Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87542
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor隋中興zh_TW
dc.contributor.advisorChung-Hsiung Suien
dc.contributor.author王冠筠zh_TW
dc.contributor.authorKuan-Yun Wangen
dc.date.accessioned2023-06-14T16:14:47Z-
dc.date.available2025-02-13-
dc.date.copyright2023-06-14-
dc.date.issued2023-
dc.date.submitted2023-02-15-
dc.identifier.citationAbdillah, M. R., Y. Kanno, T. Iwasaki, and J. Matsumoto, 2021: Cold Surge Pathways in East Asia and Their Tropical Impacts. J Clim, 34, 157–170, https://doi.org/10.1175/JCLI-D-20-0552.1.
Atkinson, B. W., and J. Wu Zhang, 1996: Mesoscale shallow convection in the atmosphere. Reviews of Geophysics, 34, 403–431, https://doi.org/10.1029/96RG02623.
Austin, R. T., and N. B. Wood, 2018: 2B Radar-only Cloud Water Content (2B-CWC-RO) Process Description and Interface Control Document, Product Version P1 R05. NASA JPL CloudSat project document revision 0., 51 pp, https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2b-cwc-ro/2B-CWC-RO_PDICD.P1_R05.rev0_.pdf.
——, A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J Geophys Res, 114, D00A23, https://doi.org/10.1029/2008JD010049.
Back, L. E., and C. S. Bretherton, 2009a: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J Clim, 22, 4182–4196, https://doi.org/10.1175/2009JCLI2392.1.
——, and ——, 2009b: A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J Clim, 22, 6477–6497, https://doi.org/10.1175/2009JCLI2393.1.
Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain Reevaporation, Boundary Layer–Convection Interactions, and Pacific Rainfall Patterns in an AGCM. J Atmos Sci, 63, 3383–3403, https://doi.org/10.1175/JAS3791.1.
Barker, H. W., 2008: Overlap of fractional cloud for radiation calculations in GCMs: A global analysis using CloudSat and CALIPSO data. J Geophys Res, 113, D00A01, https://doi.org/10.1029/2007JD009677
Brooks, I. M., 2003: Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles. J Atmos Ocean Technol, 20, 1092–1105, https://doi.org/10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2.
Chang, C.-P., and K. M. Lau, 1982: Short-Term Planetary-Scale Interactions over the Tropics and Midlatitudes during Northern Winter. Part I: Contrasts between Active and Inactive Periods. Mon Weather Rev, 110, 933–946, https://doi.org/10.1175/1520-0493(1982)110<0933:STPSIO>2.0.CO;2.
——, P. A. Harr, and H.-J. Chen, 2005: Synoptic Disturbances over the Equatorial South China Sea and Western Maritime Continent during Boreal Winter. Mon Weather Rev, 133, 489–503, https://doi.org/10.1175/MWR-2868.1.
——, Z. Wang, and H. Hendon, 2006: The Asian winter monsoon. The Asian Monsoon, Springer Praxis Books. Springer Berlin Heidelberg, 89–127.
Chen, Y.-L., C.-H. Sui, C.-P. Chang, and K.-C. Tseng, 2021: Effect of the MJO on East Asian winter rainfall as revealed by an SVD analysis. J Clim, 1–54, https://doi.org/10.1175/JCLI-D-20-0941.1.
Chien, F.-C., J.-S. Hong, and Y.-H. Kuo, 2019: The marine boundary layer height over the western North Pacific based on GPS radio occultation, island soundings, and numerical models. Sensors, 19, 155. https://doi.org/10.3390/s19010155.
Chou, M.-D., Suarez, M.J., 1994: An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models. Technical Report, 85 pp. Available from. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.4850.
——, ——, ——, ——, 1999: A solar radiation parameterization for atmospheric studies. NASA Technical Memorandum No. 104606, Vol. 15, 40 pp. Available from. https://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.
Cohn, S. A., and W. M. Angevine, 2000: Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars. Journal of Applied Meteorology, 39, 1233–1247, https://doi.org/10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2.
Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. https://doi.org/10.24381/cds.adbb2d47.
Davis, K. J., N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, 2000: An Objective Method for Deriving Atmospheric Structure from Airborne Lidar Observations. J Atmos Ocean Technol, 17, 1455–1468, https://doi.org/10.1175/1520-0426(2000)017<1455:AOMFDA>2.0.CO;2.
van der Dussen, J. J., and Coauthors, 2013: The GASS/EUCLIPSE model intercomparison of the stratocumulus transition as observed during ASTEX: LES results. J Adv Model Earth Syst, 5, 483–499, https://doi.org/10.1002/jame.20033.
Garratt, J., 1994: Review: the atmospheric boundary layer. Earth Sci Rev, 37, 89–134, https://doi.org/10.1016/0012-8252(94)90026-4.
Global Modeling and Assimilation Office (GMAO), 2015: MERRA2 tavg3_3d_rad_Nv: 3D Assimilation, Radiation Diagnostics, 3-Hourly (Model-Level, 0.625x0.5L42), version 5.12.4. Greenbelt, MD, USA: Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC), https://doi.org/10.5067/7GFQKO1T43RW.
Heffter JL, 1980: Transport Layer Depth Calculations. Second Joint Conference on Applications of Air Pollution Meteorology, 24–27 March 1980, New Orleans, Louisiana, https://doi.org/10.1175/1520-0477-61.1.65.
Henderson, D. S., T. L’Ecuyer, G. Stephens, P. Partain, and M. Sekiguchi, 2013: A Multisensor Perspective on the Radiative Impacts of Clouds and Aerosols. J Appl Meteorol Climatol, 52, 853–871, https://doi.org/10.1175/JAMC-D-12-025.1.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N., 2018: ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47 [Accessed: 1st March 2020].
——, ——, ——, Horányi, A., Sabater, J.M., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C. and Dee, D, 2019: Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, 17–24.
——, and Coauthors, 2020: The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, https://doi.org/10.1002/qj.3803.
Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull Am Meteorol Soc, 95, 701–722, https://doi.org/10.1175/BAMS-D-13-00164.1.
Houze Jr, R. A., 2014: Cloud dynamics (2nd ed.). Elsevier/Academic press.
Huffman, G. J. , E. F. S. D. T. B. E. J. N. J. T., 2019: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06. Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/GPM/IMERG/3B-HH/06.
——, Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E.J., Sorooshian, S., Tan, J., Xie, P., 2019a: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). In: Algorithm Theoretical Basis Document (ATBD). NASA/GSFC, Greenbelt, MD, USA.
Iwasaki, T., T. Shoji, Y. Kanno, M. Sawada, M. Ujiie, and K. Takaya, 2014: Isentropic Analysis of Polar Cold Airmass Streams in the Northern Hemispheric Winter. J Atmos Sci, 71, 2230–2243, https://doi.org/10.1175/JAS-D-13-058.1.
Johnson, R. H., P. E. Ciesielski, and J. A. Cotturone, 2001: Multiscale Variability of the Atmospheric Mixed Layer over the Western Pacific Warm Pool. J Atmos Sci, 58, 2729–2750, https://doi.org/10.1175/1520-0469(2001)058<2729:MVOTAM>2.0.CO;2.
Knapp, K. R., A. H. Young, H. Semunegus, A. K. Inamdar, and W. Hankins, 2021: Adjusting ISCCP Cloud Detection to Increase Consistency of Cloud Amount and Reduce Artifacts. J Atmos Ocean Technol, 38, 155–165, https://doi.org/10.1175/JTECH-D-20-0045.1.
L’Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse, 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J Geophys Res, 113, D00A15, https://doi.org/10.1029/2008JD009951.
Lewis, E. R., 2016: Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign Report, edited by Stafford, R. DOE ARM Climate Research Facility, DOE/SC-ARM-16-057, https://doi.org/10.2172/1343577.
Li, X. Y., and Coauthors, 2022: Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part I: Case Setup and Sensitivities to Large-Scale Forcings. J Atmos Sci, 79, 73–100, https://doi.org/10.1175/JAS-D-21-0123.1.
Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the Tropic. Journal of Atmospheric Sciences, 44, 2418–2436.
Liu, S., and X. Z. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J Clim, 23, 5790–5809, https://doi.org/10.1175/2010JCLI3552.1.
Liu, Z., Omar, A.H., Hu, Y., Vaughan, M.A., Winker, D.M., Poole, L., Kovacs, T., 2005: CALIOP algorithm theoretical basis document. Part 3: Scene classification algorithms. In: NASA-CNES Doc. PC-SCI-203.
Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests. Mon Weather Rev, 128, 3187–3199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.
Lohmann, U. F. L. and F. Mahrt., 2016: An introduction to clouds: From the microscale to climate. Cambridge University Press, 198–206 pp.
Lu, M.-M., and C.-P. Chang, 2009: Unusual Late-Season Cold Surges during the 2005 Asian Winter Monsoon: Roles of Atlantic Blocking and the Central Asian Anticyclone. J Clim, 22, 5205–5217, https://doi.org/10.1175/2009JCLI2935.1.
Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor Detection Using Cloudsat—An Earth-Orbiting 94-GHz Cloud Radar. J Atmos Ocean Technol, 25, 519–533, https://doi.org/10.1175/2007JTECHA1006.1.
Mayer, J., M. Mayer, and L. Haimberger, 2021: Consistency and Homogeneity of Atmospheric Energy, Moisture, and Mass Budgets in ERA5. J Clim, 34, 3955–3974, https://doi.org/10.1175/JCLI-D-20-0676.1.
Miao, H., X. Wang, Y. Liu, and G. Wu, 2019: An evaluation of cloud vertical structure in three reanalyses against CloudSat/cloud‐aerosol lidar and infrared pathfinder satellite observations. Atmospheric Science Letters, 20, https://doi.org/10.1002/asl.906.
Molod, A., 2012: Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model. J Clim, 25, 8341–8352, https://doi.org/10.1175/JCLI-D-11-00412.1.
Morris, V. R., 2016: Ceilometer instrument handbook (No. DOE/SC-ARM-TR-020). DOE Office of Science Atmospheric Radiation Measurement (ARM) User Facility (United States).
NASA/LARC/SD/ASDC, 2018: CALIPSO Lidar Level 2 Vertical Feature Mask (VFM), V4-20 [Data set]. NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_VFM-STANDARD-V4-20.
Nicholls, S., 1984: The dynamics of stratocumulus: aircraft observations and comparisons with a mixed layer model. Quarterly Journal of the Royal Meteorological Society, 110(466), 783-820.
Ogino, S. Y., P. Wu, M. Hattori, N. Endo, H. Kubota, T. Inoue, and J. Matsumoto, 2018: Cold surge event observed by radiosonde observation from the research vessel “Hakuho-maru” over the Philippine Sea in December 2012. Prog Earth Planet Sci, 5, https://doi.org/10.1186/s40645-017-0163-4.
Rossow, W. B., and R. A. Schiffer, 1991: ISCCP Cloud Data Products. Bull Am Meteorol Soc, 72, 2–20, https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.
——, and ——, 1999: Advances in Understanding Clouds from ISCCP. Bull Am Meteorol Soc, 80, 2261–2287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.
——, K. R. Knapp, and A. H. Young, 2022: International Satellite Cloud Climatology Project: Extending the Record. J Clim, 35, 141–158, https://doi.org/10.1175/JCLI-D-21-0157.1.
Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J Geophys Res, 113, D00A12, https://doi.org/10.1029/2008JD009972.
Seibert, P., 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ, 34, 1001–1027, https://doi.org/10.1016/S1352-2310(99)00349-0.
Sivaraman, C., S. McFarlane, E. Chapman, M. Jensen, T. Toto (Fairless), S. Liu, and M. Fischer, 2013: Planetary Boundary Layer Height (PBL) Value Added Product (VAP): Radiosonde Retrievals. U.S. Department of Energy Rep. DOE/SC-ARMTR-132, 36 pp., https://www.arm.gov/publications/tech_reports/ doe-sc-arm-tr-132.pdf (last access: 9 August 2022).
Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J Geophys Res, 113, D00A18, https://doi.org/10.1029/2008JD009982.
Stevens, B., J. Duan, J. C. Mcwilliams, M. Mu¨nnich, M. Mu¨nnich, and J. David Neelin, 2002: Entrainment, Rayleigh Friction, and Boundary Layer Winds over the Tropical Pacific. Journal of Climate, 15(1), 30-44, https://doi.org/10.1175/1520-0442(2002)015<0030:ERFABL>2.0.CO;2.
——, A. Beljaars, S. Bordoni, C. Holloway, M. Köhler, S. Krueger, V. Savic-Jovcic, and Y. Zhang, 2007: On the structure of the lower troposphere in the summertime stratocumulus regime of the northeast Pacific. Mon Weather Rev, 135, 985–1005, https://doi.org/10.1175/MWR3427.1.
Sui, C.-H., and Coauthors, 2020: The South China Sea Two Islands Monsoon Experiment for studying convection and subseasonal to seasonal variability. Terrestrial, Atmospheric and Oceanic Sciences, 31, 103–129, https://doi.org/10.3319/TAO.2019.11.29.02.
Tan, J., G. J. Huffman, D. T. Bolvin, and E. J. Nelkin, 2019: IMERG V06: Changes to the Morphing Algorithm. J Atmos Ocean Technol, 36, 2471–2482, https://doi.org/10.1175/JTECH-D-19-0114.1.
Tiedtke, M., 1993: Representation of Clouds in Large-Scale Models. Mon Weather Rev, 121, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.
Vaughan, M. A., and Coauthors, 2009: Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements. J Atmos Ocean Technol, 26, 2034–2050, https://doi.org/10.1175/2009JTECHA1228.1.
Wang, X. Y., and K. C. Wang, 2014: Estimation of atmospheric mixing layer height from radiosonde data. Atmos Meas Tech, 7, 1701–1709, https://doi.org/10.5194/amt-7-1701-2014.
Winker, D.M., Pelon, J.R., McCormick, M.P., 2003: The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds. In: Lidar Remote Sensing for Industry and Environment Monitoring III, 4893. International Society for Optics and Photonics, 1–12. U.N. Singh, T. Itabe, and Z. Liu, Eds., 1.
——, Hostetler, C., Vaughan, M., Omar, A., 2006: CALIOP algorithm theoretical basis document, Part 1: CALIOP instrument, and algorithms overview. Release. J. Atmos. Ocean. Tech, 26, 2310–2323.
——, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J Atmos Ocean Technol, 26, 2310–2323, https://doi.org/10.1175/2009JTECHA1281.1.
Wood, R., 2012: Stratocumulus clouds. Mon Weather Rev, 140, 2373–2423, https://doi.org/10.1175/MWR-D-11-00121.1.
Wu, M. C., and J. C. L. Chan, 1995: Surface Features of Winter Monsoon Surges over South China. Mon Weather Rev, 123, 662–680, https://doi.org/10.1175/1520-0493(1995)123<0662:SFOWMS>2.0.CO;2.
——, and ——, 1997: Upper-Level Features Associated with Winter Monsoon Surges over South China. Mon Weather Rev, 125, 317–340, https://doi.org/10.1175/1520-0493(1997)125<0317:ULFAWW>2.0.CO;2.
Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets. J Atmos Sci, 30, 611–627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.
Young, A. H., K. R. Knapp, A. Inamdar, W. Hankins, and W. B. Rossow, 2018: The International Satellite Cloud Climatology Project H-Series climate data record product. Earth Syst Sci Data, 10, 583–593, https://doi.org/10.5194/essd-10-583-2018.
Zhang, D., J. Comstock, and V. Morris, 2022: Comparison of planetary boundary layer height from ceilometer with ARM radiosonde data. Atmos Meas Tech, 15, 4735–4749, https://doi.org/10.5194/amt-15-4735-2022.
Zhang, J., H. Chen, Z. Li, X. Fan, L. Peng, Y. Yu, and M. Cribb, 2010: Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J Geophys Res, 115, D00K30, https://doi.org/10.1029/2010JD014030.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87542-
dc.description.abstract東亞寒潮是東亞冬季風的常見綜觀天氣系統。寒潮發生時,低層北風增強進入南海並增強熱帶對流,低層的冷、乾平流增強南海的海表熱通量,混合作用增強、邊界層頂上升。但是,比起北大西洋、東太平洋區域,南海的邊界層相關研究較少,以致我們無法準確描述南海邊界層的紊流混合、往赤道的能量傳輸、經向環流。此研究中,我們使用2010年到2020年的南海北部的東沙島(116.69E, 20.70N)高解析度探空資料來判定邊界層頂、混合層頂、雲頂、雲底。我們亦使用再分析資料,如ERA-5的氣象參數和海表熱通量,以及MERRA-2雲輻射等,以及CloudSat-CALIPSO和ISCCP等衛星資料來判定雲種及雲輻射效應。再利用上述資料計算能量收支和診斷紊流垂直結構。結果顯示,寒潮發生時,為了平衡低層冷乾平流,南海北部邊界層內獲得更大的海表熱通量,混合作用增強,混合層平均提高到1公里,邊界層平均提高到2公里,邊界層內有淺對流發展,邊界層頂則有下沉運動抑制雲的垂直發展。簡言之,寒潮發生後的邊界層為條件性穩定、混合層為條件性不穩定,寒潮發生前的狀況則相反。南海邊界層分析對台灣和周邊國家天氣與氣候預報非常重要,我們希望能藉由這份研究,引起大家對南海邊界的注意與興趣,也希望未來能有大氣海洋聯合觀測。zh_TW
dc.description.abstractEpisodic cold surges associated with the East Asia (EA) winter monsoon can penetrate deep into the South China Sea (SCS), enhance consequent tropical rainfall, and further strengthen the EA meridional overturning circulation (MOC). These cold surges can promote strong surface fluxes and lead to a deeper marine planetary boundary layer (PBL). However, there is a lack of boundary layer studies over the SCS, unlike many other well-studied regions such as the north Atlantic Ocean and the central-eastern Pacific Ocean. The disparity can lead to unrealistic boundary layer turbulence and energy transport such that the tropical convection and the EA-MOC are incorrectly represented. In this study, we use high resolution radiosonde data of temperature and humidity profiles over Dongsha Island to identify the PBL height (PBLH), mixed layer height (MLH), cloud base, and cloud top for the period of December-January-February (DJF) from 2010 to 2020. We combined ERA-5 meteorological variables and surface fluxes, MERRA-2 cloud radiation data, and radiosonde-derived PBL parameters to perform an energy budget analysis and turbulent diagnostics based on a mixed-layer model. Here we show a strong turbulent flux convergence of both heat and moisture over the SCS during cold surges, which leads to a lifting of the MLH to ~1.0 km and PBLH to ~2.0 km and associated cloud development over Dongsha Island (116.69E, 20.70N). The cold and dry horizontal advection is balanced by this vertical turbulent flux convergence in the energy budget. Overall, at post-surge the PBL is stable but mixed layer is unstable, which contrasts with the pre-surge stage that features a stable mixed layer and a conditionally unstable PBL. We anticipate our study will motivate more atmosphere-ocean joint observation and PBL-related studies over the SCS region that is important for understanding and predicting weather and climate in Taiwan and SCS neighboring countries.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-14T16:14:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-14T16:14:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents vi
Lists of Figures viii
List of Tables xv
1. Introduction 1
2. Data and Method 6
2.1 Data 6
2.1.1 Dongsha Island Regular Observation 6
2.1.2 Satellite Cloud Products 7
2.1.3 Reanalysis datasets 11
2.1.4 The Integrated Multi-Satellite Retrievals for GPM (IMERG) Precipitation 12
2.2 Method 13
2.2.1 Energy Budget 13
2.2.2 Mixed Layer Model 14
3. Identification of PBL and cold surges 16
3.1 Identification of PBL 16
3.1.1 MLH 16
3.1.2 Cloud 17
3.1.3 PBLH 17
3.2 Validation of PBL parameters 17
3.3 Identification of cold surges 19
4. EAWM and composite features of cold surge 19
5. A case study of selected cold surge 24
6. Conclusion 30
7. References 33
Tables 47
Figures 50
-
dc.language.isoen-
dc.subject寒潮zh_TW
dc.subject行星邊界層zh_TW
dc.subject紊流zh_TW
dc.subject南海zh_TW
dc.subject東亞冬季風zh_TW
dc.subjectturbulenceen
dc.subjectEast Asia winter monsoonen
dc.subjectcold surgeen
dc.subjectsouth China Seaen
dc.subjectplanetary boundary layeren
dc.title寒潮對南海邊界層結構、能量收支與紊流的影響zh_TW
dc.titleCold Surge Impacts on the Structure, Energy Budget, and Turbulence of the South China Sea Boundary Layeren
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.coadvisor盧孟明zh_TW
dc.contributor.coadvisorMong-Ming Luen
dc.contributor.oralexamcommittee吳建銘;劉清煌zh_TW
dc.contributor.oralexamcommitteeChien-Ming Wu;Ching-Hwang Liuen
dc.subject.keyword行星邊界層,紊流,南海,寒潮,東亞冬季風,zh_TW
dc.subject.keywordplanetary boundary layer,turbulence,south China Sea,cold surge,East Asia winter monsoon,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202300464-
dc.rights.note未授權-
dc.date.accepted2023-02-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
5.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved