773-4
Ding, C., Adrian, L., Peng, Y., & He, J. (2020). 16S rRNA gene-based primer pair showed high specificity and quantification accuracy in detecting freshwater Brocadiales anammox bacteria. FEMS Microbiology Ecology, 96(3). doi:10.1093/femsec/fiaa013
Duan, Y. F., Wang, Y., Dong, H. B., Ding, X., Liu, Q. S., Li, H., . . . Xiong, D. L. (2018). Changes in the Intestine Microbial, Digestive, and Immune-Related Genes of Litopenaeus vannamei in Response to Dietary Probiotic Clostridium butyricum Supplementation. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.02191
Dyksma, S., Bischof, K., Fuchs, B. M., Hoffmann, K., Meier, D., Meyerdierks, A., . . . Mußmann, M. (2016). Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. The ISME Journal, 10(8), 1939-1953. doi:10.1038/ismej.2015.257
Emerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1975). Aqueous ammonia equilibrium calculations: effect of pH and temperature. Journal of the Fisheries Board of Canada, 32(12), 2379-2383. doi:10.1139/f75-274
Eraqi, W. A., Elrakaiby, M. T., Megahed, S. A., Yousef, N. H., Elshahed, M. S., & Yassin, A. S. (2021). Spatiotemporal Analysis of the Water and Sediment Nile Microbial Community Along an Urban Metropolis. Microbial Ecology, 82(2), 288-298. doi:10.1007/s00248-020-01674-8
Fan, L., Wang, Z., Chen, M., Qu, Y., Li, J., Zhou, A., . . . Zou, J. (2019). Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. Science of The Total Environment, 657, 1194-1204. doi:10.1016/j.scitotenv.2018.12.069
Fang, Y., Wang, Y., Li, Z., Liu, Z., Li, X., Diao, B., . . . Wang, D. (2018). Distribution and genetic characteristics of SXT/R391 integrative conjugative elements in Shewanella spp. from China. Frontiers in Microbiology, 9, 920. doi:10.3389/fmicb.2018.00920
Farzanfar, A. (2006). The use of probiotics in shrimp aquaculture: Table 1. FEMS Immunology & Medical Microbiology, 48(2), 149-158. doi:10.1111/j.1574-695x.2006.00116.x
Food, & Nations, A. O. o. t. U. (2020). The state of world fisheries and aquaculture 2020: Sustainability in action: Food and Agriculture Organization of the United Nations.
Frank, D. N., St. Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., & Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences, 104(34), 13780-13785. doi:10.1073/pnas.0706625104
Freitas, S., Hatosy, S., Fuhrman, J. A., Huse, S. M., Mark Welch, D. B., Sogin, M. L., & Martiny, A. C. (2012). Global distribution and diversity of marine Verrucomicrobia. The ISME Journal, 6(8), 1499-1505. doi:10.1038/ismej.2012.3
Fromm, P. O., & Gillette, J. R. (1968). Effect of ambient ammonia on blood ammonia and nitrogen excretion of rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology, 26(3), 887-896. doi:10.1016/0010-406X(68)90008-X
Gao, S., Pan, L., Zhang, M., Huang, F., Zhang, M., & He, Z. (2020). Screening of bacterial strains from the gut of Pacific White Shrimp (Litopenaeus vannamei) and their efficiencies in improving the fermentation of soybean meal. FEMS Microbiology Letters, 367(2), fnaa017. doi:10.1093/femsle/fnaa017
Gervois, P., Torra, I. P., Fruchart, J.-C., & Staels, B. (2000). Regulation of lipid and lipoprotein metabolism by PPAR activators. doi:10.1515/CCLM.2000.002
Giblin, A. E., Tobias, C. R., Song, B., Weston, N., Banta, G. T., & H. RIVERA-MONROY, V. (2013). The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography, 26(3), 124-131. doi:10.5670/oceanog.2013.54
Group, J. F. W. W. (2002). Guidelines for the evaluation of probiotics in food. London: World Health Organization, ON, Canada: Food and Agriculture Organization.
Hai, N. V. (2015). Research findings from the use of probiotics in tilapia aquaculture: A review. Fish & Shellfish Immunology, 45(2), 592-597. doi:10.1016/j.fsi.2015.05.026
Hao, K., Liu, J. Y., Ling, F., Liu, X. L., Lu, L., Xia, L., & Wang, G. X. (2014). Effects of dietary administration of Shewanella haliotis D4, Bacillus cereus D7 and Aeromonas bivalvium D15, single or combined, on the growth, innate immunity and disease resistance of shrimp, Litopenaeus vannamei. Aquaculture, 428, 141-149. doi:10.1016/j.aquaculture.2014.03.016
Harpaz, S. (2005). L-carnitine and its attributed functions in fish culture and nutrition—a review. Aquaculture, 249(1-4), 3-21. doi:10.1016/j.aquaculture.2005.04.007
Hasan, K. N., & Banerjee, G. (2020). Recent studies on probiotics as beneficial mediator in aquaculture: a review. The Journal of Basic and Applied Zoology, 81(1). doi:10.1186/s41936-020-00190-y
Haukka, K., Kolmonen, E., Hyder, R., Hietala, J., Vakkilainen, K., Kairesalo, T., . . . Sivonen, K. (2006). Effect of Nutrient Loading on Bacterioplankton Community Composition in Lake Mesocosms. Microbial Ecology, 51(2), 137-146. doi:10.1007/s00248-005-0049-7
Haung, H. (2003). Important tools to the success of shrimp aquaculture-Aeration and the applications of tea seed cake and probiotics. Aqua International February, 2003, 13-16.
Hem, S., Jarocki, V. M., Baker, D. J., Charles, I. G., Drigo, B., Aucote, S., . . . Harris, P. N. (2022). Genomic analysis of Elizabethkingia species from aquatic environments: Evidence for potential clinical transmission. Current research in microbial sciences, 3, 100083. doi:10.1016/j.crmicr.2021.100083
Holt, H. M., Gahrn-Hansen, B., & Bruun, B. (2005). Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics. Clinical Microbiology and Infection, 11(5), 347-352. doi:10.1111/j.1469-0691.2005.01108.x
Hou, D., Huang, Z., Zeng, S., Liu, J., Weng, S., & He, J. (2018). Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment. Journal of Applied Microbiology, 125(3), 792-799. doi:10.1111/jam.13919
Huang, F., Pan, L., Song, M., Tian, C., & Gao, S. (2018). Microbiota assemblages of water, sediment, and intestine and their associations with environmental factors and shrimp physiological health. Applied Microbiology and Biotechnology, 102(19), 8585-8598. doi:10.1007/s00253-018-9229-5
Hung, Y.-M., Lu, T.-P., Tsai, M.-H., Lai, L.-C., & Chuang, E. Y. (2021). EasyMAP: A user-friendly online platform for analyzing 16S ribosomal DNA sequencing data. New Biotechnology, 63, 37-44. doi:10.1016/j.nbt.2021.03.001
Hunter, C. N., Daldal, F., Thurnauer, M. C., & Beatty, J. T. (2009). The purple phototrophic bacteria (Vol. 28): Springer.
Huynh, T.-G., Hu, S.-Y., Chiu, C.-S., Truong, Q.-P., & Liu, C.-H. (2019). Bacterial population in intestines of white shrimp, Litopenaeus vannamei fed a synbiotic containing Lactobacillus plantarum and galactooligosaccharide. Aquaculture Research, 50(3), 807-817. doi:10.1111/are.13951
Itano, T., Kawakami, H., Kono, T., & Sakai, M. (2006). Detection of fish nocardiosis by loop-mediated isothermal amplification. Journal of Applied Microbiology, 100(6), 1381-1387. doi:10.1111/j.1365-2672.2006.02872.x
Jacobs, J. M., Stine, C. B., Baya, A. M., & Kent, M. L. (2009). A review of mycobacteriosis in marine fish. Journal of Fish Diseases, 32(2), 119-130. doi:10.1111/j.1365-2761.2008.01016.x
Jamal, M. T., Abdulrahman, I. A., Al Harbi, M., & Chithambaran, S. (2019). Probiotics as alternative control measures in shrimp aquaculture: A review. Journal of Applied Biology and Biotechnology, 7(3), 6-7. doi:10.7324/JABB.2019.70313
James, G., Das, B. C., Jose, S., & V.J, R. K. (2021). Bacillus as an aquaculture friendly microbe. Aquaculture International, 29(1), 323-353. doi:10.1007/s10499-020-00630-0
Kandi, V. (2015). Human Nocardia infections: a review of pulmonary nocardiosis. Cureus, 7(8). doi:10.7759/cureus.304
Kelly, D. P., & Wood, A. P. (2000). Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the beta-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. International Journal of Systematic and Evolutionary Microbiology, 50(2), 547-550. doi:10.1099/00207713-50-2-547
Kensley, B. F. (1997). Penaeoid and sergestoid shrimps and prawns of the world: keys and diagnoses for the families and genera (Vol. 175): French National Museum Natural History.
Kersters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P., & Stackebrant, E. (2006). Introduction to the Proteobacteria. The Prokaryotes, Vol. 5, 3rd edn (Dworkin M, Falkow S, Rosenberg E, Schleifer KH & Stackebrandt E, eds). In: Springer, New York, NY.
Kewcharoen, W., & Srisapoome, P. (2019). Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains). Fish Shellfish Immunol, 94, 175-189. doi:10.1016/j.fsi.2019.09.013
Kohn, T., Wiegand, S., Boedeker, C., Rast, P., Heuer, A., Jetten, M. S. M., . . . Jogler, C. (2020). Planctopirus ephydatiae, a novel Planctomycete isolated from a freshwater sponge. Systematic and Applied Microbiology, 43(1), 11. doi:10.1016/j.syapm.2019.126022
Kondo, R., Mori, Y., & Sakami, T. (2012). Comparison of Sulphate-reducing Bacterial Communities in Japanese Fish Farm Sediments with Different Levels of Organic Enrichment. Microbes and Environments, 27(2), 193-199. doi:10.1264/jsme2.me11278
Kuebutornye, F. K. A., Abarike, E. D., & Lu, Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol, 87, 820-828. doi:10.1016/j.fsi.2019.02.010
Kuebutornye, F. K. A., Lu, Y., Abarike, E. D., Wang, Z., Li, Y., & Sakyi, M. E. (2020). In vitro Assessment of the Probiotic Characteristics of Three Bacillus Species from the Gut of Nile Tilapia, Oreochromis niloticus. Probiotics and Antimicrobial Proteins, 12(2), 412-424. doi:10.1007/s12602-019-09562-5
Lee, L.-H., Zainal, N., Azman, A.-S., Eng, S.-K., Goh, B.-H., Yin, W.-F., . . . Chan, K.-G. (2014). Diversity and Antimicrobial Activities of Actinobacteria Isolated from Tropical Mangrove Sediments in Malaysia. The Scientific World Journal, 2014, 1-14. doi:10.1155/2014/698178
Lee, Z. P., Shang, S. L., Hu, C. M., Du, K. P., Weidemann, A., Hou, W. L., . . . Lin, G. (2015). Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sensing of Environment, 169, 139-149. doi:10.1016/j.rse.2015.08.002
Li, E. C., Xu, C., Wang, X. D., Wang, S. F., Zhao, Q., Zhang, M. L., . . . Chen, L. Q. (2018). Gut Microbiota and its Modulation for Healthy Farming of Pacific White Shrimp Litopenaeus vannamei. Reviews in Fisheries Science & Aquaculture, 26(3), 381-399. doi:10.1080/23308249.2018.1440530
Li, J., Tan, B., Mai, K., Ai, Q., Zhang, W., Liufu, Z., & Xu, W. (2008). Immune responses and resistance against Vibrio parahaemolyticus induced by probiotic bacterium Arthrobacter XE‐7 in Pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 39(4), 477-489. doi:10.1111/j.1749-7345.2008.00188.x
Li, J., Wu, Z.-B., Zhang, Z., Zha, J.-W., Qu, S.-Y., Qi, X.-Z., . . . Ling, F. (2019). Effects of potential probiotic Bacillus velezensis K2 on growth, immunity and resistance to Vibrio harveyi infection of hybrid grouper (Epinephelus lanceolatus♂ × E. fuscoguttatus♀). Fish & Shellfish Immunology, 93, 1047-1055. doi:10.1016/j.fsi.2019.08.047
Li, L., Kato, C., & Horikoshi, K. (1999). Microbial Diversity in Sediments Collected from the Deepest Cold-Seep Area, the Japan Trench. Marine Biotechnology, 1(4), 391-400. doi:10.1007/pl00011793
Li, M., & Gu, J.-D. (2016). The diversity and distribution of anammox bacteria in the marine aquaculture zones. Applied Microbiology and Biotechnology, 100(20), 8943-8953. doi:10.1007/s00253-016-7690-6
Li, S. B., Yang, Z. G., Tian, H. Y., Ren, S. J., Zhang, W. X., & Wang, A. M. (2022). Effects of dietary carbohydrate-to-lipid ratios on growth performance, intestinal digestion, lipid and carbohydrate metabolism of red swamp crayfish (Procambarus clarkii). Aquaculture Reports, 24, 11. doi:10.1016/j.aqrep.2022.101117
Liu, C. (2004). Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish & Shellfish Immunology, 16(3), 321-334. doi:10.1016/s1050-4648(03)00113-x
Liu, H. D., Wang, L., Liu, M., Wang, B. J., Jiang, K. Y., Ma, S. S., & Li, Q. F. (2011). The intestinal microbial diversity in Chinese shrimp (Fenneropenaeus chinensis) as determined by PCR-DGGE and clone library analyses. Aquaculture, 317(1-4), 32-36. doi:10.1016/j.aquaculture.2011.04.008
Lu, H. F., Zhang, G. M., Zheng, Z. Q., Meng, F., Du, T. S., & He, S. C. (2019). Bio-conversion of photosynthetic bacteria from non-toxic wastewater to realize wastewater treatment and bioresource recovery: A review. Bioresource Technology, 278, 383-399. doi:10.1016/j.biortech.2019.01.070
Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663. doi:10.1111/raq.12344

Luo, L. Z., Lin, X. A., Zeng, F. J., Wang, M., Luo, S., Peng, L., & Tian, G. M. (2019). Using co-occurrence network to explore the effects of bio-augmentation on the microalgae-based wastewater treatment process. Biochemical Engineering Journal, 141, 10-18. doi:10.1016/j.bej.2018.10.001
Ma, C.-W., Cho, Y.-S., & Oh, K.-H. (2009). Removal of pathogenic bacteria and nitrogens by Lactobacillus spp. JK-8 and JK-11. Aquaculture, 287(3-4), 266-270. doi:10.1016/j.aquaculture.2008.10.061
Martínez Cruz, P., Ibáñez, A. L., Monroy Hermosillo, O. A., & Ramírez Saad, H. C. (2012). Use of Probiotics in Aquaculture. ISRN Microbiology, 2012, 1-13. doi:10.5402/2012/916845
Martínez‐Lara, P., Martínez‐Porchas, M., Gollas‐Galván, T., Hernández‐López, J., & Robles‐Porchas, G. R. (2021). Granulomatosis in fish aquaculture: a mini review. Reviews in Aquaculture, 13(1), 259-268. doi:10.1111/raq.12472
Megard, R. O., & Berman, T. (1989). Effects of algae on the Secchi transparency of the southeastern Mediterranean Sea. Limnology and Oceanography, 34(8), 1640-1655. doi:10.4319/lo.1989.34.8.1640
Mogrovejo, D. C., Perini, L., Gostincar, C., Sepcic, K., Turk, M., Ambrozic-Avgustin, J., . . . Gunde-Cimerman, N. (2020). Prevalence of Antimicrobial Resistance and Hemolytic Phenotypes in Culturable Arctic Bacteria. Frontiers in Microbiology, 11, 13. doi:10.3389/fmicb.2020.00570
Mohapatra, S., Chakraborty, T., Kumar, V., Deboeck, G., & Mohanta, K. N. (2013). Aquaculture and stress management: a review of probiotic intervention. Journal of Animal Physiology and Animal Nutrition, 97(3), 405-430. doi:10.1111/j.1439-0396.2012.01301.x

Myllymaki, H., Bauerlein, C. A., & Ramet, M. (2016). The Zebrafish Breathes new Life into the Study of Tuberculosis. Frontiers in Immunology, 7. doi:10.3389/fimmu.2016.00196
Nakagawa, S., & Takai, K. (2008). Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiology Ecology, 65(1), 1-14. doi:10.1111/j.1574-6941.2008.00502.x
Nayak, S. K. (2021). Multifaceted applications of probiotic Bacillus species in aquaculture with special reference to Bacillus subtilis. Reviews in Aquaculture, 13(2), 862-906. doi:10.1111/raq.12503
Ngo, T. T. C., Nguyen, X. H., Le, T. N. T., Masaru, M., & Ikuo, M. (2011). Identification and Characterization of Actinomycetes Antagonistic to Pathogenic Vibrio spp. Isolated from Shrimp Culture Pond Sediments in Thua Thien Hue-Viet Nam. Journal of the Faculty of Agriculture Kyushu University, 56(1), 15-22. doi:10.5109/19532
Nguyen Thi Truc, L., Trinh Ngoc, A., Tran Thi Hong, T., Nguyen Thanh, T., Huynh Kim, H., Pham Kim, L., . . . Nguyen Thi Ngoc, T. (2019). Selection of Lactic Acid Bacteria (LAB) Antagonizing Vibrio parahaemolyticus: The Pathogen of Acute Hepatopancreatic Necrosis Disease (AHPND) in Whiteleg Shrimp (Penaeus vannamei). Biology, 8(4), 91. doi:10.3390/biology8040091
Nguyen, T. V., Alfaro, A. C., Young, T., & Merien, F. (2019). Tissue-specific immune responses to Vibrio sp. infection in mussels (Perna canaliculus): A metabolomics approach. Aquaculture, 500, 118-125. doi:10.1016/j.aquaculture.2018.09.061
Ninawe, A. S., & Selvin, J. (2009). Probiotics in shrimp aquaculture: Avenues and challenges. Critical Reviews in Microbiology, 35(1), 43-66. doi:10.1080/10408410802667202
Pai, J. N., Liou, C. H., Yang, S. D., & Chu, Y. N. (2022). An innovative sludge removing system for intensive aquaculture ponds. Aquacultural Engineering, 98, 14. doi:10.1016/j.aquaeng.2022.102275
Panigrahi, A., Das, R., Sivakumar, M., Saravanan, A., Saranya, C., Sudheer, N., . . . Gopikrishna, G. (2020). Bio-augmentation of heterotrophic bacteria in biofloc system improves growth, survival, and immunity of Indian white shrimp Penaeus indicus. Fish & Shellfish Immunology, 98, 477-487. doi:10.1016/j.fsi.2020.01.021
Pinoargote, G., & Ravishankar, S. (2018). Evaluation of the efficacy of probiotics in vitro against Vibrio parahaemolyticus, causative agent of acute hepatopancreatic necrosis disease in shrimp. J. Probiotics Heal, 6, 1-7. doi:10.4172/2329-8901.1000193
Prauser, H. (1976). Nocardioides, a New Genus of the Order Actinomycetales. International Journal of Systematic Bacteriology, 26(1), 58-65. doi:10.1099/00207713-26-1-58
Reyes Alvin, T., Jorduela Eric, L., & Doctolero Jemuel, S. (2019). Bacillus tequilensis, a novel unionized ammonia-nitrogen degrading bacterium isolated from tilapia pond soil. International Journal of Fisheries and Aquatic Studies, 7(4), 161-165.
Ringø, E., Doan, H. V., Lee, S., & Song, S. K. (2020). Lactic Acid Bacteria in Shellfish: Possibilities and Challenges. Reviews in Fisheries Science & Aquaculture, 28(2), 139-169. doi:10.1080/23308249.2019.1683151
Ringø, E., Hoseinifar, S. H., Ghosh, K., Doan, H. V., Beck, B. R., & Song, S. K. (2018). Lactic Acid Bacteria in Finfish—An Update. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.01818
Ringø, E., Van Doan, H., Lee, S. H., Soltani, M., Hoseinifar, S. H., Harikrishnan, R., & Song, S. K. (2020). Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. J Appl Microbiol, 129(1), 116-136. doi:10.1111/jam.14628
Roeselers, G., Mittge, E. K., Stephens, W. Z., Parichy, D. M., Cavanaugh, C. M., Guillemin, K., & Rawls, J. F. (2011). Evidence for a core gut microbiota in the zebrafish. The ISME Journal, 5(10), 1595-1608. doi:10.1038/ismej.2011.38
Rostami, F., Davoodi, R., Nafisi Bahabadi, M., Salehi, F., & Nooryazdan, H. (2019). Effects of ammonia on growth and molting of Litopenaeus vannamei postlarvae reared under two salinity levels. Journal of Applied Aquaculture, 31(4), 309-321. doi:10.1080/10454438.2019.1593911
Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1-24. doi:10.1007/s00394-017-1445-8
Satomi, M. (2014). Shewanella. In Encyclopedia of Food Microbiology (pp. 397-407).
Servin, J. A., Herbold, C. W., Skophammer, R. G., & Lake, J. A. (2008). Evidence excluding the root of the tree of life from the Actinobacteria. Molecular Biology and Evolution, 25(1), 1-4. doi:10.1093/molbev/msm249
Shimahara, Y., Huang, Y.-F., Tsai, M.-A., Wang, P.-C., Yoshida, T., Lee, J.-L., & Chen, S.-C. (2009). Genotypic and phenotypic analysis of fish pathogen, Nocardia seriolae, isolated in Taiwan. Aquaculture, 294(3-4), 165-171. doi:10.1016/j.aquaculture.2009.06.017Get
Shively, J. M., Van Keulen, G., & Meijer, W. G. (1998). Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annual review of microbiology, 52(1), 191-230. doi:10.1146/annurev.micro.52.1.191
Shu, D., He, Y., Yue, H., & Wang, Q. (2015). Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. Bioresource Technology, 186, 163-172. doi:10.1016/j.biortech.2015.03.072
Singaravel, V., Gopalakrishnan, A., Dewangan, N. K., Kannan, D., Shettu, N., & Martin, G. G. (2020). Photobacterium damselae subsp. damselae associated with bacterial myonecrosis and hepatopancreatic necrosis in broodstock Pacific white leg shrimp, Litopenaeus vannamei (Boone, 1931). Aquaculture International, 28(4), 1593-1608. doi:10.1007/s10499-020-00545-w
Song, Z. F., An, J., Fu, G. H., & Yang, X. L. (2011). Isolation and characterization of an aerobic denitrifying Bacillus sp YX-6 from shrimp culture ponds. Aquaculture, 319(1-2), 188-193. doi:10.1016/j.aquaculture.2011.06.018
Stanier, R., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological reviews, 35(2), 171-205. doi:10.1128/br.35.2.171-205.1971
Stojanov, S., Berlec, A., & Štrukelj, B. (2020). The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 8(11), 1715. doi:10.3390/microorganisms8111715
Sun, S., Guo, Z., Fu, H., Ge, X., Zhu, J., & Gu, Z. (2018). Based on the metabolomic approach the energy metabolism responses of oriental river prawn Macrobrachium nipponense hepatopancreas to acute hypoxia and reoxygenation. Frontiers in physiology, 9, 76. doi:10.3389/fphys.2018.00076
Talpur, A. D., Memon, A. J., Khan, M. I., Ikhwanuddin, M., Abdullah, M. D. D., & Bolong, A.-M. A. (2013). Gut Lactobacillus sp. bacteria as probiotics for Portunus pelagicus (Linnaeus, 1758) larviculture: effects on survival, digestive enzyme activities and water quality. Invertebrate Reproduction & Development, 57(3), 173-184. doi:10.1080/07924259.2012.714406
Thomas, F., Hehemann, J. H., Rebuffet, E., Czjzek, M., & Michel, G. (2011). Environmental and gut Bacteroidetes: the food connection. Frontiers in Microbiology, 2, 16. doi:10.3389/fmicb.2011.00093
Thurlow, C. M., Williams, M. A., Carrias, A., Ran, C., Newman, M., Tweedie, J., . . . Liles, M. R. (2019). Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture, 503, 347-356. doi:10.1016/j.aquaculture.2018.11.051
Thurston, R. (1980). Some factors affecting the toxicity of ammonia to fishes.
Van Niftrik, L., & Jetten, M. S. M. (2012). Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties. Microbiology and Molecular Biology Reviews, 76(3), 585-596. doi:10.1128/mmbr.05025-11
Wang, F. I., & Chen, J. C. (2006). The immune response of tiger shrimp Penaeus monodon and its susceptibility to Photobacterium damselae subsp damselae under temperature stress. Aquaculture, 258(1-4), 34-41. doi:10.1016/j.aquaculture.2006.03.043
Wang, G. L., Yuan, S. P., & Jin, S. (2005). Nocardiosis in large yellow croaker, Larimichthys crocea (Richardson). Journal of Fish Diseases, 28(6), 339-345. doi:10.1111/j.1365-2761.2005.00637.x
Wang, X., Li, J., Chen, J., Cui, L., Li, W., Gao, X., & Liu, Z. (2020). Water quality criteria of total ammonia nitrogen (TAN) and un-ionized ammonia (NH3-N) and their ecological risk in the Liao River, China. Chemosphere, 243, 125328. doi:10.1016/j.chemosphere.2019.125328
Wei, C., Wang, X., Li, C., Zhou, H., Liu, C., Mai, K., & He, G. (2021). Effects of dietary Shewanella sp. MR-7 on the growth performance, immunity, and intestinal microbiota of Pacific white shrimp. Aquaculture Reports, 19, 100595. doi:10.1016/j.aqrep.2021.100595
Won, S., Hamidoghli, A., Choi, W., Bae, J., Jang, W. J., Lee, S., & Bai, S. C. (2020). Evaluation of potential probiotics bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on growth performance, immune response, gut histology and immune-related genes in whiteleg shrimp, Litopenaeus vannamei. Microorganisms, 8(2), 281. doi:10.3390/microorganisms8020281
Wu, Z. Y., Liu, P. Y., Tseng, S. Y., Lee, Y. H., & Ho, S. P. (2018). Characteristics and Phylogeny of Shewanella haliotis Isolated from Cultivated Shellfish in Taiwan. Canadian Journal of Infectious Diseases & Medical Microbiology, 2018. doi:10.1155/2018/9895148
Xia, Z., Zhu, M., & Zhang, Y. (2014). Effects of the probiotic Arthrobacter sp. CW9 on the survival and immune status of white shrimp (Penaeus vannamei ). Letters in Applied Microbiology, 58(1), 60-64. doi:10.1111/lam.12156
Xie, F., Zhu, T., Zhang, F., Zhou, K., Zhao, Y., & Li, Z. (2013). Using Bacillus amyloliquefaciens for remediation of aquaculture water. SpringerPlus, 2(1), 119. doi:10.1186/2193-1801-2-119
Xu, Z., Te, S. H., He, Y., & Gin, K. Y.-H. (2018). The characteristics and dynamics of cyanobacteria–heterotrophic bacteria between two estuarine reservoirs–tropical versus sub-tropical regions. Frontiers in Microbiology, 9, 2531. doi:10.3389/fmicb.2018.02531
Yin, X. L., Zhuang, X. Q., Liao, M. Q., Huang, L., Cui, Q. Q., Liu, C., . . . Wang, W. N. (2022). Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) hepatopancreas challenged by Vibrio alginolyticus reveals lipid metabolic disturbance. Fish & Shellfish Immunology, 123, 238-247. doi:10.1016/j.fsi.2022.03.004
Yu, W. N., Wu, J. H., Zhang, J. J., Yang, W., Chen, J., & Xiong, J. B. (2018). A meta-analysis reveals universal gut bacterial signatures for diagnosing the incidence of shrimp disease. FEMS Microbiology Ecology, 94(10), 10. doi:10.1093/femsec/fiy147
Zhang, R.-C., Chen, C., Xu, X.-J., Lee, D.-J., & Ren, N.-Q. (2022). The interaction between Pseudomonas C27 and Thiobacillus denitrificans in the integrated autotrophic and heterotrophic denitrification process. Science of The Total Environment, 811, 152360. doi:10.1016/j.scitotenv.2021.152360
Zhang, X., Fu, L., Deng, B., Liang, Q., Zheng, J., Sun, J., . . . Li, W. (2013). Bacillus subtilis SC02 supplementation causes alterations of the microbial diversity in grass carp water. World Journal of Microbiology and Biotechnology, 29(9), 1645-1653. doi:10.1007/s11274-013-1327-z
Zhang, X. C., Li, X. H., Lu, J. Q., Qiu, Q. F., Chen, J., & Xiong, J. B. (2021). Quantifying the importance of external and internal sources to the gut microbiota in juvenile and adult shrimp. Aquaculture, 531, 9. doi:10.1016/j.aquaculture.2020.735910
Zhang, X. L., Li, X. J., Zhao, X. D., Chen, X. D., Zhou, B., Weng, L. P., & Li, Y. T. (2020). Bioelectric field accelerates the conversion of carbon and nitrogen in soil bioelectrochemical systems. Journal of Hazardous Materials, 388. doi:10.1016/j.jhazmat.2019.121790
Zhou, L., Qu, Y., Qin, J. G., Chen, L., Han, F., & Li, E. (2021). Deep insight into bacterial community characterization and relationship in the pond water, sediment and the gut of shrimp (Penaeus japonicus). Aquaculture, 539, 736658. doi:10.1016/j.aquaculture.2021.736658
Zhou, Q. L., Li, K. M., Jun, X., & Bo, L. (2009). Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresource Technology, 100(16), 3780-3786. doi:10.1016/j.biortech.2008.12.037
Zhou, X. X., Wang, Y. B., & Li, W. F. (2009). Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities.Aquaculture, 287(3-4), 349-353. doi:10.1016/j.aquaculture.2008.10.046
Zink, I. C., Benetti, D. D., Douillet, P. A., Margulies, D., & Scholey, V. P. (2011). Improvement of Water Chemistry with Bacillus Probiotics Inclusion during Simulated Transport of Yellowfin Tuna Yolk Sac Larvae. North American Journal of Aquaculture, 73(1), 42-48. doi:10.1080/15222055.2011.544622
Zokaeifar, H., Babaei, N., Saad, C. R., Kamarudin, M. S., Sijam, K., & Balcazar, J. L. (2014). Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol, 36(1), 68-74. doi:10.1016/j.fsi.2013.10.007
Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van 'T Riet, K. (1990). Modeling of the Bacterial Growth Curve. Applied and environmental microbiology, 56(6), 1875-1881. doi:10.1128/aem.56.6.1875-1881.1990
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87572-
dc.description.abstract清淤機可有效地移除水中有機物和降低有毒物質含量。但過去清淤機的研究多著重於水體物理及化學指標,而忽略了微生物這個養殖重要因子。微生物已被證實是維持養殖環境穩定及提高養殖效率的重要因素。因此,本研究旨在探討清淤機對微生物的影響,並以此為基礎改善清淤機的效果。研究中藉由次世代定序,分析養殖池水、蝦腸道和底泥的微生物相。結果顯示,在所有樣本中占比最高的菌門皆相同。但在底泥樣本中,所涵蓋的門相對於池水和腸道是較豐富的。清淤機和沒有清淤機組相比,在Alpha多樣性雖沒有顯著差異,但在Beta多樣性則有顯著差異。在LEfSe分析中,清淤機組中跟病原菌有關的菌屬,如:Mycobacterium、Elizabethkingia及Shewanella豐度提高,而與水質有關的菌屬,如:Bacillus、Salinimicrobium及Salinarimonas豐度則下降。同樣地,在代謝功能途徑預測上,清淤機組和非清淤機組比較,在感染性疾病豐度較高,而跟氮、硫代謝相關的豐度則下降。因此為了減低清淤機可能的不良影響,將具氨代謝潛力的益生菌,以1x106 CFU/ml濃度加到試驗動物水體中,以篩選潛在有益此系統的益生菌。結果不論是在半淡鹹水或是海水養殖條件下,B. pumilus D5和T. denitrificans皆能提升水中氨分解效率。綜合上述,在白蝦養殖池中使用清淤機,確實會影響微生物相組成和功能。因此,若在養蝦池中使用清淤機,可能需有額外的微生物相關介入,而B. pumilus D5和T. denitrificans是可能改善此系統的候選益生菌。zh_TW
dc.description.abstractThe sludge removing system can effectively remove organic elements, thereby reducing the content of toxic substances in shrimp culture ponds. However, the studies related to sludge removing system mostly focused on the impacts in physical and chemical parameters, while ignored to consider microorganisms that were the crucial factor in maintaining a stable farming environment and improving farming efficiency in aquaculture. Therefore, this study aims to investigate the effect of sludge removing system on microorganisms and further to improve the effect of sludge removing system based on the results. In this study, the microbiota in water, shrimp gut, and sediment samples from both desilting and non-desilting ponds were analyzed by next-generation sequencing. The results showed that the phyla with the highest proportion were the same in all samples. There was no significant difference in alpha diversity but a significant difference in beta diversity between the groups with and without sludge removing system. In the LEfSe analysis, pathogenic bacteria, such as Mycobacterium, Elizabethkingia , and Shewanella were more in the sludge removing system group. Moreover, the bacteria related to nutrient metabolism, such as Bacillus, Salinimicrobium, and Salinarimonas were more in the non-sludge removing system group. The sludge removing system group had higher level of functions related to infectious diseases but lower level of functions related to metabolisms of nitrogen and sulfate. In order to reduce the negative effects of sludge removing system, potential probiotics for the system were selected by evaluating the ability of bacteria in ammonia decomposition through adding bacteria in the water with shrimp at 1x106 CFU/ml. The results reveal that B. pumilus D5 and T. denitrificans increased the efficiency of ammonia decomposition in both seawater and brackish water. In conclusion, using sludge removing system indeed influenced the composition and functions of microbiota in white shrimp farming ponds. Thus, a bacteria-related intervention should be applied when using sludge removing system, B. pumilus D5 and T. denitrificans could be the potential probiotics for optimizing the system.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:08:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:08:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xii
第一章 前言 1
1.1 南美白對蝦(Penaeus vannamei) 1
1.1.1 南美白對蝦養殖概況 1
1.1.2 南美白對蝦養殖之水質條件 1
1.1.3 氨對南美白對蝦之影響 2
1.2 清淤機 2
1.2.1 清淤機的介紹和功能 2
1.2.2 有無清淤機的菌相組成 3
1.3 微生物相 3
1.3.1 微生物相的介紹 3
1.3.2 微生物相的重要性及功能 4
1.3.3 分解者的角色 4
1.3.4 溶氧量變化 4
1.3.5 抗病能力 5
1.3.6 生理功能 5
1.4 益生菌 5
1.5 水產益生菌 6
1.5.1 水產益生菌使用方式 7
1.5.2 芽孢桿菌的介紹 8
1.5.3 芽孢桿菌在水產養殖的應用 8
1.5.4 芽孢桿菌改善水質 8
1.5.5 乳酸菌的介紹 9
1.5.6 乳酸菌在水產養殖的應用 9
1.5.7 乳酸菌改善水質 9
1.6 脫氮硫桿菌(Thiobacillus denitrificans)的介紹 10
1.6.1 脫氮硫桿菌的應用 10
1.7 光合細菌 (Photosynthetic bacteria, PSB) 的介紹 11
1.7.1 光合細菌的應用 11
第二章 研究目的 12
第三章 材料方法 13
3.1 試驗地點 13
3.2 樣本取得 13
3.3細菌DNA萃取和次世代定序分析 13
3.4宏基因組序列分析 14
3.4.1上傳序列檔案和Quality control 14
3.4.2 細菌分類階層 (Taxonomy analysis) 14
3.4.3 熱圖(Heat map) 14
3.4.4 稀釋曲線圖(Rarefaction curve)和Alpha 多樣性 14
3.4.5 Beta多樣性 14
3.4.6 分類差異豐度分析 (Taxonomy differential abundance analysis) 15
3.4.7 微生物相的功能性預測 (Microbiome function prediction) 15
3.4.8 斯皮爾曼等級相關係數 (Spearman’s correlation) 15
3.4.9 冗餘分析 (Redundancy Analysis, RDA) 15
3.5 評估微生物特性 15
3.5.1 菌株來源 15
3.5.2 培養基選擇和配置 16
3.5.3 冷凍保存 16
3.5.4 細菌鑑定 16
3.5.5 成長曲線測定 16
3.5.8 溶血性試驗 17
3.5.9總氨試驗 17
3.6動物實驗 17
3.6.1海水養殖試驗 17
3.6.2半淡鹹水養殖試驗 18
3.7統計分析 18
第四章 實驗結果 19
4.1 白蝦養殖池水、蝦腸道和底泥的菌相組成 19
4.2 在門的分類階層中白蝦養殖池水、蝦腸道和底泥的菌相組成 19
4.3 在門分類階層中有清淤和沒有清淤間的比較 20
4.4 有益菌屬和病原菌屬在養殖池水、蝦腸道和底泥的相對豐度 21
4.5 養殖池水、蝦腸道和底泥菌相的Alpha diversity 21
4.6 白蝦養殖池水、蝦腸道和底泥菌相的PCoA分析 21
4.7 LEfSe (Linear discriminant analysis effect size) 22
4.8 有清淤和沒有清淤組別功能性預測 22
4.9 白蝦養殖試驗池的水質變化 23
4.10 白蝦養殖試驗池的成長和死亡情形 23
4.11菌群和不同環境因子間之相關性分析 23
4.12試驗菌株之成長曲線 24
4.13不同來源微生物之溶血性測試 24
4.14不同來源微生物分解總氨能力 24
4.15動物實驗 25
第五章 討論 26
5.1 探討有清淤和沒有清淤的白蝦養殖菌相組成和功能 26
5.2 探討有益菌屬和病原菌屬在有清淤和沒有清淤組別之組成 28
5.3 比較有清淤和沒有清淤的微生物多樣性 29
5.4 比較有清淤和沒有清淤間的關鍵菌種 29
5.5 有清淤和沒有清淤在代謝途徑上的功能性預測 33
5.6 有無使用清淤機對白蝦養殖的水質、成長和死亡之影響 35
5.7了解微生物相與不同環境因子間的相關性 36
5.8 益生菌成長曲線 37
5.9 溶血性測試 37
5.10 候選益生菌分解總氨能力 38
5.11 氨氮動物實驗 39
第六章 結論 41
參考文獻 42
結果圖/表 65
-
dc.language.isozh_TW-
dc.subject益生菌zh_TW
dc.subject氨氮zh_TW
dc.subject微生物相zh_TW
dc.subject南美白對蝦zh_TW
dc.subject清淤機zh_TW
dc.subject次世代定序zh_TW
dc.subjectSludge removing systemen
dc.subjectNext generation sequencingen
dc.subjectAmmoniaen
dc.subjectMicrobiotaen
dc.subjectPenaeus vannameien
dc.subjectProbioticsen
dc.title探討清淤機對南美白對蝦養殖之微生物相影響與益生菌優化策略zh_TW
dc.titleInvestigating effects of the sludge removing system on microbiota and the probiotic-related optimizing strategy in Litopenaeus vannamei cultureen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee韓玉山;朱元南;蓋玉軒;賴亮全zh_TW
dc.contributor.oralexamcommitteeYu-San Han;Yuan-Nan Chu;Yu-Hsuan Kai;Liang-Chuan Laien
dc.subject.keyword南美白對蝦,清淤機,微生物相,次世代定序,氨氮,益生菌,zh_TW
dc.subject.keywordPenaeus vannamei,Sludge removing system,Microbiota,Next generation sequencing,Ammonia,Probiotics,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202300507-
dc.rights.note未授權-
dc.date.accepted2023-02-16-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept漁業科學研究所-
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
4.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved