Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87513
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志平zh_TW
dc.contributor.advisorChih-Ping Weien
dc.contributor.author李旺祚zh_TW
dc.contributor.authorWang-Tso Leeen
dc.date.accessioned2023-06-14T16:05:18Z-
dc.date.available2026-02-06-
dc.date.copyright2023-06-14-
dc.date.issued2023-
dc.date.submitted2023-02-08-
dc.identifier.citationAbi-Jaoude, E., Segura, B., Obeso, I., Cho, S. S., Houle, S., Lang, A. E., Rusjan, P., Sandor, P., & Strafella, A. P. (2015). Similar striatal D2/D3 dopamine receptor availability in adults with Tourette syndrome compared with healthy controls: A [(11) C]-(+)-PHNO and [(11) C]raclopride positron emission tomography imaging study. Hum Brain Mapp, 36(7), 2592-2601. https://doi.org/10.1002/hbm.22793
Alongi, P., Iaccarino, L., & Perani, D. (2014). PET Neuroimaging: Insights on Dystonia and Tourette Syndrome and Potential Applications. Front Neurol, 5, 183. https://doi.org/10.3389/fneur.2014.00183
Association, A. P. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub.
Aurna, N. F., Yousuf, M. A., Taher, K. A., Azad, A. K. M., & Moni, M. A. (2022). A classification of MRI brain tumor based on two stage feature level ensemble of deep CNN models. Comput Biol Med, 146, 105539. https://doi.org/10.1016/j.compbiomed.2022.105539
Braun, A. R., Stoetter, B., Randolph, C., Hsiao, J. K., Vladar, K., Gernert, J., Carson, R. E., Herscovitch, P., & Chase, T. N. (1993). The functional neuroanatomy of Tourette's syndrome: an FDG-PET study. I. Regional changes in cerebral glucose metabolism differentiating patients and controls. Neuropsychopharmacology, 9(4), 277.
Buse, J., Schoenefeld, K., Münchau, A., & Roessner, V. (2013). Neuromodulation in Tourette syndrome: dopamine and beyond. Neuroscience & Biobehavioral Reviews, 37(6), 1069-1084.
Cavanna, A. E., Stecco, A., Rickards, H., Servo, S., Terazzi, E., Peterson, B., Robertson, M. M., Carriero, A., & Monaco, F. (2010). Corpus callosum abnormalities in Tourette syndrome: an MRI-DTI study of monozygotic twins. Journal of Neurology, Neurosurgery & Psychiatry, 81(5), 533-535.
Chen, J. V., Chaudhari, G., Hess, C. P., Glenn, O. A., Sugrue, L. P., Rauschecker, A. M., & Li, Y. (2022). Deep Learning to Predict Neonatal and Infant Brain Age from Myelination on Brain MRI Scans. Radiology, 305(3), 678-687. https://doi.org/10.1148/radiol.211860
Chou, I. C., Tsai, C. H., Lee, C. C., Kuo, H. T., Hsu, Y. A., Li, C. I., & Tsai, F. J. (2004). Association analysis between Tourette's syndrome and dopamine D1 receptor gene in Taiwanese children. Psychiatr Genet, 14(4), 219-221. https://doi.org/10.1097/00041444-200412000-00010
Chou, I. J., Hung, P. C., Lin, J. J., Hsieh, M. Y., Wang, Y. S., Kuo, C. Y., Kuo, C. F., Lin, K. L., & Wang, H. S. (2022). Incidence and prevalence of Tourette syndrome and chronic tic disorders in Taiwan: a nationwide population-based study. Soc Psychiatry Psychiatr Epidemiol, 57(8), 1711-1721. https://doi.org/10.1007/s00127-022-02253-7
Chu, Y. J., Chang, C. F., Shieh, J. S., & Lee, W. T. (2017). The Potential Application of Multiscale Entropy Analysis of Electroencephalography in Children with Neurological and Neuropsychiatric Disorders. Entropy (Basel), 19(8). https://doi.org/10.3390/e19080428
Dale, R. C. (2017). Tics and Tourette: a clinical, pathophysiological and etiological review. Curr Opin Pediatr, 29(6), 665-673. https://doi.org/10.1097/MOP.0000000000000546
De Asis-Cruz, J., Krishnamurthy, D., Jose, C., Cook, K. M., & Limperopoulos, C. (2022). FetalGAN: Automated Segmentation of Fetal Functional Brain MRI Using Deep Generative Adversarial Learning and Multi-Scale 3D U-Net. Front Neurosci, 16, 887634. https://doi.org/10.3389/fnins.2022.887634
Debes, N., Jeppesen, S., Raghava, J. M., Groth, C., Rostrup, E., & Skov, L. (2015). Longitudinal Magnetic Resonance Imaging (MRI) Analysis of the Developmental Changes of Tourette Syndrome Reveal Reduced Diffusion in the Cortico-Striato-Thalamo-Cortical Pathways. J Child Neurol, 30(10), 1315-1326. https://doi.org/10.1177/0883073814560629
Douaud, G., Lee, S., Alfaro-Almagro, F., Arthofer, C., Wang, C., McCarthy, P., Lange, F., Andersson, J. L. R., Griffanti, L., Duff, E., Jbabdi, S., Taschler, B., Keating, P., Winkler, A. M., Collins, R., Matthews, P. M., Allen, N., Miller, K. L., Nichols, T. E., & Smith, S. M. (2022). SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature, 604(7907), 697-707. https://doi.org/10.1038/s41586-022-04569-5
Fitzgerald, J. M., Webb, E. K., Weis, C. N., Huggins, A. A., Bennett, K. P., Miskovich, T. A., Krukowski, J. L., deRoon-Cassini, T. A., & Larson, C. L. (2022). Hippocampal Resting-State Functional Connectivity Forecasts Individual Posttraumatic Stress Disorder Symptoms: A Data-Driven Approach. Biol Psychiatry Cogn Neurosci Neuroimaging, 7(2), 139-149. https://doi.org/10.1016/j.bpsc.2021.08.007
Foa, E. B., Huppert, J. D., Leiberg, S., Langner, R., Kichic, R., Hajcak, G., & Salkovskis, P. M. (2002). The Obsessive-Compulsive Inventory: development and validation of a short version. Psychological assessment, 14(4), 485.
