Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87563
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李弘文zh_TW
dc.contributor.advisorHung-Wen Lien
dc.contributor.author梁宗仁zh_TW
dc.contributor.authorChong-Ren Neohen
dc.date.accessioned2023-06-20T16:04:49Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2022-
dc.date.submitted2023-02-18-
dc.identifier.citationMeyne, J., Ratliff, R. L. & Moyzis, R. K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proceedings of the National Academy of Sciences 86, 7049–7053 (1989).
Makarov, V. L., Hirose, Y. & Langmore, J. P. Long G Tails at Both Ends ofHuman Chromosomes Suggest a C Strand Degradation Mechanism for Telomere Shortening. Cell 88, 657–666 (1997).
Chai, W., Shay, J. W. &Wright, W. E. Human Telomeres Maintain Their Overhang Length at Senescence. Molecular and Cellular Biology 25, 2158–2168 (2005).
Olovnikov, A. M. A theory of marginotomy: The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal ofTheoretical Biology 41, 181–190 (1973).
Déjardin, J. & Kingston, R. E. Purification ofProteins Associated with Specific Genomic Loci. Cell 136, 175–186 (2009).
Grolimund, L. et al. A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nature Communications 4, 2848 (2013).
Palm, W. & de Lange, T. How Shelterin Protects Mammalian Telomeres. Annual Review ofGenetics 42, 301–334 (2008).
O’Sullivan, R. J. &Karlseder, J. Telomeres: protecting chromosomes against genome instability. Nature Reviews Molecular Cell Biology 11, 171–181 (2010).
Victorelli, S. & Passos, J. F. Telomeres and Cell Senescence - Size Matters Not. EBioMedicine 21, 14–20 (2017).
Takai, H., Smogorzewska, A. & de Lange, T. DNA Damage Foci at Dysfunctional Telomeres. Current Biology 13, 1549–1556 (2003).
Hug, N. & Lingner, J. Telomere length homeostasis. Chromosoma 115, 413–425 (2006).
Blackburn, E. H., Epel, E. S. & Lin, J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193–1198 (2015).
Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric Repeat ContainingRNAandRNA Surveillance Factors at Mammalian Chromosome Ends. Science 318, 798–801 (2007).
Schoeftner, S. & Blasco, M. A. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nature Cell Biology 10,228–236 (2008).
Arora, R. et al. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomeremaintenance in ALT tumour cells. Nature Communications 5, 5220 (2014).
Vohhodina, J. et al. BRCA1 binds TERRARNAand suppresses R-Loop-based telom-eric DNA damage. Nature Communications 12, 3542 (2021).
Henderson, E., Hardin, C. C., Walk, S. K., Tinoco, I. & Blackburn, E. H. Telom-eric DNA oligonucleotides form novel intramolecular structures containing guanine·guanine base pairs. Cell 51, 899–908 (1987).
Yang, D. G-Quadruplex DNA and RNA. Methods in Molecular Biology 2035, 1–24(2019).
Hardin, C. C., Watson, T., Corregan, M. & Bailey, C. Cation-dependent transitionbetween the quadruplex and Watson-Crick hairpin forms of d(CGCG3GCG). Bio-chemistry 31, 833–841 (1992).
Bhattacharyya, D., Mirihana Arachchilage, G.&Basu, S. Metal Cations in G-QuadruplexFolding and Stability. Frontiers in Chemistry 4, 38 (2016).
Spiegel, J., Adhikari, S. & Balasubramanian, S. The Structure and Function ofDNAG-Quadruplexes. Trends in Chemistry 2, 123–136 (2020).
Varshney, D., Spiegel, J., Zyner, K., Tannahill, D. & Balasubramanian, S. The regulation and functions ofDNA and RNA G-quadruplexes. Nature Reviews Molecular Cell Biology 21, 459–474 (2020).
Zhang, S. et al. Real-time monitoring ofDNA G-quadruplexes in living cells with a small-molecule fluorescent probe. Nucleic Acids Research 46, 7522–7532 (2018).
Summers, P. A. et al. Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy. Nature Communications 12, 162 (2021).
Ambrus, A. et al. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Research 34, 2723–2735 (2006).
Xiao, C. D., Shibata, T., Yamamoto, Y. & Xu, Y. An intramolecular antiparallel G-quadruplex formed by human telomere RNA. Chemical Communications 54, 3944–3946 (2018).
Fouquerel, E., Parikh, D. & Opresko, P. DNA damage processing at telomeres: The ends justify the means. DNA Repair 44, 159–168 (2016).
Jimeno, S. et al. The Helicase PIF1 Facilitates Resection over Sequences Prone to Forming G4 Structures. Cell Reports 24, 3262–3273.e4 (2018).
Kim, N. W. et al. Specific Association ofHuman Telomerase Activity with Immortal Cells and Cancer. Science 266, 2011–2015 (1994).
Barthel, F. P. et al. Systematic analysis oftelomere length and somatic alterations in 31 cancer types. Nature Genetics 49, 349–357 (2017).
Zhang, J.-M. & Zou, L. Alternative lengthening oftelomeres: from molecular mechanisms to therapeutic outlooks. Cell & Bioscience 10, 30 (2020).
Yu, T.-Y., Kao, Y.-w. & Lin, J.-J. Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase. Proceedings ofthe National Academy ofSciences 111, 3377–3382 (2014).
Zhang, J.-M., Yadav, T., Ouyang, J., Lan, L. & Zou, L. Alternative Lengthening of Telomeres through Two Distinct Break-Induced Replication Pathways. Cell Reports 26, 955–968.e3 (2019).
Min, J., Wright, W. E. & Shay, J. W. Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Genes & Development 33, 814–827 (2019).
Sobinoff, A. P. et al. BLMand SLX4 play opposing roles in recombination-dependent replication at human telomeres. The EMBO Journal 36, 2907–2919 (2017).
Feretzaki, M. et al. RAD51-dependent recruitment ofTERRA lncRNA to telomeres through R-loops. Nature 587, 303–308 (2020).
Fernandes, R. V., Feretzaki, M. & Lingner, J. The makings of TERRA R-loops at chromosome ends. Cell Cycle 20, 1745–1759 (2021).
Hwang, H. et al. Telomeric overhang length determines structural dynamics and accessibility to telomerase and ALT-associated proteins. Structure 22, 842–53 (2014).
Green, N. M. in Methods in Enzymology 418–424 (1970).
Green, N. M. in Advances in Protein Chemistry 85–133 (1975).
Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. & Salemme, F. R. Structural Origins of High-Affinity Biotin Binding to Streptavidin. Science 243, 85–88 (1989).
Brisco, M. J. & Morley, A. A. Quantification ofRNA integrity and its use for measurement of transcript number. Nucleic Acids Research 40, e144 (2012).
Gallego Romero, I., Pai, A. A., Tung, J. & Gilad, Y. RNA-seq: impact of RNA degradation on transcript quantification. BMC Biology 12, 42 (2014).
Zhang, K., Hodge, J., Chatterjee, A., Moon, T. S. & Parker, K. M. Duplex Structure of Double-Stranded RNA Provides Stability against Hydrolysis Relative to Single-Stranded RNA. Environmental Science & Technology 55, 8045–8053 (2021).
Bock, R. M. in Nucleic Acids, Part A 224–228 (1967).
Oivanen, M., Kuusela, S. & Lonnberg, H. Kinetics and Mechanisms for the Cleavage and Isomerization of the Phosphodiester Bonds ofRNA by Bronsted Acids and Bases. Chemical Reviews 98, 961–990 (1998).
Velikyan, I., Acharya, S., Trifonova, A., Foldesi, A.&Chattopadhyaya, J. The pK(a)’s of2’-hydroxyl group in nucleosides and nucleotides. Journal ofthe American Chemical Society 123, 2893–4 (2001).
Iler, R. K. in The Chemistry ofSilica: Solubility, Polymerization, ColloidandSurface Properties and Biochemistry ofSilica 622–729 (1967).
Rasnik, I., Myong, S., Cheng, W., Lohman, T. M.&Ha, T. DNA-binding Orientation and Domain Conformation of the E.coli Rep Helicase Monomer Bound to a Partial Duplex Junction: Single-molecule Studies ofFluorescently Labeled Enzymes. Journal ofMolecular Biology 336, 395–408 (2004).
Hua, B. et al. An improved surface passivation method for single-molecule studies. Nature Methods 11, 1233–6 (2014).
Visnapuu, M. L., Duzdevich, D. & Greene, E. C. The importance of surfaces in single-molecule bioscience. Molecular BioSystems 4, 394–403 (2008).
Ha, T. et al. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638–641 (2002).
Gidi, Y., Bayram, S., Ablenas, C. J., Blum, A. S.&Cosa, G. Efficient One-Step PEG-Silane Passivation ofGlass Surfaces for Single-Molecule Fluorescence Studies. ACS Applied Materials & Interfaces 10, 39505–39511 (2018).
Joo, C. & Ha, T. Preparing sample chambers for single-molecule FRET. Cold Spring Harbor Protocols 2012, 1104–8 (2012).
Chandradoss, S. D. et al. Surface passivation for single-molecule protein studies. Journal ofVisualized Experiments (2014).
Paul, T. & Myong, S. Protocol for generation and regeneration of PEG-passivated slides for single-molecule measurements. STAR Protocols 3, 101152 (2022).
Bashir, S. et al. A simple chemical approach to regenerating the strength ofthermally damaged glass fibre. Composites Part A: Applied Science and Manufacturing 102, 76–87 (2017).
Zhang, X. X. & Raskin, J. P. Low-temperature wafer bonding optimal O-2 plasma surface pretreatment time. Electrochemical and Solid State Letters 7, G172–G174 (2004).
Nagashio, K., Yamashita, T., Nishimura, T., Kita, K. & Toriumi, A. Electrical transport properties of graphene on SiO2 with specific surface structures. Journal of Applied Physics 110 (2011).
Gupta, V., Madaan, N., Jensen, D. S., Kunzler, S. C. & Linford, M. R. Hydrogen plasma treatment of silicon dioxide for improved silane deposition. Langmuir 29, 3604–9 (2013).
Alam, A. U., Howlader, M. M. R. & Deen, M. J. The effects of oxygen plasma and humidity on surface roughness, water contact angle and hardness of silicon, silicon dioxide and glass. Journal ofMicromechanics and Microengineering 24 (2014).
Gandhi, M. et al. GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Current Biology 20, 861–7 (2010).
Ma, C. J., Steinfeld, J. B.&Greene, E. C. in Methods in Enzymology 193–219 (2017).
Stömmer, P. et al. A synthetic tubular molecular transport system. Nature Communications 12, 4393 (2021).
Friedman, L. J., Chung, J. & Gelles, J. Viewing Dynamic Assembly of Molecular Complexes by Multi-Wavelength Single-Molecule Fluorescence. Biophysical Journal 91, 1023–1031 (2006).
Larson, J. et al. Design and construction of a multiwavelength, micromirror total internal reflectance fluorescence microscope. Nature Protocols 9, 2317–28 (2014).
Gupta, S., Friedman, L. J., Gelles, J. & Bell, S. P. A helicase-tethered ORC flip enables bidirectional helicase loading. eLife 10, e74282 (2021).
Kruger, A. C. & Birkedal, V. Single molecule FRET data analysis procedures for FRET efficiency determination: probing the conformations of nucleic acid structures. Methods 64, 36–42 (2013).
Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nature Methods 5, 507–16 (2008).
Algar, W. R., Hildebrandt, N., Vogel, S. S. & Medintz, I. L. FRET as a biomolecular research tool - understanding its potential while avoiding pitfalls. Nature Methods 16, 815–829 (2019).
Pati, A. K. et al. Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. Proceedings of the National Academy ofSciences 117, 24305–24315 (2020).
Zheng, Q. et al. Ultra-stable organic fluorophores for single-molecule research. Chemical Society Reviews 43, 1044–56 (2014).
Shi, X., Lim, J. & Ha, T. Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe. Analytical Chemistry 82, 6132–8 (2010).
Cordes, T., Vogelsang, J. &Tinnefeld, P. On the mechanism ofTrolox as antiblinking and antibleaching reagent. Journal ofthe American Chemical Society 131, 5018–9 (2009).
Lee, T.-Y., Li, Y.-C., Lin, M.-G., Hsiao, C.-D. & Li, H.-W. Single-molecule binding characterization ofprimosomal protein PriA involved in replication restart. Physical Chemistry Chemical Physics 23, 13745–13751 (24 2021).
Swoboda, M. et al. Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6, 6364–9 (2012).
Preus, S., Hildebrandt, L. L. & Birkedal, V. Optimal Background Estimators in Single-Molecule FRET Microscopy. Biophysical Journal 111, 1278–1286 (2016).
Murphy, M., Rasnik, I., Cheng, W., Lohman, T. M.&Ha, T. Probing Single-Stranded DNA Conformational Flexibility Using Fluorescence Spectroscopy. Biophysical Journal 86, 2530–2537 (2004).
Zhang, Z., Dai, J., Veliath, E., Jones, R. A. & Yang, D. Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Research 38, 1009–1021 (2009).
Martadinata, H. & Phan, A. T. Structure of Propeller-Type Parallel-Stranded RNA G-Quadruplexes, Formed by Human Telomeric RNA Sequences in K+ Solution. Journal ofthe American Chemical Society 131, 2570–2578 (2009).
Jena, P. V. et al. G-quadruplex DNA bound by a synthetic ligand is highly dynamic. Journal ofthe American Chemical Society 131, 12522–3 (2009).
Mitra, J. et al. Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. Proceedings ofthe National Academy ofSciences 116, 8350–8359 (2019).
Špírek, M. et al. Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state. Nucleic Acids Research 46, 3967– 3980 (2018).
Ristic, D. et al. Human Rad51 filaments on double- and single-stranded DNA: correlating regular and irregular forms with recombination function. Nucleic Acids Research 33, 3292–3302 (2005).
Koirala, D. et al. Intramolecular folding in three tandem guanine repeats of human telomeric DNA. Chemical Communications 48, 2006–8 (2012).
Hill, A. V. The Combinations ofHaemoglobin with Oxygen and with Carbon Monoxide. I. Biochemical Journal 7, 471–480 (1913).
Stefan, M. I. & Le Novere, N. Cooperative binding. PLoS Computational Biology 9, e1003106 (2013).
Goutelle, S. et al. The Hill equation: a review of its capabilities in pharmacological modelling. Fundamental & Clinical Pharmacology 22, 633–648 (2008).
Weiss, J. N. The Hill equation revisited: uses and misuses. The FASEB Journal 11, 835–41 (1997).
Jayathilaka, K. et al. A chemical compound that stimulates the human homologous recombination protein RAD51. Proceedings of the National Academy of Sciences 105, 15848–15853 (2008).
Eggeling, C. et al. Analysis ofPhotobleaching in Single-Molecule Multicolor Excitation and Förster Resonance Energy Transfer Measurements. The Journal ofPhysical Chemistry A 110, 2979–2995 (2006).
Zhang, H. & Guo, P. Single molecule photobleaching (SMPB) technology for counting ofRNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods 67, 169–176 (2014).
Xu, J. et al. Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nature Structural & Molecular Biology 24, 40– 46 (2017).
Bugreev, D. V. & Mazin, A. V. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proceedings ofthe National Academy ofSciences 101, 9988–9993 (2004).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87563-
dc.description.abstract人類的端粒 (Telomere) 不僅可以保護染色體的末端,其序列的長度也與細胞老化息息相關。在細胞中有不少蛋白可與 Telomere 作用並形成特殊結構,但當其 以單股的形式裸露時也會形成特殊的 G-quadruplex (G4) 二級結構。雖然目前已知 細胞可以通過端粒酶 (Telomerase) 來延長端粒的長度,避開由DNA複製所造成的 端粒縮短問題,但有文獻指出在不具有端粒酶表達活性的細胞株中發現端粒也有 被延長的現象,更有不少的文獻指出端粒 RNA (TERRA) 有可能參與其中,且有 可能是通過人類 RAD51 蛋白 (hRAD51) 協助完成端粒的延長。我們奠基在前人的 研究成果上,進一步以單分子螢光共振能量轉移 (smFRET) 與單分子螢光共位實 驗來探討 hRAD51 與 Telomere 以及TERRA的相互作用。我們發現,G4 結構可以 很輕易的在 Telomere 以及 TERRA 上形成,且 hRAD51 非常具有特異性的只結合 到 TERRA 的 G4 上而不結合到 Telomere 的 G4 上,藉此造成了親和力上的差別。 特別的是,hRAD51 雖然可以結合到 TERRA G4 上,但卻不是以延伸型核蛋白絲 的方式結合。進一步分析我們的實驗數據,我們發現約有 6 至 7 個 hRAD51 可以 結合到 TERRA G4 上。最後,我們的實驗結果說明,這些穩定結合在 TERRA G4 上的 hRAD51 並不具有捕捉雙股DNA的能力。zh_TW
dc.description.abstractHuman telomere not only protects the chromosome’s end, but its length also related to cell senescence. When telomere is exposed in single-stranded form, it forms into a special secondary structure, G-quadruplex (G4). Although telomere lengthening through telomerase has been well known, recent studies observed telomere lengthening events also occur in telomerase deletion cells. Some studies have suggested that TERRA might be involved in telomere lengthening possibly through human RAD51 protein (hRAD51). Our study base on previous results and steps one step further by using single-molecule techniques to study the interaction between telomere, TERRA, and hRAD51. Our results showed that G4 structure is readily formed on both telomere and TERRA. Surprisingly, we found that hRAD51 specifically bind to TERRA G4 but not telomere G4 without forming extended nucleoprotein filament. Through analysis, we assume there is about 6 to 7 hRAD51 bind to single TERRA G4. Lastly, our results showed that hRAD51 that bound on TERRA G4 didn’t have effective duplex capture ability.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:04:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:04:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 ix
第一章 緒論 1
1-1 文獻回顧 1
1-2 研究動機 4
第二章 實驗設計與方法 5
2-1 蛋白純化與保存 5
2-2 DNA與RNA基質設計 6
2-3 溶液成分與配方 11
2-4 微流道玻片製備 13
2-5 單分子螢光實驗 17
2-6 實驗流程 22
2-7 數據分析 26
第三章 結果討論 28
3-1 hRAD51 結合到 TERRA G4 但卻不形成延伸型核蛋白絲 29
3-2 hRAD51 在 Ca2+ 離子的幫助下可以穩定的結合在 TERRA G4 37
3-3 TERRA G4 可以結合 6 或 7 個 hRAD51 39
3-4 結合在 TERRA G4 上的 hRAD51 不具有捕捉雙股DNA的能力 51
vi第四章 實驗總結與未來展望 54
4-1 實驗總結 54
4-2 未來展望 57
參考文獻 58
附錄一—藥品清單 65
-
dc.language.isozh_TW-
dc.title利用單分子螢光技術探討人類RAD51蛋白與端粒RNA的相互作用zh_TW
dc.titleStudy the interaction between human RAD51 and telomeric RNA by single molecule fluorescence techniquesen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee冀宏源;林敬哲zh_TW
dc.contributor.oralexamcommitteeHung-Yuan Chi;Jing-Jer Linen
dc.subject.keyword人類端粒,端粒RNA,G-四聯體,RAD51,單分子螢光共振能量轉移,單分子螢光顯微鏡,zh_TW
dc.subject.keywordTelomere,TERRA,G-quadruplex,RAD51,Single molecule FRET,Single molecule fluorescence microscopy,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202300495-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-18-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2028-02-18-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  目前未授權公開取用
13.35 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved