請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87501
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇炫榮 | zh_TW |
dc.contributor.advisor | Hsuan-Jung Su | en |
dc.contributor.author | 賴煥霖 | zh_TW |
dc.contributor.author | Huan-Lin Lai | en |
dc.date.accessioned | 2023-06-13T16:20:22Z | - |
dc.date.available | 2024-11-10 | - |
dc.date.copyright | 2023-06-13 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2023-01-12 | - |
dc.identifier.citation | [1] E. Arikan, ”Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels,” in IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073, July 2009, doi: 10.1109/TIT.2009.2021379.
[2] P. Trifonov, ”Efficient Design and Decoding of Polar Codes,” in IEEE Transactions on Communications, vol. 60, no. 11, pp. 3221-3227, November 2012, doi:10.1109/TCOMM.2012.081512.110872. [3] Qinqing Zhang and S. A. Kassam, ”Finite-state Markov model for Rayleigh fading channels,” in IEEE Transactions on Communications, vol. 47, no. 11, pp. 1688-1692, Nov. 1999, doi: 10.1109/26.803503. [4] J. Zhao, W. Zhang and Y. Liu, ”A Novel Puncturing Scheme of Low Rate Polar Codes Based on Fixed Information Set,” in IEEE Communications Letters, vol. 25, no. 7, pp. 2104-2108, July 2021, doi:10.1109/LCOMM.2021.3072050. [5] K. Niu, K. Chen and J. Lin, ”Beyond turbo codes: Rate-compatible punctured polar codes,” 2013 IEEE International Conference on Communications (ICC), 2013, pp. 3423-3427, doi:10.1109/ICC.2013.6655078. [6] R. Xu, P. Chen, M. Zhu and B. Bai, ”A Reliability-Based Adaptive IR-HARQ Scheme for Polar Coded Systems,” 2020 International Conference on Wireless Communications and Signal Processing (WCSP), 2020, pp. 871-876, doi: 10.1109/WCSP49889.2020.9299858. [7] S. He, Q. Zhang and J. Qin, ”Joint Multi-User Decoding for Polar-Coded Uplink Non-Orthogonal Multiple Access Systems,” in IEEE Wireless Communications Letters, vol. 11, no. 1, pp. 72-76, Jan. 2022, doi: 10.1109/LWC.2021.3120300. [8] I. Tal and A. Vardy, ”List Decoding of Polar Codes,” in IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2213-2226, May 2015, doi: 10.1109/TIT.2015.2410251. [9] S. Han, B. Kim and J. Ha, ”Rate-Compatible Punctured Polar Codes,” in IEEE Communications Letters, vol. 26, no. 4, pp. 753-757, April 2022, doi: 10.1109/LCOMM.2022.3144695. [10] L. Li, W. Song and K. Niu, ”Optimal Puncturing of Polar Codes With a Fixed Information Set,” in IEEE Access, vol. 7, pp. 65965-65972, 2019, doi: 10.1109/ACCESS.2019.2918346. [11] J. Dai, W. Wang, D. Zhang and K. Niu, ”On the Self-Decoding of Polar-Coded HARQ,” in IEEE Communications Letters, vol. 25, no. 6, pp.1781-1785, June 2021, doi: 10.1109/LCOMM.2021.3065396 [12] Vaezi, Mojtaba Ding, Zhiguo Poor, H. Vincent. (2018). Multiple Access Techniques for 5G Wireless Networks and Beyond. [13] K. Chen, K. Niu, Z. He and J. Lin, ”Polar coded HARQ scheme with Chase combining,” 2014 IEEE Wireless Communications and Networking Conference (WCNC), 2014, pp. 474-479, doi: 10.1109/WCNC.2014.6952074. [14] M. -M. Zhao, G. Zhang, C. Xu, H. Zhang, R. Li and J. Wang, ”An Adaptive IR-HARQ Scheme for Polar Codes by Polarizing Matrix Extension,” in IEEE Communications Letters, vol. 22, no. 7, pp. 1306-1309, July 2018, doi: 10.1109/LCOMM.2018.2825370. [15] J. Dai, K. Niu, Z. Si, C. Dong and J. Lin, ”Polar-Coded Non-Orthogonal Multiple Access,” in IEEE Transactions on Signal Processing, vol. 66, no. 5, pp. 1374-1389, 1 March1, 2018, doi: 10.1109/TSP.2017.2786273. [16] J. Gao, P. Fan and L. Li, ”Optimized Polarizing Matrix Extension Based HARQ Scheme for Short Packet Transmission,” in IEEE Communications Letters, vol. 24, no. 5, pp. 951-955, May 2020, doi: 10.1109/LCOMM.2020.2970703. [17] S. Belhadj and M. L. Abdelmounaim, ”On error correction performance of LDPC and Polar codes for the 5G Machine Type Communications,”2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), 2021, pp. 1-4, doi:10.1109/IEMTRONICS52119.2021.9422665 [18] Y. Yuan et al., ”NOMA for Next-Generation Massive IoT: Performance Potential and Technology Directions,” in IEEE Communications Magazine, vol. 59, no. 7, pp. 115-121, July 2021, doi: 10.1109/MCOM.001.2000997. [19] F. Jabbarvaziri, N. Mysore Balasubramanya and L. Lampe, ”HARQ-Based Grant-Free NOMA for mMTC Uplink,” in IEEE Internet of Things Journal, vol. 8, no. 10, pp. 8372-8386, 15 May15, 2021, doi: 10.1109/JIOT.2020.3045447. [20] Multiplexing and Channel Coding, document TS 38.515, 3GPP, V15.4.0, Nov. 2019, [online] Available:https://www.3gpp.org/ftp/Specs/archive/38 series/38.212/ [21] Y. Polyanskiy, H. V. Poor and S. Verdu, ”Channel Coding Rate in the Finite Blocklength Regime,” in IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307-2359, May 2010, doi: 10.1109/TIT.2010.2043769. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87501 | - |
dc.description.abstract | 在本論文中,我們在物聯網架構中中考慮了一種無允諾接取的非正交多重接取系統,並於其中使用極化碼的遞增冗餘混合式自動重送請求。
在物聯網應用中,由於設備的功率限制,需要考慮短封包的傳遞;因為極化碼在短碼區域的性能優於低密度奇偶檢查碼,我們選擇極化碼而不是低密度奇偶檢查碼進行研究。 我們在本論文的模擬中設置信噪比大於零分貝,因為當信噪比小於零分貝時失效機率太高以致無法執行無允諾接取系統;而為了在該系統中實現更高的流通量,我們使用打孔極化碼來執行遞增冗餘混合式自動重送請求。 在我們的演算法中,我們將首先會通過打孔長度的錯誤機率來決定重傳長度;而我們的流通量比已被提出的算法要高,而且與其相比我們的系統更加簡單,因為我們不需要傳輸重傳長度。此外,我們考慮了加性高斯白雜訊信道和馬爾可夫模型的區塊衰落通道;而我們提出的基於等效長度的方法在衰落信道中能夠實現比既有方法更高的流通量;並且我們在這兩個系統中計算出它們的上界。 在非正交多重接取系統中,我們使用內插法來逼近我們算法中使用的參數,以防止存儲過多信噪比的參數組合。此外,我們應仔細選擇極化碼的消息集合以避免打孔具有高可靠性的位子。 | zh_TW |
dc.description.abstract | In this thesis, we consider a non-orthogonal multiple access (NOMA) system for grant-free access with the polar coded incremental redundancy hybrid automatic repeat re-Quest (IR-HARQ) in the Internet of Things (IoT). In IoT applications, the short packet is considered due to the power limit of the devices. We choose polar codes rather than low-density parity-check(LDPC) codes since polar codes can outperform LDPC codes in the shortcode region. In our simulation, we set signal-to-noise ratio(SNR)$>$0dB in this thesis since the outage probability is too high when SNR$<$0dB to perform grant-free access. To achieve higher throughput in this system, we use punctured polar code to perform IR-HARQ. In our algorithms, we will first decide the re-transmission length by the error probability of punctured length. Our throughput is higher than the proposed algorithm, and we do not need to transmit the re-transmission length. Furthermore, we consider the additive white Gaussian noise (AWGN) channel and the Markov model for the block fading channel. The equivalent-length-based method is applied in our system to achieve higher throughput in fading channel. In both systems, we calculate an upper bound of them. In the NOMA system, we use interpolation to approximate parameters used in our algorithm to prevent storing too many parameters of the combination of SNR. The information bit set should be chosen carefully to avoid puncturing bits with high reliability. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-13T16:20:22Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-06-13T16:20:22Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Contents
1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Preliminaries 8 2.1 Polar Code Encoder . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Polar Code Decoder . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Markov Model of Rayleigh Fading Channel . . . . . . . . . . 10 3 System Model 12 3.1 Puncturing Method . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.1 QUP Method . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.2 ISAP Method . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Polar coded U-users uplink NOMA channel . . . . . . . . . . . 14 3.3 HARQ model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 HARQ model with NOMA . . . . . . . . . . . . . . . . . . . . 16 4 IR-HARQ Scheme 18 4.1 IR-HARQ Scheme - Minimum Expected Length . . . . . . . . 19 4.2 IR-HARQ Scheme - CDF-based Method . . . . . . . . . . . . 20 4.3 IR-HARQ Scheme - Maximum Throughput Method . . . . . . 20 4.4 Adapting in Fading Channel . . . . . . . . . . . . . . . . . . . 21 4.5 Upper bound of Optimal Re-transmission . . . . . . . . . . . . 21 4.6 Adapting in NOMA system . . . . . . . . . . . . . . . . . . . 22 5 Simulation Result 25 5.1 IR-HARQ Scheme in AWGN Channel . . . . . . . . . . . . . . 25 5.2 IR-HARQ Scheme in Rayleigh Fading Channel . . . . . . . . . 26 5.3 NOMA System . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 Conclusion 32 | - |
dc.language.iso | en | - |
dc.title | 在區塊衰落通道下以短長度極化碼混合式進行自動重送請求的非正交多工接取 | zh_TW |
dc.title | The Polar Coded HARQ NOMA System in the Block Fading Channel with the Short Code Length | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林茂昭;林士駿;黃昱智 | zh_TW |
dc.contributor.oralexamcommittee | Mao-Chao Lin;Shih-Chun Lin;Yu-Chih Wang | en |
dc.subject.keyword | 馬爾可夫模型,瑞利衰落頻道,極化碼,流通量,遞增冗餘混合式自動重送請求,非正交多重接取, | zh_TW |
dc.subject.keyword | Markov model,Rayleigh fading,Polar codes,Throughput,IR-HARQ,NOMA, | en |
dc.relation.page | 36 | - |
dc.identifier.doi | 10.6342/NTU202300062 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-01-13 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf 目前未授權公開取用 | 1.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。