Frey, J., & Malaty, I. A. (2022). Tourette Syndrome Treatment Updates: a Review and Discussion of the Current and Upcoming Literature. Curr Neurol Neurosci Rep, 22(2), 123-142. https://doi.org/10.1007/s11910-022-01177-8
Gau, S. S. F., Shang, C. Y., Liu, S. K., Lin, C. H., Swanson, J. M., Liu, Y. C., & Tu, C. L. (2008). Psychometric properties of the Chinese version of the Swanson, Nolan, and Pelham, version IV scale–parent form. International journal of methods in psychiatric research, 17(1), 35-44.
Gilbert, D. L., Budman, C. L., Singer, H. S., Kurlan, R., & Chipkin, R. E. (2014). A D1 receptor antagonist, ecopipam, for treatment of tics in Tourette syndrome. Clin Neuropharmacol, 37(1), 26-30. https://doi.org/10.1097/WNF.0000000000000017
Gilbert, D. L., Murphy, T. K., Jankovic, J., Budman, C. L., Black, K. J., Kurlan, R. M., Coffman, K. A., McCracken, J. T., Juncos, J., Grant, J. E., & Chipkin, R. E. (2018). Ecopipam, a D1 receptor antagonist, for treatment of tourette syndrome in children: A randomized, placebo-controlled crossover study. Mov Disord, 33(8), 1272-1280. https://doi.org/10.1002/mds.27457
Greene, D. J., Schlaggar, B. L., & Black, K. J. (2015). Neuroimaging in Tourette Syndrome: Research Highlights From 2014-2015. Curr Dev Disord Rep, 2(4), 300-308. https://doi.org/10.1007/s40474-015-0062-6
Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 2105-2108.
Hakimi, M., Skinner, S., & Maurer, C. W. (2022). Tic Disorders, Anti-Tic Medications, and Risk of Atopy. Mov Disord Clin Pract, 9(7), 879-885. https://doi.org/10.1002/mdc3.13506
Hsieh, M. Y., Lee, W. I., Lin, K. L., Hung, P. C., Chou, M. L., Chang, M. Y., Huang, J. L., & Wang, H. S. (2010). Immunologic analysis and serum heavy metal levels in exacerbated Tourette syndrome. Pediatr Allergy Immunol, 21(4 Pt 2), e764-771. https://doi.org/10.1111/j.1399-3038.2010.01009.x
Hsu, C.-J., Wong, L. C., Wang, H.-P., & Lee, W.-T. (2020). The multimodality neuroimage findings in individuals with Tourette syndrome. Pediatrics & Neonatology.
Hsu, C. J., Wong, L. C., & Lee, W. T. (2021). Immunological Dysfunction in Tourette Syndrome and Related Disorders. Int J Mol Sci, 22(2). https://doi.org/10.3390/ijms22020853
Hsu, C. J., Wong, L. C., Wang, H. P., & Lee, W. T. (2020). The multimodality neuroimage findings in individuals with Tourette syndrome. Pediatr Neonatol, 61(5), 467-474. https://doi.org/10.1016/j.pedneo.2020.03.007
Iglesias, J. E., Liu, C. Y., Thompson, P. M., & Tu, Z. (2011). Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans Med Imaging, 30(9), 1617-1634. https://doi.org/10.1109/TMI.2011.2138152
Jan TY, W. L., Yang MT, Huang CJ, Hsu CJ, Peng SS, Tseng WI, Lee WT. (2021). Correlation of dystonia severity and iron accumulation in Rett syndrome. Sci Rep., 11(1), 838.
Jeffries, K., Schooler, C., Schoenbach, C., Herscovitch, P., Chase, T., & Braun, A. (2002). The functional neuroanatomy of Tourette's syndrome: an FDG PET study III: functional coupling of regional cerebral metabolic rates. Neuropsychopharmacology, 27(1), 92-104.
Jiang, D., Hu, Z., Zhao, C., Zhao, X., Yang, J., Zhu, Y., Liao, J., Liang, D., & Wang, H. (2022). Identification of Children's Tuberous Sclerosis Complex with Multiple-contrast MRI and 3D Convolutional Network. Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2924-2927. https://doi.org/10.1109/EMBC48229.2022.9871037
Karimi, D., Jaimes, C., Machado-Rivas, F., Vasung, L., Khan, S., Warfield, S. K., & Gholipour, A. (2021). Deep learning-based parameter estimation in fetal diffusion-weighted MRI. Neuroimage, 243, 118482. https://doi.org/10.1016/j.neuroimage.2021.118482
Kibriya, H., Amin, R., Alshehri, A. H., Masood, M., Alshamrani, S. S., & Alshehri, A. (2022). A Novel and Effective Brain Tumor Classification Model Using Deep Feature Fusion and Famous Machine Learning Classifiers. Comput Intell Neurosci, 2022, 7897669. https://doi.org/10.1155/2022/7897669
Kim, H., Moote, W., & Mazza, J. (1997). Tourette's syndrome in patients referred for allergy evaluation. Ann Allergy Asthma Immunol, 79(4), 347-349. https://doi.org/10.1016/S1081-1206(10)63026-8
Larsh, T. R., Huddleston, D. A., Horn, P. S., Wu, S. W., Cecil, K. M., Jackson, H. S., Edden, R. A. E., Mostofsky, S. H., & Gilbert, D. L. (2022). From urges to tics in children with Tourette syndrome: associations with supplementary motor area GABA and right motor cortex physiology. Cereb Cortex. https://doi.org/10.1093/cercor/bhac316
Leckman, J. F., Goodman, W. K., Anderson, G. M., Riddle, M. A., Chappell, P. B., McSwiggan-Hardin, M. T., McDougle, C. J., Scahill, L. D., Ort, S. I., Pauls, D. L., & et al. (1995). Cerebrospinal fluid biogenic amines in obsessive compulsive disorder, Tourette's syndrome, and healthy controls. Neuropsychopharmacology, 12(1), 73-86. https://doi.org/10.1038/sj.npp.1380241
Leckman, J. F., Riddle, M. A., Hardin, M. T., Ort, S. I., Swartz, K. L., Stevenson, J., & Cohen, D. J. (1989). The Yale Global Tic Severity Scale: initial testing of a clinician-rated scale of tic severity. Journal of the American Academy of Child & Adolescent Psychiatry, 28(4), 566-573.
Lee, W.-T., Huang, H.-L., Wong, L. C., Weng, W.-C., Vasylenko, T., Jong, Y.-J., Lin, W.-S., & Ho, S.-Y. (2017). Tourette Syndrome as an Independent Risk Factor for Subsequent Sleep Disorders in Children: A Nationwide Population-Based Case–Control Study. Sleep, 40(3).
Lee, W. T., Huang, H. L., Wong, L. C., Weng, W. C., Vasylenko, T., Jong, Y. J., Lin, W. S., & Ho, S. Y. (2017). Tourette Syndrome as an Independent Risk Factor for Subsequent Sleep Disorders in Children: A Nationwide Population-Based Case-Control Study. Sleep, 40(3). https://doi.org/10.1093/sleep/zsw072
Li, H., Chen, M., Wang, J., Illapani, V. S. P., Parikh, N. A., & He, L. (2021). Automatic Segmentation of Diffuse White Matter Abnormality on T2-weighted Brain MR Images Using Deep Learning in Very Preterm Infants. Radiol Artif Intell, 3(3), e200166. https://doi.org/10.1148/ryai.2021200166
Li, Y., Yan, J. J., & Cui, Y. H. (2022). Clinical characteristics of pediatric patients with treatment-refractory Tourette syndrome: An evidence-based survey in a Chinese population. World J Psychiatry, 12(7), 958-969. https://doi.org/10.5498/wjp.v12.i7.958
Liao, J. F., Cheng, Y. F., Li, S. W., Lee, W. T., Hsu, C. C., Wu, C. C., Jeng, O. J., Wang, S., & Tsai, Y. C. (2019). Lactobacillus plantarum PS128 ameliorates 2,5-Dimethoxy-4-iodoamphetamine-induced tic-like behaviors via its influences on the microbiota-gut-brain-axis. Brain Res Bull, 153, 59-73. https://doi.org/10.1016/j.brainresbull.2019.07.027
Liu, Y., Miao, W., Wang, J., Gao, P., Yin, G., Zhang, L., Lv, C., Ji, Z., Yu, T., Sabel, B. A., He, H., & Peng, Y. (2013). Structural abnormalities in early Tourette syndrome children: a combined voxel-based morphometry and tract-based spatial statistics study. PLoS One, 8(9), e76105. https://doi.org/10.1371/journal.pone.0076105
Müller-Vahl, K. R., Grosskreutz, J., Prell, T., Kaufmann, J., Bodammer, N., & Peschel, T. (2014). Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms. BMC neuroscience, 15(1), 6.
Madadi Asl, M., Vahabie, A. H., & Valizadeh, A. (2019). Dopaminergic Modulation of Synaptic Plasticity, Its Role in Neuropsychiatric Disorders, and Its Computational Modeling. Basic Clin Neurosci, 10(1), 1-12. https://doi.org/10.32598/bcn.9.10.125
Mahone, E. M., Puts, N. A., Edden, R. A. E., Ryan, M., & Singer, H. S. (2018). GABA and glutamate in children with Tourette syndrome: A (1)H MR spectroscopy study at 7T. Psychiatry Res Neuroimaging, 273, 46-53. https://doi.org/10.1016/j.pscychresns.2017.12.005
Makki, M. I., Behen, M., Bhatt, A., Wilson, B., & Chugani, H. T. (2008). Microstructural abnormalities of striatum and thalamus in children with Tourette syndrome. Mov Disord, 23(16), 2349-2356. https://doi.org/10.1002/mds.22264
Makki, M. I., Munian Govindan, R., Wilson, B. J., Behen, M. E., & Chugani, H. T. (2009). Altered fronto-striato-thalamic connectivity in children with Tourette syndrome assessed with diffusion tensor MRI and probabilistic fiber tracking. Journal of child neurology, 24(6), 669-678.
Minzer, K., Lee, O., Hong, J. J., & Singer, H. S. (2004). Increased prefrontal D2 protein in Tourette syndrome: a postmortem analysis of frontal cortex and striatum. Journal of the neurological sciences, 219(1-2), 55-61.
Moon, H. S., Heffron, L., Mahzarnia, A., Obeng-Gyasi, B., Holbrook, M., Badea, C. T., Feng, W., & Badea, A. (2022). Automated multimodal segmentation of acute ischemic stroke lesions on clinical MR images. Magn Reson Imaging, 92, 45-57. https://doi.org/10.1016/j.mri.2022.06.001
Moriarty, J., Varma, A. R., Stevens, J., Fish, M., Trimble, M. R., & Robertson, M. M. (1997). A volumetric MRI study of Gilles de la Tourette's syndrome. Neurology, 49(2), 410-415. https://doi.org/10.1212/wnl.49.2.410
Muller-Vahl, K. R., Loeber, G., Kotsiari, A., Muller-Engling, L., & Frieling, H. (2017). Gilles de la Tourette syndrome is associated with hypermethylation of the dopamine D2 receptor gene. J Psychiatr Res, 86, 1-8. https://doi.org/10.1016/j.jpsychires.2016.11.004
Naaijen, J., Forde, N. J., Lythgoe, D. J., Akkermans, S. E. A., Openneer, T. J. C., Dietrich, A., Zwiers, M. P., Hoekstra, P. J., & Buitelaar, J. K. (2017). Fronto-striatal glutamate in children with Tourette's disorder and attention-deficit/hyperactivity disorder. NeuroImage: Clinical, 13, 16-23. https://doi.org/10.1016/j.nicl.2016.11.013
Noothout, J. M. H., Lessmann, N., van Eede, M. C., van Harten, L. D., Sogancioglu, E., Heslinga, F. G., Veta, M., van Ginneken, B., & Isgum, I. (2022). Knowledge distillation with ensembles of convolutional neural networks for medical image segmentation. J Med Imaging (Bellingham), 9(5), 052407. https://doi.org/10.1117/1.JMI.9.5.052407
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
Peterson, B., Riddle, M., Cohen, D., Katz, L., Smith, J., Hardin, M., & Leckman, J. (1993). Reduced basal ganglia volumes in Tourette's syndrome using three‐dimensional reconstruction techniques from magnetic resonance images. Neurology, 43(5), 941-941.
Peterson, B. S., Thomas, P., Kane, M. J., Scahill, L., Zhang, H., Bronen, R., King, R. A., Leckman, J. F., & Staib, L. (2003). Basal ganglia volumes in patients with Gilles de la Tourette syndrome. Archives of general psychiatry, 60(4), 415-424.
Peterson, B. S., Thomas, P., Kane, M. J., Scahill, L., Zhang, H., Bronen, R., King, R. A., Leckman, J. F., & Staib, L. (2003). Basal Ganglia volumes in patients with Gilles de la Tourette syndrome. Arch Gen Psychiatry, 60(4), 415-424. https://doi.org/10.1001/archpsyc.60.4.415
Poldrack, R. A., Huckins, G., & Varoquaux, G. (2020). Establishment of Best Practices for Evidence for Prediction: A Review. JAMA Psychiatry, 77(5), 534-540. https://doi.org/10.1001/jamapsychiatry.2019.3671
Puts, N. A., Harris, A. D., Crocetti, D., Nettles, C., Singer, H. S., Tommerdahl, M., Edden, R. A., & Mostofsky, S. H. (2015). Reduced GABAergic inhibition and abnormal sensory symptoms in children with Tourette syndrome. Journal of neurophysiology, 114(2), 808-817.
Qian, Q. Q., Tan, Q. Q., Sun, D., Lu, Q., Xin, Y. Y., Wu, Q., Zhou, Y., Liu, Y. X., Tian, P. C., & Liu, Z. S. (2022). A Pilot Study on Plasma and Urine Neurotransmitter Levels in Children with Tic Disorders. Brain Sci, 12(7). https://doi.org/10.3390/brainsci12070880
Robertson, M. M., Eapen, V., Singer, H. S., Martino, D., Scharf, J. M., Paschou, P., Roessner, V., Woods, D. W., Hariz, M., Mathews, C. A., Crncec, R., & Leckman, J. F. (2017). Gilles de la Tourette syndrome. Nat Rev Dis Primers, 3, 16097. https://doi.org/10.1038/nrdp.2016.97
Rosas-Gonzalez, S., Birgui-Sekou, T., Hidane, M., Zemmoura, I., & Tauber, C. (2021). Asymmetric Ensemble of Asymmetric U-Net Models for Brain Tumor Segmentation With Uncertainty Estimation. Front Neurol, 12, 609646. https://doi.org/10.3389/fneur.2021.609646
Saha, S., Pagnozzi, A., Bourgeat, P., George, J. M., Bradford, D., Colditz, P. B., Boyd, R. N., Rose, S. E., Fripp, J., & Pannek, K. (2020). Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model. Neuroimage, 215, 116807. https://doi.org/10.1016/j.neuroimage.2020.116807
Saylor, C. F., Finch, A., Spirito, A., & Bennett, B. (1984). The Children's Depression Inventory: A systematic evaluation of psychometric properties. Journal of consulting and clinical psychology, 52(6), 955.
Scharf, J. M., Miller, L. L., Gauvin, C. A., Alabiso, J., Mathews, C. A., & Ben‐Shlomo, Y. (2015). Population prevalence of Tourette syndrome: A systematic review and meta‐analysis. Movement disorders, 30(2), 221-228.
Singer, H. S., Reiss, A., Brown, J., Aylward, E., Shih, B., Chee, E., Harris, E., Reader, M., Chase, G., & Bryan, R. (1993). Volumetric MRI changes in basal ganglia of children with Tourette's syndrome. Neurology, 43(5), 950-950.
Singer, H. S., Szymanski, S., Giuliano, J., Yokoi, F., Dogan, A. S., Brasic, J. R., Zhou, Y., Grace, A. A., & Wong, D. F. (2002). Elevated intrasynaptic dopamine release in Tourette’s syndrome measured by PET. American Journal of Psychiatry, 159(8), 1329-1336.
Stewart, W. F., Lipton, R. B., Dowson, A. J., & Sawyer, J. (2001). Development and testing of the Migraine Disability Assessment (MIDAS) Questionnaire to assess headache-related disability. Neurology, 56(suppl 1), S20-S28.
Tian, D., Zeng, Z., Sun, X., Tong, Q., Li, H., He, H., Gao, J. H., He, Y., & Xia, M. (2022). A deep learning-based multisite neuroimage harmonization framework established with a traveling-subject dataset. Neuroimage, 257, 119297. https://doi.org/10.1016/j.neuroimage.2022.119297
Tinaz, S., Malone, P., Hallett, M., & Horovitz, S. G. (2015). Role of the right dorsal anterior insula in the urge to tic in Tourette syndrome. Mov Disord, 30(9), 1190-1197. https://doi.org/10.1002/mds.26230
Tinker, S. C., Bitsko, R. H., Danielson, M. L., Newsome, K., & Kaminski, J. W. (2022). Estimating the number of people with Tourette syndrome and persistent tic disorder in the United States. Psychiatry Res, 314, 114684. https://doi.org/10.1016/j.psychres.2022.114684
Tiwari, P., Pant, B., Elarabawy, M. M., Abd-Elnaby, M., Mohd, N., Dhiman, G., & Sharma, S. (2022). CNN Based Multiclass Brain Tumor Detection Using Medical Imaging. Comput Intell Neurosci, 2022, 1830010. https://doi.org/10.1155/2022/1830010
Wechsler, D. (2003). Wechsler intelligence scale for children–Fourth Edition (WISC-IV). San Antonio, TX: The Psychological Corporation.
Wen, H., Liu, Y., Wang, J., Rekik, I., Zhang, J., Zhang, Y., Tian, H., Peng, Y., & He, H. (2016). Combining tract- and atlas-based analysis reveals microstructural abnormalities in early Tourette syndrome children. Hum Brain Mapp, 37(5), 1903-1919. https://doi.org/10.1002/hbm.23146
Weng, W.-C., Chang, C.-F., Wong, L. C., Lin, J.-H., Lee, W.-T., & Shieh, J.-S. (2017). Altered resting-state EEG complexity in children with Tourette syndrome: A preliminary study. Neuropsychology, 31(4), 395.
Weng, W. C., Chang, C. F., Wong, L. C., Lin, J. H., Lee, W. T., & Shieh, J. S. (2017). Altered resting-state EEG complexity in children with Tourette syndrome: A preliminary study. Neuropsychology, 31(4), 395-402. https://doi.org/10.1037/neu0000363
Weng, W. C., Huang, H. L., Wong, L. C., Jong, Y. J., Yin, Y. J., Chen, H. A., Lee, W. T., & Ho, S. Y. (2016). Increased risks of tic disorders in children with epilepsy: A nation-wide population-based case-control study in Taiwan. Res Dev Disabil, 51-52, 173-180. https://doi.org/10.1016/j.ridd.2015.10.019
Werner, C. J., Stöcker, T., Kellermann, T., Bath, J., Beldoch, M., Schneider, F., Wegener, H. P., Shah, J. N., & Neuner, I. (2011). Altered motor network activation and functional connectivity in adult Tourette's syndrome. Human brain mapping, 32(11), 2014-2026.
Wittfoth, M., Bornmann, S., Peschel, T., Grosskreutz, J., Glahn, A., Buddensiek, N., Becker, H., Dengler, R., & Muller-Vahl, K. R. (2012). Lateral frontal cortex volume reduction in Tourette syndrome revealed by VBM. BMC Neurosci, 13, 17. https://doi.org/10.1186/1471-2202-13-17
Wolf, S. S., Jones, D. W., Knable, M. B., Gorey, J. G., Lee, K. S., Hyde, T. M., Coppola, R., & Weinberger, D. R. (1996). Tourette syndrome: prediction of phenotypic variation in monozygotic twins by caudate nucleus D2 receptor binding. Science, 273(5279), 1225-1227.
Wong, D. F., Brašić, J. R., Singer, H. S., Schretlen, D. J., Kuwabara, H., Zhou, Y., Nandi, A., Maris, M. A., Alexander, M., & Ye, W. (2008). Mechanisms of dopaminergic and serotonergic neurotransmission in Tourette syndrome: clues from an in vivo neurochemistry study with PET. Neuropsychopharmacology, 33(6), 1239.
Wong, D. F., Singer, H. S., Brandt, J., Shaya, E., Chen, C., Brown, J., Kimball, A., Gjedde, A., Dannals, R. F., & Ravert, H. T. (1997). D2-like dopamine receptor density in Tourette syndrome measured by PET. Journal of Nuclear Medicine, 38(8), 1243-1247.
Wood, D. A., Kafiabadi, S., Busaidi, A. A., Guilhem, E., Montvila, A., Lynch, J., Townend, M., Agarwal, S., Mazumder, A., Barker, G. J., Ourselin, S., Cole, J. H., & Booth, T. C. (2022). Accurate brain-age models for routine clinical MRI examinations. Neuroimage, 249, 118871. https://doi.org/10.1016/j.neuroimage.2022.118871
Worbe, Y., Marrakchi-Kacem, L., Lecomte, S., Valabregue, R., Poupon, F., Guevara, P., Tucholka, A., Mangin, J. F., Vidailhet, M., Lehericy, S., Hartmann, A., & Poupon, C. (2015). Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. Brain, 138(Pt 2), 472-482. https://doi.org/10.1093/brain/awu311
Wu, C. C., Wong, L. C., Hsu, C. J., Yang, C. W., Tsai, Y. C., Cheng, F. S., Hu, H. Y., & Lee, W. T. (2021). Randomized Controlled Trial of Probiotic PS128 in Children with Tourette Syndrome. Nutrients, 13(11). https://doi.org/10.3390/nu13113698
Yan, J., Deng, H., Wang, Y., Wang, X., Fan, T., Li, S., Wen, F., Yu, L., Wang, F., Liu, J., Wu, Y., Zheng, Y., Cui, Y., & Li, Y. (2022). The Prevalence and Comorbidity of Tic Disorders and Obsessive-Compulsive Disorder in Chinese School Students Aged 6-16: A National Survey. Brain Sci, 12(5). https://doi.org/10.3390/brainsci12050650
Yang, C., Zhang, J., Zhao, Q., Zhang, J., Zhou, J., & Wang, L. (2022). Trends of Tourette Syndrome in children from 2011 to 2021: A bibliometric analysis. Front Behav Neurosci, 16, 991805. https://doi.org/10.3389/fnbeh.2022.991805
Yuan, A., Su, L., Yu, S., Li, C., Yu, T., & Sun, J. (2015). Association between DRD2/ANKK1 TaqIA Polymorphism and Susceptibility with Tourette Syndrome: A Meta-Analysis. PLoS One, 10(6), e0131060. https://doi.org/10.1371/journal.pone.0131060
Zhang, Z., Powell, K., Yin, C., Cao, S., Gonzalez, D., Hannawi, Y., & Zhang, P. (2021). Brain Atlas Guided Attention U-Net for White Matter Hyperintensity Segmentation. AMIA Jt Summits Transl Sci Proc, 2021, 663-671. https://www.ncbi.nlm.nih.gov/pubmed/34457182
Zhu, Z., Chen, H., Xie, S., Hu, Y., & Chang, J. (2022). Classification and Reconstruction of Biomedical Signals Based on Convolutional Neural Network. Comput Intell Neurosci, 2022, 6548811. https://doi.org/10.1155/2022/6548811
Zunair, H., & Ben Hamza, A. (2021). Sharp U-Net: Depthwise convolutional network for biomedical image segmentation. Comput Biol Med, 136, 104699. https://doi.org/10.1016/j.compbiomed.2021.104699
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87513-
dc.description.abstract腦影像檢查是兒童神經疾病診斷上非常重要的一項工具,但是並不是所有的兒童神經疾病都會有很明顯腦影像的變化,因此如何利用一些工具,善用影像的變化建立一個模式,來做一個判斷預測病人的預後,對臨床醫師的診斷以及對家長來說都很有幫助。在本研究中,我們選擇一個常見的兒童神經疾病¬-妥瑞氏症作為本研究的主題。在臨床上妥瑞氏症腦磁振造影影像不會有太大的差異。因此如何利用人工智慧建立新的診斷模式來評估妥瑞氏症病人的預後,是一個很大的挑戰。在本研究中,我們以腦磁振造影影像為分析資料,使用ROBEX去除非腦組織,然後透過AutoEncoder以及以3維卷積神經網路,並採用Fixed Offset的資料增強策略來建立妥瑞氏症預測模型,此模式可以達到最佳的準確性、敏感性和特異性。使用Fixed Offset的資料增強策略(每4個pixels取1個),雖然整體敏感性下降,但準確性(63.96% vs.58.31%)和特異性(69.65% vs.51.90%)都大幅提升,對於嚴重的妥瑞氏症兒童的敏感性也提升(78.90% vs.76.30%),證明此策略更能判斷妥瑞氏症兒童重症與輕症的腦結構是否更有一些差異。此外,我們的實驗結果也發現,資料增強策略的取樣頻率高低也會影響分類預測的效能,過高(每2個pixels取1個)或過低(每8個pixels取1個)的取樣頻率都會減低預測模型的效能。此外增加健康與病人的數目對模型的預測效能也有幫助,如果AutoEncoder和卷積神經網路使用更多受試者的影像資料來進行訓練,明顯的診斷為嚴重妥瑞氏症病人和健康受試者的準確性由70.42%提高到78.30%,而特異性也由70.55%提高到82.42%;雖然嚴重組跟輕症組的敏感性降低,尤其是輕症組的敏感性由49.28%降低到27.97%,不過這也反映出輕症的妥瑞氏症病童比較少會造成腦的影響或是健康受試者比較難和輕症的妥瑞氏症病人做區分,這跟我們的假說是吻合的。我們的研究也發現,嚴重性妥瑞氏症的病童通常比較有很顯著的腦異常,相對地較為輕症的妥瑞氏症病童腦異常的程度較為輕微或是沒有異常。這與我們先前的推測相吻合,這代表嚴重的妥瑞氏症比較會造成病童腦的異常,或是腦有異常的病童比較會造成嚴重的妥瑞氏症;相反的,輕症的妥瑞氏症病童通常沒有腦的異常或是腦的異常很輕微。我們將每一個妥瑞氏症病人的64組資料異常的部位組合以後,去檢視腦主要異常的地方和正常受試者的差異在哪裡。結果我們可以看到主要異常的位置在兩側基底核和前額葉的部位,當然有些個案也會影響到胼胝體後面的部位和腦白質,這與妥瑞氏症的致病機轉相吻合。由我們系列的實驗與研究發現,使用人工智慧用於妥瑞氏症病人腦影像異常的判斷是可行的。未來這種影像分析的模式也可以運用到其他的兒童神經疾病作為疾病對腦影響嚴重程度的判斷,當然也可以有商品化的可能性。zh_TW
dc.description.abstractBrain imaging is a very important tool in the diagnosis of neurological diseases in children, but not all neurological diseases have obvious changes in brain imaging. Therefore, how to use some tools to establish a model to predict the prognosis of patients is very helpful for clinicians and parents. In the present study, we chose Tourette syndrome, a common neurological disorder in children, as the target of our research. Clinically, MRI of the brain in Tourette syndrome usually does not have prominent abnormality. Therefore, how to use artificial intelligence to establish a new diagnostic model to assess the prognosis of patients with Tourette syndrome becomes a big challenge. In the present study, we propose a deep-learning-based Tourette syndrome prediction model that uses ROBEX for removing non-brain tissue, and involves the use of AutoEncoder and 3D convolutional neural networks (3D CNN) to construct a classification model. We also develop a fixed- offset data augmentation strategy, generating multiple subsamples by selecting one pixel from every four pixels according a fixed offset from an original 3D brain image. Our experimental results found that this model architecture will reach the highest accuracy, sensitivity, and specificity of Tourette syndrome prediction based on brain MRI images. Compared with the random pick strategy, the use of fixed offset strategy for data augmentation improved the prediction accuracy (63.96% vs.58.31%), specificity (69.65% vs.51.90%), and the sensitivity of brain involvement in children with severe Tourette syndrome (78.90% vs. 76.30%), at the cost of the overall sensitivity. In addition, the sampling frequency will significantly affect the effectiveness of our proposed Tourette syndrome prediction model. Specifically, as compared to our proposed sampling frequency (selecting one pixel from every 4 pixels), higher (selecting one pixel from every 2 pixels) or lower (selecting one pixel from every 8 pixels) sampling frequency deteriorated the prediction effectiveness. Moreover, our experimental results also showed that increasing the number of subjects to train both AutoEncoder and 3D CNN increased the accuracy of the diagnosis of severe Tourette’s patients and healthy subjects from 70.42 % to 78.30%, and the specificity from 70.55% to 82.42%. Although the sensitivity of the severe group and the mild group was decreased, especially the sensitivity of the mild group, decreasing from 49.28% to 27.97%, this result suggested that children with mild Tourette syndrome would have fewer brain lesions or healthy subjects are more difficult to distinguish from mild Tourette’s patients, which is consistent with our hypothesis. Our study also found that children with severe Tourette syndrome usually have significant brain abnormalities, while children with milder Tourette syndrome have milder or no brain abnormalities. This is also consistent with our previous speculation, indicating that severe Tourette syndrome will cause more abnormalities in the brain of children, or children with brain abnormalities will more likely lead to severe Tourette syndrome; in contrast, children with mild Tourette syndrome usually have no or milder brain abnormalities. If we combined all 64 MRI subsamples, generated by our data augmentation strategy, for each Tourette patient to see where are the main locations of brain abnormalities differing from those in normal subjects. We can see that the main abnormalities are located in bilateral basal ganglion and frontal white matter. In some cases, Tourette syndrome also affects the splenium part of the corpus callosum and the white matter, which are consistent with the pathogenic mechanisms of Tourette syndrome. From our serial experiments, we have found that it is feasible to use artificial intelligence techniques to determine brain imaging abnormalities in patients with Tourette syndrome. In the future, our proposed model can also be applied to other neurological diseases in children to evaluate the severity of the impact of the disease on the brain. Of course, there is also the possibility of commercialization.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-14T16:05:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-14T16:05:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目 錄
口試委員審定書 i
誌謝 ii
中文摘要 iv
英文摘要 vii
目 錄 x
圖目錄 xiii
表目錄 xiv
第一章 緒 論 1
第二章 文獻回顧 3
第一節 妥瑞氏症 3
第二節 妥瑞氏症的致病機轉 5
第三節 妥瑞氏症的診斷與檢查 7
第四節 人工智慧在神經影像中的應用 9
第三章 研究目的 12
第四章 方法與資料集合 14
第一節 納入的病人與控制組 14
第二節 妥瑞氏症疾病嚴重程度的評估 15
第三節 腦磁振造影影像的取得 15
第四節 模型架構的建立與影像的處理 16
第五章 實驗結果 23
第一節 妥瑞氏症與正常對照組的基本資料 23
第二節 使用ROBEX和AutoEncoder對預測效能的影響 23
第三節 資料增強策略中挑選子樣本方式對預測效能的影響 25
第四節 資料增強策略中取樣頻率高低對預測效能的影響 26
第五節 加入較多正常控制組至AutoEncoder訓練是否會讓妥瑞氏症分類預測效能更高 27
第六節 如何更準確的偵測妥瑞氏症兒童與正常控制組之間的差異 28
第七節 研究結果最顯著的差異位置 31
第六章 討論 32
第一節 人工智慧診斷影像的運用 32
第二節 不同訓練模式和實驗模式對分類預測效能的影響 33
第三節 研究的侷限性 35
第七章 未來展望 37
第一節 以人工智慧運用於腦磁振造影影像的判斷 37
第二節 以人工智慧判斷影像差異的商品化可能性 38
參考文獻 41
-
dc.language.isozh_TW-
dc.subject3維卷積神經網路zh_TW
dc.subject兒童zh_TW
dc.subject腦影像檢查zh_TW
dc.subject兒童神經疾病zh_TW
dc.subject妥瑞氏症zh_TW
dc.subjectchildrenen
dc.subjectTourette syndromeen
dc.subjectbrain imagesen
dc.subjectAutoEncoderen
dc.subject3D convolutional neural networksen
dc.subjectdata augmentationen
dc.subjectsampling frequencyen
dc.title以人工智慧為基礎之兒童神經疾病腦部影像診斷模式-以妥瑞氏症為例zh_TW
dc.titleArtificial Intelligence-based Model for Diagnosing Neurological Diseases in Children Based on Brain Images: Using Tourette Syndrome As An Exampleen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建錦;張欣綠zh_TW
dc.contributor.oralexamcommitteeChien-Chin Chen;Hsin-Lu Changen
dc.subject.keyword腦影像檢查,兒童神經疾病,妥瑞氏症,3維卷積神經網路,兒童,zh_TW
dc.subject.keywordTourette syndrome,brain images,AutoEncoder,3D convolutional neural networks,data augmentation,sampling frequency,children,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202300353-
dc.rights.note未授權-
dc.date.accepted2023-02-10-
dc.contributor.author-college管理學院-
dc.contributor.author-dept碩士在職專班資訊管理組-
dc.date.embargo-liftN/A-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
4.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved